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A few more Hadamard partitioned difference

families

Anamari Nakic

Abstract. A (G, [k1, . . . , kt], λ) partitioned difference family (PDF) is a
partition B of an additive group G into sets (blocks) of sizes k1, . . . , kt,
such that the list of differences of B covers exactly λ times every non-zero
element of G. It is called Hadamard (HPDF) if the order of G is 2λ. The
study of HPDFs is motivated by the fact that each of them gives rise,
recursively, to infinitely many other PDFs. Apart from the elementary
HPDFs consisting of a Hadamard difference set and its complement, only
one HPDF was known. In this article we present three new examples in
several groups and we start a general investigation on the possible existence
of HPDFs with assigned parameters by means of simple arguments.

1 Introduction

We recall that the list of differences of a subset B of an additive group
G, denoted by ∆B, is the multiset of all possible differences between two
distinct elements of B:

∆B := {x− y : x ̸= y, x, y ∈ B}.

More generally, the list of differences of a collection F = {B1, . . . , Bt} of
subsets of G is the multiset ∆F which is union of the lists of differences
of all the Bi’s, i.e., ∆F =

⋃t
i=1 ∆Bi. The collection F is said to be a

difference family (DF) if ∆F covers every non-zero element of G a con-
stant number λ of times. In this case, if K is the multiset of the sizes of
the Bi’s, one says that F is a (G,K, λ)-DF. More specifically, one writes
(G, [k1, . . . , kt], λ)-DF if Bi has size ki. The Bi’s are the base blocks of F and
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λ is its index. One often speaks of a (v,K, λ)-DF or (v, [k1, . . . , kt], λ)-DF
when the group G (of order v) is understood.

If a DF of index λ has only one block B and its size is k, then one says
that B is a (G, k, λ) difference set (DS). As before, one generally speaks
of a (v, k, λ)-DS if the group G is understood. Among the many classes
of difference sets we have, in particular, the so called Hadamard difference
sets which are those whose parameters are (4u2, 2u2 − u, u2 − u) for some
u.

A (G, [k1, . . . , kt], λ)-DF is partitioned (PDF) if its blocks partitionG. Here
the parameters v = o(G) and λ are completely determined by K. Indeed
it is evident that the equalities k1 + · · · + kt = v and k1(k1 − 1) + ... +
kt(kt − 1) = λ(v− 1) hold. The notion of a PDF was introduced in [12] for
the construction of optimal constant composition codes [17, 12] which are
important in various applications (see, e.g,. [10, 14]) and it is equivalent to
that of a zero difference balanced function [11] even though, according to
[7], it is far preferable to keep the standard notation and terminology.

In a very recent article [8], PDFs have been used to prove the existence of
infinitely many resolvable linear spaces with a mandatory set of block sizes
and an automorphism group acting sharply transitively on the points and
transitively on the parallel classes.

If B is (v, k, λ)-DS in G, then {B,G\B} is a (v, [k, v−k], v−2k+2λ)-PDF.
So, in particular, a Hadamard (4u2, 2u2 − u, u2 − u)-DS gives rise to a
(4u2, [2u2 + u, 2u2 − u], 2u2)-PDF. Note that here the order of the group
is twice the index. For this reason all PDFs with this property have been
called Hadamard partition difference families (HPDFs) in the paper were
they have been introduced [6]. The motivation of their study is that each
HPDF in a group G gives rise to an infinite class of PDFs in suitable
supergroups of G.

As pointed out in [7], PDFs with (many) blocks of size 1 are not considered
very interesting. However, in the case of HPDFs, the situation is quite
different since the PDFs arising from them by using Buratti’s construction
no longer contain blocks of size 1.

Apart from the HPDFs arising from Hadamard DSs that we call elementary,
there was only one known example of a HPDF. This makes believe that
HPDFs are quite rare. In this paper we determine three new examples in
several groups.
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Apart from this, the article wants to be the beginning of a general investi-
gation on HPDFs by means of quite simple arguments. It is structured as
follows.

In the next section we characterize the PDFs having exactly two blocks.
They necessarily consist of a difference set and its complement. In par-
ticular, each HPDF with two blocks necessarily consists of a Hadamard
difference set and its complement.

In Section 3 we give the trivial necessary conditions for the existence of a
HPDF, we list the first admissible parameter sets and then we give some
informations on the HPDFs with exactly three blocks.

