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Peg duotaire on graphs: jump versus merge

Robert A. Beeler∗ and Aaron D. Gray

Abstract. Numerous papers have explored the one-player game of peg
solitaire on graphs. In most papers, moves are performed by jumping over
adjacent pegs. In others, moves are performed by merging two pegs into
a mutually adjacent hole. This paper introduces a two-player game in
which players remove pegs from the graph on alternating turns. One player
removes pegs with jumps and the other removes pegs with merges. When
a player cannot make a valid move on their turn, the game ends.

In this paper, two options for play are explored. In the first, the last player
to remove a peg wins. Which player has a winning strategy depends not
only on the specific graph, but also which player goes first and whether
they are using jump moves or merge moves. In the second, one player seeks
to maximize the number of pegs in the final configuration, while the other
tries to minimize this number. We consider both variations of this game
on several infinite families of graphs such as paths, cycles, double stars,
and complete bipartite graphs. In all cases, we present explicit strategies.
Several open problems related to this study are also given.

1 Introduction

Peg solitaire is a table game which traditionally begins with “pegs” in every
space except for one which is left empty (in other words, a “hole”). If in
some row or column two adjacent pegs are next to a hole (as in Figure 1),
then the peg in x can jump over the peg in y into the hole in z. For more
information on traditional peg solitaire, refer to [3, 14]. In [9], peg solitaire
is expanded for play on graphs. A graph, G = (V,E), is a set of vertices,
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Figure 1: A typical peg solitaire jump, x· −→
y ·z
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Figure 2: An example of a merge, (x, z) → y

V , together with a set of edges, E. If there are pegs in vertices x and
y and a hole in z, then we allow x to jump over y into z, provided that
xy, yz ∈ E. Such a jump will be denoted x· −→

y ·z. For all undefined graph
theory terminology, refer to West [27].

The game begins with a hole in a single vertex. When no moves are avail-
able, the set of pegs remaining on the graph is called the terminal set,
denoted T . A number of papers seek to minimize the cardinality of T over
all starting configurations that consist of a single hole (see for example
[1, 5, 8, 9, 10, 13, 17, 21, 22]).

In [19], Engbers and Weber introduce a variation in which the principal
move is a merge. Let x, y, z ∈ V (G) and xy, yz ∈ E(G). If there are pegs
in x and z and a hole in y, then we can merge the pegs in x and z into
a single peg in y (see Figure 2). This move is denoted (x, z) → y. For
this “merge only” variant, the solvability of several families of graphs has
been determined [19]. Subsequently, a variation which allowed the player
to utilize both the jump move and the merge move was introduced in [11].
Other variations of peg solitaire on graphs are studied in [7, 12, 15, 16, 18].

In this paper, we consider the two-player variant, duotaire. For more in-
formation on traditional duotaire, refer to [20, 23]. In [6], the authors
introduce peg duotaire on graphs. The first player (Player One) selects
the initial hole. The players (beginning with Player Two) then alternate
removing pegs from the graph using peg solitaire jumps. When no moves
are available, the game ends, and the last player to complete a turn is the
winner.
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In this paper, we introduce and explore a new version of duotaire. In this
version, we follow the same rules; however, one player (Jumper) only makes
moves by jumping pegs. The other player (Merger) only makes moves by
merging pegs. When one player is unable to make their respective move,
the game ends. Inspired by the convention used in [2], we will assume that
Jumper is male and that Merger is female. In Section 2, the last player
to make a move on the graph wins. In Section 3, the players are trying to
maximize or minimize the number of pegs in the terminal set. For both
options of play, we give explicit strategies on the complete graph, the path,
the cycle, the complete bipartite graph, and the double star. These are the
same graph families studied in [6]. As we will see in Section 3, these graph
families will provide examples for interesting phenomenon. In Section 4,
we present open problems related to this study.