In Section 4, exploiting partial difference sets, we prove that a HPDF with
three block sizes one of which is 1 cannot exist.

In Section 5 we give one more necessary condition for the existence of a
HPDF in a group having at least one subgroup of index 2.

In Section 6 we present the three new examples mentioned earlier. We
have a (24, [13, 22, 17], 12)-HPDF in three pairwise non-isomorphic groups,
a (36, [3, 9, 24], 18)-HPDF in nine pairwise non-isomorphic groups, and a
cyclic (40, [1, 3, 9, 27], 20)-HPDF.

In Section 7 we determine the infinite families of descendants of our new
three examples.

Finally, in Section 8 we pose two open questions. We first ask whether there
exists a (v, k, λ)-DS with v = 2λ and k > 4. The motivation is that such
a DS would give a (v, [1v−k, k], λ)-HPDF. The second question is whether,
given positive integers q and n, there exists a PDF whose related K is
[q0, q1, q2, q3, . . . , q2n−1]. The motivation is that such a PDF with q = 3
would be Hadamard.

2 PDFs and HPDFs with two blocks

The following fact is extremely well-known (see, e.g., [1]).

Proposition 2.1. If B is a (v, k, λ)-DS in G, then the complement B of
B in G is a (v, v − k, v − 2k + λ)-DS.
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The above explains why, as said in the introduction, a (v, k, λ)-DS and its
complement give a (v, [k, v − k], v − 2k + 2λ)-PDF.

Although the following is a rather straightforward generalization of Propo-
sition 2.1, we are not aware whether it was ever stated explicitly before.

Proposition 2.2. Let B be a k-subset of an additive group G of order v
and let B be the complement of B in G. Let g be a non-zero element of G
and let λ(g) be its multiplicity in ∆B. Then the multiplicity λ(g) of g in
∆B is v − 2k + λ(g).

Proof. Given subsets X and Y of G, set

ΛX×Y (g) = {(x, y) ∈ X × Y | x− y = g}.

We have |ΛB×B(g)| = λ and |ΛB×B(g)| = λ by assumption. Let (x1, y1),
. . . , (xλ, yλ) be the λ pairs of ΛB×B(g) and set

B′ = B \ {x1, . . . , xλ} and B′′ = B \ {y1, . . . , yλ}.

It is easy to see that

ΛB×B(g) = {(b,−g + b) | b ∈ B′} and ΛB×B(g) = {(g + b, b) | b ∈ B′′}

so that |ΛB×B(g)| = |B′| = k−λ and |ΛB×B(g)| = |B′′| = k−λ. Finally, it
is evident that ΛG×G(g) = {(g+y, y) | y ∈ G} so that |ΛG×G(g)| = |G| = v.
Considering that the four sets B ×B, B ×B, B ×B, and B ×B partition
G×G, we can write

|ΛB×B(g)|+ |ΛB×B(g)|+ |ΛB×B(g)|+ |ΛB×B(g)| = |ΛG×G(g)|

and hence, from what seen above, λ + λ + (k − λ) + (k − λ) = v which
immediately gives the assertion.

Proposition 2.3. A PDF with only two blocks necessarily consists of a
difference set and its complement. More specifically, a HPDF with only two
blocks necessarily consists of a Hadamard difference set and its complement.

Proof. If F is a (v, [k, v − k], λ)-PDF, then F = {B,B} with B a k-subset
of an additive group G of order v and B = G \ B. Given any element
g ∈ G \ {0} denote by µ(g) and µ(g) the multiplicities of g in ∆B and ∆B,
respectively. By definition of a PDF we have µ(g) + µ(g) = λ for every
g ∈ G. On the other hand we have µ(g) = v− 2k+µ(g) by Proposition 2.2
and then v−2k+2µ(g) = λ, i.e., µ(g) = 2k−v+λ

2 is a constant. This means
that B is a difference set and the first assertion follows.
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Now assume that {B,B} is a (v, [k, v−k], λ)-HPDF so that we have v = 2λ.
Without loss of generality we can assume that k ≤ v− k, i.e., k ≤ v

2 . Then

we deduce that B is a (v, k, µ)-DS with µ = 2k−λ
2 . Considering that v

is even, k − µ must be a square by the Bruck-Ryser-Chowla theorem. It
follows that λ

2 = u2, hence µ = k − u2 for some integer u. Then, from the
trivial identity µ(v − 1) = k(k − 1), we get (k − u2)(4u2 − 1) = k(k − 1).
Hence k is a solution of the quadratic equation x2 − 4u2x + 4u4 − u2 = 0
so that either k = 2u2 + u or k = 2u2 − u. On the other hand we have
assumed k ≤ v

2 , hence k = 2u2 − u and µ = u2 − u. We conclude that B
is a (4u2, 2u2 − u, u2 − u)-DS, i.e., B is a Hadamard difference set. The
assertion follows.

3 Some necessary conditions

The following proposition is straightforward.

Proposition 3.1. Let F be a (G, [k1, . . . , kt], λ)-HPDF. Then

(i) k1 + · · ·+ kt = 2λ;

(ii) k21 + · · ·+ k2t = λ(2λ+ 1);

(iii) λ is even, hence o(G) ≡ 0 (mod 4).

Proof. Let F be a (G, [k1, . . . , kt], λ)-HPDF. By definition of a HPDF, we
have k1 + · · ·+ kt = |G| = 2λ. From ∆F = λ (G \ {0}) we obtain

|∆F| = k1(k1 − 1) + · · ·+ kt(kt − 1) = λ(2λ− 1)

and then
k21 + · · · k2t = λ(2λ− 1) + k1 + · · ·+ kt.

Then (ii) follows taking into consideration (i).

We obviously have k1 + · · · + kt ≡ k21 + · · · + k2t (mod 2). Thus, using (i)
and (ii), we get 2λ ≡ λ(2λ+ 1) (mod 2) and (iii) follows.

As a consequence of the above proposition, every HPDF in a group G has
o(G) necessarily doubly even. However, it is worth to observe that this can
be deduced in another way as follows. Assuming that F is a HPDF in G

and o(G) ≡ 2 (mod 4), then λ = o(G)
2 would be odd and this is absurd since
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the multiplicity in ∆F of any involution i of G is necessarily even: indeed,
if x − y = i is a representation of i as a difference from F , then y − x = i
is a representation of i as a difference from F as well.

In the following table we list the very first parameter sets satisfying the
necessary conditions of Proposition 3.1 disregarding those were K has size
2 in view of Proposition 2.3.

v K λ
20 [1, 2, 3, 14] 10
24 [13, 22, 17] 12
28 [1, 9, 18] 14
28 [3, 6, 19] 14
32 [22, 6, 22] 16
36 [3, 9, 24] 18
36 [3, 42, 25] 18
36 [15, 6, 25] 18
40 [1, 3, 9, 27] 20
40 [34, 28] 20
40 [12, 32, 4, 28] 20
40 [14, 42, 28] 20
40 [13, 22, 5, 28] 20

An HPDF with “blue parameter set” has been found by Buratti [6] and it
is the only non-elementary HPDF known at this moment.

In Section 6 we will determine an HPDF with “green parameter set” in
several groups.

By exhaustive computer search we have checked that an HPDF with “red
parameter set” does not exist.

The existence of an HPDF with “uncolored parameter set” is still in doubt.

The HPDFs with only two blocks have been already characterized in Propo-
sition 2.3. Let us see what we can say about HPDFs with three blocks.

Proposition 3.2. In a (v, [k1, k2, k3], λ)-HPDF we necessarily have

k1,2 =
2λ− k3 ±

√
2λ(2k3 + 1)− 3k23
2

.
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Proof. By Proposition 3.1 we have

k1 + k2 + k3 = 2λ

and

k21 + k22 + k23 = λ(2λ+ 1).

The second identity can be rewritten as

(k1 + k2)
2 − 2k1k2 + k23 = 2λ2 + λ

and then, in view of the first identity, we have

(2λ− k3)
2 − 2k1k2 + k23 = 2λ2 + λ

which gives

k1 · k2 =
2λ2 − (4k3 + 1)λ+ 2k23

2
.

Considering that k1 + k2 = 2λ− k3 and recalling that two numbers having
sum s and product p are the solutions of the quadratic equation x2−sx+p =
0, after trivial computations we get the assertion.

The possible block-sizes of a (v, [k1, k2, k3], λ)-HPDF are strongly limited
by the above proposition. Indeed we have the following.

Corollary 3.3. The existence of a (v, [k1, k2, k3], λ)-HPDF necessarily im-
plies that no prime divisor of (2k1 + 1)(2k2 + 1)(2k3 + 1) is congruent to 5
(mod 6).