2 Winning strategies

Typically, the goal in combinatorial game theory is to determine which
player has a winning strategy. By the Fundamental Theorem of Combi-
natorial Game Theory (see for example [4, 26]), either both players have
a drawing strategy or one player has a winning strategy. Since draws are
impossible in duotaire, one player has a winning strategy for each graph.
In this section, we consider peg duotaire on several families of graphs. For
each family, we characterize those graphs in which each player has a win-
ning strategy. The strategies presented often depend on whether Jumper
or Merger plays first. If Jumper (Merger) is Player One, then we refer to
the game as a Jumper-game (Merger-game). For both the Jumper-game
and the Merger-game, we present simple explicit strategies for each graph.

The following observations will be useful for numerous results.

Observation 2.1. Because one peg is removed during each turn, Player
One wins if and only if |V | − |T | is odd. Player Two wins if and only if
|V | − |T | is even.

Observation 2.2. Merger can never move into a vertex of degree one.
For this reason, if G has a vertex of degree one, then Jumper has a winning
strategy in the Jumper-game.

We now consider the game on multiple well-known families of graphs.

Peg duotaire on graphs: jump versus merge

85



Theorem 2.3. For the complete graph, Kn, Player One has a winning
strategy if and only if n = 1 or n is even. Player Two has a winning
strategy if and only if n ̸= 1 and n is odd.

Proof. If n ≤ 2, then no further moves are possible after Player One selects
the initial hole. Assume that n ≥ 3. Up to automorphism on the vertices,
all moves are forced until one peg remains. Thus |T | = 1. The result follows
from Observation 2.1.

The path on n vertices is the graph with vertex set V = {v0, v1, ..., vn−1}
and edge set E = {vivi+1 : i = 0, 1, ..., n− 2}. This graph is denoted Pn.

Theorem 2.4. For the path, Pn, Player One has a winning strategy if and
only if n ≤ 3. Jumper has a winning strategy if and only if n ≥ 4.

Proof. Per Observation 2.2, Jumper always wins in the Jumper-game. For
this reason, we consider the Merger-game for the remainder of the proof.

If n ≤ 3, then Merger selects v1 for the initial hole. In this case, no jumps
are possible and Merger wins.

Assume that n ≥ 4. Suppose Merger places the initial hole in vertex vi.
In this case, Jumper jumps vi−2· −→

vi−1 ·vi or vi+2· −→
vi+1 ·vi (whichever is

possible) to end the game with no merges possible.

The cycle on n vertices, where n ≥ 3 is the graph with vertex set V =
{v0, v1, ..., vn−1} and edge set E = {vivi+1 : i = 0, 1, ..., n − 1} (all com-
putations on the indices are done modulo n). This graph is denoted Cn.
While the cycle graph is obtained from the path by adding a single edge,
we will see that its strategy is more complex than the strategy presented
in the proof of Theorem 2.4.

Theorem 2.5. For the cycle, Cn, Merger has a winning strategy if and
only if n ≤ 11 and n ̸= 5 in the Jumper-game. Otherwise, Jumper has a
winning strategy.

Proof. We first consider the Jumper-game where 3 ≤ n ≤ 7. Without loss
of generality assume that Jumper selects v0 for the initial hole and that
Merger merges (vn−1, v1) → v0. If n ∈ {3, 4}, then this ends the game. If
n ∈ {5, 6, 7}, then we may assume that Jumper jumps v3· −→

v2 ·v1 because
of symmetry. When n = 5, this ends the game. Otherwise, Merger merges
(v0, vn−2) → vn−1. If n ∈ {6, 7}, then the game is over.

Suppose that n ≥ 8. Without loss of generality, we can assume that the
initial hole is in v2. The first merge (v1, v3) → v2 is forced. Up to auto-
morphism on the vertices, we can assume that the first jump is v5· −→

v4 ·v3
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which forces the merge (v0, v2) → v1. Hence for n ≥ 8, we will begin on
Jumper’s first meaningful move, namely on the configuration with pegs in
{v1, v3, v6, ..., vn−1}. Note that Jumper’s first meaningful move is either v7·
−→
v6 ·v5 or vn−2· −→

vn−1 ·v0. When n ∈ {8, 9}, the merge (v1, v3) → v2 ends
the game.

Suppose n ∈ {10, 11}. If Jumper’s first meaningful jump is v7· −→
v6 ·v5, then

Merger responds with (v1, v3) → v2. At this point, Jumper may either
jump v9· −→

v8 ·v7 or vn−2· −→
vn−1 ·v0. If he jumps v9· −→

v8 ·v7 (vn−2· −→
vn−1 ·v0),

then Merger responds with (v5, v7) → v6 ((v0, v2) → v1) which ends the
game. Suppose instead that Jumper’s first meaningful jump is vn−2· −→

vn−1

·v0. This forces (v1, v3) → v2. At this point, Jumper may either jump v7·
−→
v6 ·v5 or vn−4· −→

vn−3 ·vn−2. In either case, the merge (v0, v2) → v1 ends the
game.

Suppose n ≥ 12. On Jumper’s first meaningful move, he jumps vn−2· −→
vn−1

·v0 which forces (v1, v3) → v2. Jumper then jumps v7· −→
v6 ·v5 which forces

(v0, v2) → v1. Finally, Jumper jumps vn−4· −→
vn−3 ·vn−2. This ends the game

with pegs in v1, v5, v8,...,vn−5, and vn−2 and holes elsewhere.

We conclude by showing that Jumper has a winning strategy in the Merger-
game. We assume, without loss of generality that Merger selects v0 for the
initial hole. Jumper jumps v2· −→

v1 ·v0 to end the game with no merges
possible.

We now consider the complete bipartite graph, Kn,m, with partition sets of
cardinality n and m, where n ≥ 1 and m ≥ 1. This is the graph with vertex
set V = {x1, ..., xn, y1, ..., ym} and edge set E = {xiyj : i = 1, ..., n, j =
1, ...,m}. Note that when n = 1 or m = 1, the complete bipartite graph
is often called a star. Let X = {x1, ..., xn} and Y = {y1, ..., ym}. For
purposes of exposition, we will also utilize notation introduced in [5]. For
any configuration of pegs on Kn,m, let ρ(X) and ρ(Y ) denote the number
of pegs currently in the sets X and Y , respectively.

Theorem 2.6. For the complete bipartite graph, Kn,m, if n = 1 or m = 1,
then Player One has a winning strategy. If n ≥ 2 and m ≥ 2, then:

(i) In the Jumper-game, Jumper has a winning strategy if and only if n+m
is odd.

(ii) In the Merger-game, Jumper has a winning strategy if and only if n
and m are both even.

Proof. Suppose that n = 1. Per Observation 2.2, Jumper wins in the
Jumper-game by selecting y1 for the initial hole. Likewise, Merger wins
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in the Merger-game by selecting x1 for the initial hole. In either case, no
further moves are possible. An analogous argument holds for the case where
m = 1. For the remainder of the proof, we will assume n ≥ 2 and m ≥ 2.

(i) Suppose that Jumper selects the initial hole.

Suppose that n + m is odd. Without loss of generality, this means that
n is even and m is odd. Jumper selects xn for the initial hole. Merger
is forced to merge (ym, ym−2) → xn and Jumper is forced to jump ym−1·
−→
xn ·ym−2. If n = 2 and m = 3, then the game is over and Jumper wins.
Otherwise, ρ(X) and ρ(Y ) are both odd, there are holes in both X and
Y , and it is Merger’s turn. Observe that any merge will change the parity
of either ρ(X) or ρ(Y ), but not both and that after the merge ρ(X) ≥ 1
and ρ(Y ) ≥ 1. After any merge move, if ρ(X) (ρ(Y )) is odd, then Jumper
responds with xi· −→

yj ·xk (yi· −→
xj ·yk). Jumper’s response guarantees that

ρ(X) and ρ(Y ) are both odd. Hence, Merger can never end the game. It
follows that this gives Jumper’s winning strategy.