Proof. Assume that a (v, [k1, k2, k3], λ)-HPDF exists and let p be a prime
factor of (2k1 + 1)(2k2 + 1)(2k3 + 1). Up to a reordering of the indices we
can assume that p is a divisor of 2k3 + 1 and hence p cannot divide k3. By
Proposition 3.2 it is clear that 2λ(2k3 + 1)− 3k23 must be a perfect square.
So, in particular, it must be a square modulo p. Considering that p is a
divisor of 2k3 +1 we have that 2k3 +1 ≡ 0 (mod p). Also, k23 is a non-zero
square of Zp since p does not divide k3. We conclude that −3 must be a
square of Zp and then, by the Quadratic Law of Reciprocity, we have either
p = 3 or p ≡ 1 (mod 6).

As a consequence of Corollary 3.3, in a (v, [k1, k2, k3], λ)-HPDF we cannot
have, for instance, blocks of size 2, 5, 7, 8, 11, 12, 14, 16, 17, ...

A few more Hadamard Partitioned Difference Families

60



4 Exploiting partial difference sets

Note that Corollary 3.3 does not forbid the existence of a

(v, [k1, k2, k3], λ)-HPDF

with a block of size 1 and indeed, using Proposition 3.2, we can see, for
instance, that for every n ≥ 2

(
32n−1 + 1

2
,

[
32n−1 + 3n

2
,
32n−1 − 3n

2
, 1

]
,
32n−1 + 1

4

)

is an admissible parameter set for a HPDF. On the other hand we are going
to see that a (v, [k1, k2, 1], λ)-HPDF cannot exist. To prove this we have to
exploit a result on partial difference sets.

A (v, k, α, β) partial difference set (PDS) in a group G is a k-subset B of
G such that ∆B covers α times every non-zero element of B and β times
every non-zero element of G \B.

Among the various necessary conditions for the existence of a non-trivial
PDS we will need the following (see Proposition 3(d) in [18]).

Lemma 4.1. If there exists a (v, k, α, β)-PDS and γ := (α−β)2+4(k−β)
is not a square, then we have (v, k, α, β) = (4t+1, 2t, t− 1, t) for a suitable
integer t.

In the next proposition we will see that if a PDF in a group G has exactly
three blocks one of which has size 1, then each of the other two blocks is a
PDS or a DS in G.

Proposition 4.2. Let F = {B1, B2, {0}} be a (v, [k1, k2, 1], λ)-PDF in G.
Then, for i = 1, 2 we have:

(i) Bi is a (v, v−1
2 , v−3

4 )-DS if v − λ is odd;

(ii) Bi is a (G, ki, αi, αi + 1)-PDS with αi = ki +
λ−v
2 if v − λ is even.

Proof. For i = 1, 2 and for g ∈ G, let λi(g) be the multiplicity of g in ∆Bi.
The assumption that F is a (v, [k1, k2, 1], λ)-PDF means that we have

λ1(g) + λ2(g) = λ ∀ g ∈ G \ {0}. (1)

Let B1 be the complement of B1 in G and let λ1(g) be the multiplicity of
g in ∆B1. We have B1 = B2 ∪ {0} so that the possible representations
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of g ∈ G as a difference from B1 which are not representations of g as a
difference from B2 are g = g − 0 if g ∈ B2, and g = 0 − (−g) if −g ∈ B2.
Thus we can write:

λ2(g) =





λ1(g) if {g,−g} ⊂ B1;

λ1(g)− 2 if {g,−g} ⊂ B2;

λ1(g)− 1 if |{g,−g} ∩Bi| = 1 for i = 1, 2.

(2)

In the following, we distinguish two cases according to the parity of v − λ
and keep in mind that we have

λ1(g) = v − 2k1 + λ1(g) (3)

in view of Proposition 2.2.

Case 1: v − λ is odd.

Observe that for any given g ∈ G \ {0} we cannot have {g,−g} ⊂ B1

otherwise (1), (2) and (3) would give λ = v− 2k1 + 2λ1(g) contradicting
the assumption that v − λ is odd.

Analogously, we cannot have {g,−g} ⊂ B2 otherwise (1), (2) and (3)
would give λ = v−2k1+2λ1(g)−2 contradicting again that v−λ is odd.