Suppose that n+m is even. Thus either n and m are both even or n and
m are both odd. After Jumper selects the initial hole, the first merge and
first jump are forced. If n = m = 2, then this ends the game and Merger
wins. Otherwise, without loss of generality, ρ(X) is even and ρ(Y ) is odd
after the first jump. We now give Merger’s strategy. After any of Jumper’s
turns, if ρ(X) (ρ(Y )) is odd, then Merger responds with (yi, yj) → xk

((xi, xj) → yk). Merger’s response guarantees that ρ(X) and ρ(Y ) are
both even on Jumper’s turn. Hence, Jumper can never end the game and
Merger will win.

(ii) Suppose that Merger selects the initial hole.

Suppose that n and m are both even. Observe that after the placement
of the initial hole and the initial jump that ρ(X) and ρ(Y ) are both odd.
This is analogous to the case in (i) where n+m is odd after the first jump,
hence the result follows.

Conversely, suppose that at least one of n and m is odd. Without loss
of generality, assume that n is odd. Note that regardless of the initial
hole and the first jump that ρ(X) is even. On each of her moves, Merger
merges (xi, xj) → yk. If n = 3, then this ends the game after the first
merge. Otherwise, this forces Jumper to always respond with xp· −→

yq ·xr (if
available). This strategy will result in Merger removing all pegs from X,
thus leaving no jumps available. Ergo, Merger has a winning strategy.

The double star is the graph with vertex set {x, y, x1, ..., xn, y1, ..., ym} and
edge set {xy, xx1, ..., xxn, yy1, ..., yym}, where n ≥ 1 and m ≥ 1. The
double star with parameters n and m is denoted Sn,m. We denote X =
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{x1, ..., xn} and Y = {y1, ..., ym}. As in the proof of Theorem 2.6, for
any configuration of pegs and holes we will let ρ(X) and ρ(Y ) denote the
number of pegs in X and Y , respectively.

Theorem 2.7. For the double star, Sn,m, Jumper has a winning strategy
in the Jumper-game. In the Merger-game, Jumper has a winning strategy
if and only if n and m are both odd.

Proof. Per Observation 2.2, Jumper wins in the Jumper-game by selecting
any pendant for the initial hole. For the remainder of the proof, we consider
the Merger-game.

Assume that n and m are both odd. If n = m = 1, then this graph is
isomorphic to P4 and the result is given by Theorem 2.4. For the remainder
of the proof, we assume that n ≥ 3.

If the initial hole is in a pendant, then Jumper jumps into the pendant,
which results in an odd number of pegs in both X and Y and holes in
x and y after his turn. If the initial hole is in x, then Jumper is forced
to jump ym· −→

y ·x. If m = 1, then this ends the game. Otherwise, if
m ≥ 3, then Merger must then make one of two merges, (x, ym−1) → y
or (ym−1, ym−2) → y. If Merger chooses (x, ym−1) → y and m = 3, then
Jumper responds with ym−2· −→

y ·x to end the game. If Merger chooses
(x, ym−1) → y and m ≥ 5, then Jumper responds with ym−2· −→

y ·ym. If
Merger chooses (ym−1, ym−2) → y, then Jumper responds with x· −→

y ·ym−2.
The case of when the initial hole is in y is analogous. In all cases, Jumper’s
response results in a configuration where ρ(X) and ρ(Y ) are both odd and
there are holes in x and y after his turn.

Once this is achieved, Jumper responds to (xi, xj) → x ((yi, yj) → y) with

xk· −→
x ·xi (yk· −→

y ·yi). This strategy ensures that ρ(X) is odd, ρ(Y ) is odd,
and there are holes in x and y after each of Jumper’s turns. Further, either
ρ(X) or ρ(Y ) will decrease by two between Jumper’s turns. Thus Merger
will eventually have a configuration with ρ(X) = ρ(Y ) = 1 and holes in x
and y. As there are no merges available, Jumper wins.

Suppose that n or m is even. Without loss of generality, assume that n
is even. If n = 2, then Merger selects y for the initial hole. This forces
Jumper to jump x1· −→

x ·y, and Merger merges (x2, y) → x to end the game.