We conclude that g and −g lie in different Bi’s for every g ∈ G \ {0}.
It follows, in particular, that G is involution-free: if g is an involution,
we cannot have g ∈ B1 and −g ∈ B2 since g and −g are the same.
Thus G has odd order and we have B2 = −B1 so that k1 = k2 = v−1

2 .
Considering that F is a (v, [k1, k2, 1], λ)-PDF we must have λ(v − 1) =
k1(k1 − 1) + k2(k2 − 1) and hence λ(v − 1) = 2 · v−1

2 · v−3
2 which gives

λ = v−3
2 . Finally, (2) and (3) give λ2(g) = v−2 · v−1

2 +λ1(g)−1 = λ1(g).

It follows, by (1), that λ1(g) = λ2(g) =
λ
2 = v−3

4 . It is now clear that B1

and B2 are (v, v−1
2 , v−3

4 )-DSs.

Case 2: v − λ is even.

Here, there is no g ∈ G such that g ∈ B1 and −g ∈ B2. Indeed, in
the opposite case, (1), (2) and (3) would give λ = v − 2k1 + 2λ1(g) − 1
contradicting the assumption that v − λ is even. Thus, by (2), we have

λ2(g) =

{
v − 2k1 + λ1(g) if g ∈ B1;

v − 2k1 + λ1(g)− 2 if g ∈ B2.

Using again (1) and (3) we get λ = v−2k1+2λ1(g) or v−2k1+2λ1(g)−2
according to whether g ∈ B1 or g ∈ B2, respectively. Solving these
identities with respect to λ1(g) we finally get

λ1(g) =

{
α1 if g ∈ B1;

α1 + 1 if g ∈ B2.
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This precisely means that B1 is a (G, k1, α1, α1+1)-PDS. In the same way,
exchanging the roles of B1 and B2 one gets that B2 is a (G, k2, α2, α2+1)-
PDS.

Corollary 4.3. A (v, [k1, k2, 1], λ)-HPDF cannot exist.

Proof. Assume that there exists a (v, [k1, k2, 1], λ)-HPDF so that v−λ = λ
is even. Up to a translation we can assume that the block of size 1 is
{0}. Then, by Proposition 4.2, the block of size k1 is a (2λ, k1, α, α + 1)-
PDS with α = k1 − λ

2 . Here the parameter γ mentioned in Lemma 4.1 is

1 + 4(k1 − k1 +
λ
2 ) = 2λ+ 1. Thus, in view of the same lemma, 2λ+ 1 is a

perfect square, say 2λ+1 = µ2, otherwise we should have v = 4t+1 which
is absurd. By Proposition 3.2 it is also necessary that 6λ − 3 is a perfect
square. Now note that we have 6λ − 3 = 3(2λ − 1) = 3(µ2 − 2) so that 3
should divide µ2 − 2. This is absurd since 2 is not a square modulo 3.

5 Exploiting subgroups of index 2

The following proposition exploits the possible existence of a subgroup of
index 2.

Proposition 5.1. Let F = {B1, . . . , Bt} be a (G, [k1, . . . , kt], λ)-HPDF,
assume that G has a subgroup H of index 2, and set |Bi ∩ H| = si for
i = 1, . . . , t. Then the following identities hold:

s1 + ... + st = λ and 2s1(k1 − s1) + ... + 2st(kt − st) = λ2

Proof. For i = 1, . . . , t, set B′
i = Bi ∩H and B′′

i = Bi \H so that |B′
i| = si

and |B′′
i | = ki − si. The first identity follows from the fact that the Bi’s

partition H which has order λ. Now note that we have

∆Bi = ∆B′
i ∪ ∆B′′

i ∪ (B′
i −B′′

i ) ∪ (B′′
i −Bi).

Also note that ∆B′
i ∪ ∆B′′

i is a multisubset of H and that both B′
i −B′′

i

and B′′
i −B′

i are multisubsets of G\H of size |B′
i| · |B′′

i | = si(ki− si). Thus
we can say that ∆Bi has exactly 2si(ki − si) elements in G \ H. Then,
considering that ∆F covers every element of G \ H exactly λ times, we
conclude that we have

∑t
i=1 2si(ki − si) = λ · |G \H| = λ2, i.e., the second

identity holds.
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As a consequence we have the following.

Corollary 5.2. If there exists a (G, [k1, . . . , kt], λ)-HPDF and G has a
subgroup of index 2, then the diophantine system

{
x1 + ... + xt = λ

2x1(k1 − x1) + ... + 2xt(kt − xt) = λ2

has a solution (s1, . . . , st) with 0 ≤ si ≤ ki for each i.

As application of the above corollary one can see that none of these K,
though admissible, can be the multiset of block-sizes of a HPDF:

[50, 20, 5, 1]; [52, 23, 2, 1, 1, 1]; [73, 38, 3, 2];

[77, 28, 8, 3]; [79, 31, 7, 3]; [81, 21, 16, 1, 1]; [104, 35, 14, 3].

As a matter of fact we have to admit that the admissible K which are ruled
out by Corollary 5.2 do not appear so many. On the other hand Proposition
5.1 has been useful to limit our computer search for HPDFs of small orders.

6 New HPDFs

In this section we present HPDFs with the three new parameter sets

(24, [13, 22, 17], 12), (36, [3, 9, 24], 18) and (40, [1, 3, 9, 27], 20).

We will use, in particular, some dihedral groups and dicyclic groups of small
orders. We recall that the dihedral group of order 2n, denoted D2n, is the
group with defining relations

⟨x, y | xn = 1; y2 = 1; yxi = x−iy⟩.

We also recall that the dicyclic group of order 4n, denoted Q4n, is the group
with defining relations

⟨x, y | x2n = 1; y2 = xn; yxi = x−iy⟩.
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6.1 (24, [13, 22, 17], 12)-HPDFs

We found an example of a (24, [13, 22, 17], 12)-HPDF in each of the following
groups: C3 ⋊ C8, SL(2, 3) and C3 ×D8.

G = C3 ⋊ C8

This is the semidirect product of C3 by C8 with defining relations

C3 ⋊ C8 = ⟨a, b | a8 = b3 = 1, ab−1 = ba⟩.
Thus the elements of G are of the form aibj with 0 ≤ i ≤ 7 and 0 ≤
j ≤ 2. The difference (even though we should say “ratio” since we are in
multiplicative notation) between two elements ai1bj1 and ai2bj2 is given
by

(ai1bj1)(ai2bj2)−1 = ai1−i2b(−1)i2 (j1−j2). (4)

Let F = {B1, B2, B3, B4, B5, B6} be the partition of G defined as follows:

B1 = {1, a, a2, a3, a4, a6, a7, b, ab, a3b, a4b, a5b, a6b, b2, ab2, a2b2, a4b2};
B2 = {a3b2}; B3 = {a5b2}; B4 = {a7b2};

B5 = {a5, a2b}; B6 = {a7b, a6b2}.
Using(4) it is straightforwardtocheckthatF isa (G, [13, 22, 17], 12)-HPDF.

G = SL(2, 3)
This is the 2-dimensional special linear group over Z3. Its elements are
the 2× 2 matrices with elements in Z3 and determinant equal to 1. Let
F = {B1, B2, B3, B4, B5, B6} be the partition of G defined as follows:

B1 =

{(
2 1
0 2

)}
; B2 =

{(
1 2
0 1

)}
; B3 =

{(
0 2
1 2

)}
;

B4 =

{(
0 2
1 0

)
,

(
1 1
1 2

)}
; B5 =

{(
2 1
2 0

)
,

(
2 2
0 2

)}
;

B6 = G \ (B1 ∪ B2 ∪ B3 ∪ B4 ∪ B5).

It is straightforward to check that F is a (G, [13, 22, 17], 12)-HPDF.

G = Z3 × D8

The reader can easily recognize that the partition of G into the blocks
listed below is a (G, [13, 22, 17], 12)-HPDF.

B1 = {(0, x2)}; B2 = {(2, xy)}; B3 = {(2, x3y)};
B4 = {(1, x3), (2, x3)}; B5 = {(1, y), (2, x2y)};

B6 = G \ (B1 ∪ B2 ∪ B3 ∪ B4 ∪ B5).
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6.2 (36, [3, 9, 24], 18)-HPDFs

We found an example F = {A,B,C} of a (36, [3, 9, 24], 18)-HPDF in the
groups

Z6 × Z6, Z3 × Z12, Z3 ×Q12, D6 ×D6, Z6 ×D6,

Z3 ×A4, Z3 ⋊Q12, Z2
3 ⋊ Z4, Z2 × Z3 ⋊D6.

We present our example for each of the first five.

G = Z6 × Z6

A = {(1, 1), (1, 3), (1, 5)};
B = {{0, 2), (0, 3), (1, 4), (2, 0), (2, 5), (3, 4), (4, 1), (4, 4), (5, 4)};
C = G \ (A ∪ B).