If n ≥ 4, then Merger selects x1 for the initial hole. This forces y· −→
x ·x1 and

Merger responds with (x1, x2) → x. From this point on, Merger responds
to xi· −→

x ·xj (xi· −→
x ·y) with (xj , xk) → x ((xk, y) → x). This strategy

guarantees that ρ(X) is even, x has a peg, and y has a hole after each
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of Merger’s turns. Further, ρ(X) will decrease by two between Merger’s
turns. Thus Jumper will eventually have a configuration with ρ(X) = 0,
ρ(Y ) = m, a peg in x, and a hole in y. As there are no jumps available,
Merger wins.

3 Competitive graph parameters

In the game considered in Section 2, there is a clear way of determining
the winner. However, when we consider competitive graph parameters,
there is no clearly defined win condition. Competitive graph parameters
were introduced by Phillips and Slater in [24]. These games are played
between the maximizer and the minimizer. Typically, players alternate
adding elements to a common set S so long as the resulting set has some
predetermined property. When both players make optimal moves, the car-
dinality of the resulting set is fixed. This cardinality gives a competitive
graph parameter.

Motivated by the above comment, we consider a variation of Jumper versus
Merger duotaire in which the players are only concerned with the cardinality
of the terminal set. This is in contrast to the variation in Section 2, where
the players are only concerned with the parity of the terminal set. In
this variation explored in this section, the maximizer seeks to make the
terminal set as large as possible while the minimizer tries to make it as
small as possible.

When Jumper plays first on graph G and adopts the role of the maximizer
(minimizer), we denote the resulting competitive graph parameter J+(G)
(J−(G)). Likewise, when Merger plays first and adopts the role of the
maximizer (minimizer), we denote the resulting graph parameter M+(G)
(M−(G)). We determine these competitive graph parameters for several
classes of graphs.

We begin this section with a few simple propositions.

Proposition 3.1. If G has a vertex of degree one, then J+(G) = |V (G)|−1.

Proof. Suppose that Jumper plays first and adopts the role of the maxi-
mizer. By selecting a vertex of degree one for the initial hole, there are no
merges available. Hence J+(G) = |V (G)| − 1.

Since any move by either player on the complete graph will result in a move
by the other player, the following proposition follows, regardless of strategy.
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Proposition 3.2. For Kn, the complete graph on n vertices, where n ≥ 2:

J+(Kn) = J−(Kn) = M+(Kn) = M−(Kn) = 1.

n 2 3 4 5 6 7 8 9 10 11 12 13
J−(Pn) 1 1 2 2 2 3 2 3 2 3 2 3

Table 1: Values of J−(Pn) for small n

We now consider the game on multiple families of graphs. We begin with
the path and the cycle.

Theorem 3.3. For Pn, the path on n vertices:

(i) J+(Pn) = n− 1;

(ii) For n ≤ 13, J−(Pn) is given in Table 1. For n ≥ 14, J−(Pn) = n−11.

(iii) For n ≤ 3, M+(Pn) = n− 1. For n ≥ 4, M+(Pn) = n− 2.

(iv) M−(P2) = 1 and M−(Pn) = n− 2 for n ≥ 3.

Proof.

(i) This follows from Proposition 3.1.

(ii) Clearly, J−(P2) = 1. For n ∈ {3, 4, 5}, Jumper selects v1 as the initial
hole, which forces (v0, v2) → v1. If n = 3 or n = 4, then there are no jumps
available and the result follows. If n = 5, then Jumper’s additional move
v4· −→

v3 ·v2 ends the game with pegs in v1 and v2.

For n ∈ {6, 7}, Jumper begins with the initial hole in v2, which forces
(v1, v3) → v2. Jumper responds with v5· −→

v4 ·v3, which forces (v0, v2) → v1.
This ends the game with two pegs if n = 6 or three pegs if n = 7.

Let n ∈ {8, 9, 10, 11, 12, 13}. Jumper begins with the initial hole in v4,
which forces (v3, v5) → v4. Jumper responds with v7· −→

v6 ·v5, which forces
(v2, v4) → v3. Jumper then jumps v0· −→

v1 ·v2, which forces (v3, v5) → v4.
This ends the game with two pegs if n = 8 and three pegs if n = 9.