G = Z3 × Z12

A = {(1, 1), (1, 5), (1, 9)};
B = {{0, 2), (0, 3), (0, 4), (1, 2), (1, 8), (1, 11), (2, 0), (2, 2), (2, 7)};
C = G \ (A ∪ B).

G = Z3 × Q12

A = {(0, xy), (1, xy), (2, xy)};
B = {{1, 1), (0, x3), (0, x2), (2, y), (1, x5), (2, x4y), (2, x4), (2, x2y), (2, x)};
C = G \ (A ∪ B).

G = D6 × D6

A = {(y, xy), (xy, xy), (x2y, xy)};

B =

{
(1, x2y), (x, y), (x2, 1), (x2, x), (x2, x2),
(x2, xy), (y, 1), (xy, x2), (x2y, x)

}
;

C = G \ (A ∪ B).

G = Z6 × D6

A = {(1, xy), (3, xy), (5, xy)};
B = {{0, x), (1, x2), (2, 1), (3, 1), (4, x2), (4, y), (4, xy), (4, x2y), (5, x)};
C = G \ (A ∪ B).
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6.3 A cyclic (40, [1, 3, 9, 27], 20)-HPDF

This is our unique example of a HPDF in a cyclic group. Also, it has
maximum order among the few non-elementary HPDFs that are known at
this moment. Thus it is surprising that this is also the unique example that
we have been able to get by hand without any use of the computer. The
idea was the following. Start from any cyclic (40, 13, 4)-DS, that is a Singer
difference set. Such a difference set is available in the literature. One is,
for instance, the following (see [13], page 427):

D = {1, 2, 3, 5, 6, 9, 14, 15, 18, 20, 25, 27, 35}.

By Corollary 2.1, D := Z40 \D is a (40, 27, 18)-DS. Then, if we are able to
partition D into three subsets A, B, C of sizes 1, 3, 9 in such a way that
∆A ∪ ∆B ∪ ∆C is all Z40 \ {0} twice, it is obvious that

F = {A,B,C,D}

would be a (40, [1, 3, 9, 27], 20)-HPDF. Well, the desired partition of D has
A, B, C as follows:

A = {13}; B = {5, 15, 25}; C = {1, 2, 3, 6, 9, 14, 18, 20, 27}.

This is readily seen from the difference tables of B and C below (of course
∆A is empty).

5 15 25

5 − 30 20
15 10 − 30
25 20 10 −

1 2 3 6 9 14 18 20 27

1 − 39 38 35 32 27 23 21 14
2 1 − 39 36 33 28 24 22 15
3 2 1 − 37 34 29 25 23 16
6 5 4 3 − 37 32 28 26 19
9 8 7 6 3 − 35 31 29 22
14 13 12 11 8 5 − 36 34 27
18 17 16 15 12 9 4 − 38 31
20 19 18 17 14 11 6 2 − 33
27 26 25 24 21 18 13 9 7 −
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It is worth observing that C is a (10, 4, 9, 2) relative difference set. It means
that ∆C is precisely twice Z10·4 \ N where N is the subgroup of Z10·4 of
order 4 (see [13]).

7 New infinite families of PDFs

Most composition constructions for PDFs make use of difference matrices
and lead to PDFs whose block sizes belong, almost all, to the set of block
sizes of the component PDFs (see [9, 15]). Buratti [6] motivated the intro-
duction of HPDFs showing that any single (v,K, λ)-HPDF is the ancestor
of an infinite series of PDFs where, apart from one special block of size 2λ,
the size of every other block is the double of some k ∈ K. We are going to
recall the main application of his construction and then we determine the
descendants of our new examples.

Following [4], the maximal prime power factors of a given integer v will
be called components of v, and Fv will denote the ring which is the direct
product of the fields whose orders are the components of v. Thus, for
instance, F63 = F9 × F7.

Theorem 7.1. [6] If there exists a (G, [k1, . . . , kt], λ)-HPDF and all the
components of 2n+1 are greater than 2 ·max{k1, . . . , kt}, then there exists
a (2λ(2n+ 1), [(2k1)

n, . . . , (2kt)
n, 2λ], 2λ)-PDF in G× F2n+1.

Applying the above theorem using the new examples of HPDFs obtained
in Section 6 we obtain the following results.

Corollary 7.2. If all the components of 2n + 1 are greater than 34, then
there exists a (48n + 24, [34n, 42n, 23n, 24], 24)-PDF in G × F2n+1 for each
of the three groups G considered in 6.1.

The first n for which the above corollary can be applied is 18. In this way
one gets a (984, [3418, 436, 254, 24], 24)-PDF in G× F37.

Corollary 7.3. If all the components of 2n + 1 are greater than 48, then
there exists a (72n + 36, [6n, 18n, 48n, 36], 36)-PDF in G × F2n+1 for each
of the nine groups G considered in 6.2.

The first n for which the above corollary can be applied is 24. In this way
one gets a (1764, [624, 1824, 4824, 36], 36)-PDF.

A few more Hadamard Partitioned Difference Families

68



Corollary 7.4. If all the components of 2n + 1 are greater than 54, then
there exists a (80n+ 40, [2n, 6n, 18n, 54n, 40], 40)-PDF in Z40 × F2n+1.

The first n for which the above corollary can be applied is 29. In this way
one gets a (2360, [229, 629, 1829, 5429, 40], 40)-PDF.

8 A pair of open questions

It is obvious that any (v, k, λ) difference set B with v = 2λ gives rise to a
(v, [1v−k, k], λ)-HPDF consisting of B and all possible singletons {g} with
g ∈ G \ B. Thus, for our purposes, it is worth to look for difference sets
with this property. Let us call them Pell difference sets. The existence of
a Pell (v, k, λ)-DS obviously requires that k(k− 1) = λ(2λ− 1) and, by the
Bruck-Ryser-Chowla theorem, that k − λ is a square. On the other hand
the latter condition is redundant. Indeed, as shown in the following, the
first condition implies the second.

Proposition 8.1. If k and λ are integers such that k(k − 1) = λ(2λ− 1),
then k − λ is a square.

Proof. Set d = gcd(k, λ). Thus we have k = de and λ = df with e and f
coprime integers. From the given equality we get e(de − 1) = f(2df − 1)
and then, considering that gcd(e, f) = 1, we necessarily have de − 1 = fg
and 2df − 1 = eg for some integer g. Subtracting the second equality from
the first one we get d(e−2f) = g(f − e). We clearly have gcd(d, g) = 1 and
hence d = f−e and g = e−2f . We conclude that k−λ = d(e−f) = d2.

Apart from the trivial (4, 3, 2)-DS, no other Pell difference set is known.

Question 8.2. Does there exist a Pell difference set of order v > 4?

Here are the first possible triples (v, k, λ) for which a non-trivial Pell (v, k, λ)
difference set may exist:

(120, 85, 60)

(4060, 2871, 2030)

(137904, 97513, 68952)

(4684660, 3312555, 2342330)

(159140520, 112529341, 79570260)

Let us consider the first one. A putative (120, 85, 60) is the complement of
a (120, 35, 10)-DS. Even though several authors investigated the possible
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existence of a DS with these parameters, they have been only able to rule
out some groups (see [2]).

In view of these consideration and the fact that the admissible values of v
grow up very rapidly, we are afraid that Question 8.2 is really hard.

We come now to another question which is probably easier.

The parameter set of the last HPDF constructed in Section 6 can be written
as (

34 − 1

2
, [30, 31, 32, 33],

34 − 1

4

)
.

Inspired by this, we have noticed that
(
q2n − 1

q − 1
, [q0, q1, q2, q3, . . . , q2n−1],

q2n − 1

q + 1

)

is an admissible parameter set of a PDF for every positive integer q (not

necessarily a prime power!). Indeed, if we set v = q2n−1
q−1 , ki+1 = qi for

0 ≤ i ≤ 2n− 1, and λ = q2n−1
q+1 , we see that we have:

1) k1 + k2 + · · ·+ k2n =

2n−1∑

i=0

qi =
q2n − 1

q − 1
= v;

2) k1(k1 − 1)+k2(k2 − 1) + · · ·+ k2n(k2n − 1)

= (k21 + k22 + · · ·+ k22n)− (k1 + k2 + · · ·+ k2n)

=

2n−1∑

i=0

q2i − q2n − 1

q − 1
=

q4n − 1

q2 − 1
− q2n − 1

q − 1

=
(q2n − 1)(q2n−1 − q)

q2 − 1
= λ(v − 1).

Thus the following question naturally arises.

Question 8.3. Given positive integers q and n, does there exist a PDF
whose K is [q0, q1, q2, q3, . . . , q2n−1]?

For now, we know that the answer is positive for q = 3 and n = 1, 2. A
positive answer for q = 3 and any n would give the first infinite family of
HPDFs.
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