For n ∈ {10, 11}, Jumper follows the above strategy until there are pegs in
v2, v4, v8, v9, and (in the case of n = 11) v10 and holes elsewhere. At this
point, he jumps v9· −→

v8 ·v7, which forces (v2, v4) → v3. For n = 10 (n = 11),
this ends the game with two (three) pegs.

For n ∈ {12, 13}, Jumper follows the strategy for n ∈ {10, 11} until there
are pegs in v3, v7, v10, v11, and (in the case of n = 13) v12 and holes
elsewhere. At this point, he jumps v11· −→

v10 ·v9, which forces a final merge
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(v7, v9) → v8. When n = 12 (n = 13), this ends the game with two (three)
pegs.

For n ≤ 13, Merger’s moves were forced. Hence, she cannot do better. It
is also straightforward to check that the Jumper can do no better.

For n ≥ 14, we instead consider the infinite path P∞ with vertex set
V (P∞) = {uk : k ∈ Z} and edge set E(P∞) = {ukuk+1 : k ∈ Z}. Sup-
pose that Jumper plays first on this graph. Without loss of generality, the
initial hole is in u0, which forces the first merge (u−1, u1) → u0. Without
loss of generality, the first jump is u−3· −→

u−2 ·u−1, which forces the second
merge (u0, u2) → u1. Note that at this point, up to automorphism on the
vertices, neither player has had a meaningful choice. Thus, Jumper’s first
meaningful move will occur on a board in which there are holes in u−3,
u−2, u0, and u2 and pegs elsewhere.

Case 1: Suppose that the first meaningful jump is u4· −→
u3 ·u2. This forces

(u−1, u1) → u0.

Jumper may either jump u−5· −→
u−4 ·u−3 or u6· −→

u5 ·u4.

Case 1a: Suppose that Jumper jumps u−5· −→
u−4 ·u−3. This forces

(u0, u2) → u1.

If Jumper jumps u6· −→
u5 ·u4, then the game ends with nine pegs removed.

Suppose instead that Jumper jumps u−7· −→
u−6 ·u−5. This forces

(u−5, u−3) → u−4.

Now either u6· −→
u5 ·u4 or u−9· −→

u−8 ·u−7 ends the game with eleven pegs
removed. Since all merges were forced, this shows that J−(P∞) ≤ n−11.
To show equality, we need only show that the minimizer, Jumper, cannot
do better by making different choices.

Case 1b: Suppose instead that Jumper jumps u6· −→
u5 ·u4. Merger then

makes the merge (u2, u4) → u3. Jumper can either jump u−5· −→
u−4 ·u−3

or u8· −→
u7 ·u6. Either of these moves ends the game with only nine pegs

removed. Hence the strategy given in Case 1a is better for Jumper.

Case 2: Suppose that Jumper’s first meaningful jump is u−5· −→
u−4 ·u−3.

Merger responds with (u−1, u1) → u0. Without loss of generality, Jumper
jumps u−7· −→

u−6 ·u−5, which forces (u−5, u−3) → u−4. If Jumper responds
with u−9· −→

u−8 ·u−7, then the game ends with nine pegs removed. If instead
Jumper responds with u4· −→

u3 ·u2, then (u0, u2) → u1 is forced. Jumper
may either jump u−9· −→

u−8 ·u−7 or u6· −→
u5 ·u4. Either of these moves ends

the game with eleven pegs removed. Since Merger has a strategy that
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n 3 4 5 6 7 8 9 10 11 12 13
J+(Cn) 1 2 2 2 3 2 3 2 3 3 4
J−(Cn) 1 2 2 2 3 2 3 2 3 2 3

Table 2: Values of J+(Cn) and J−(Cn) for small n

ensures that Jumper can do no better when his first meaningful move is
u−5· −→

u−4 ·u−3, there is no advantage for him to choose this jump.

To see how the strategy on the infinite path P∞ translates to the finite
path Pn, where n ≥ 14, simply apply the mapping uk → vk+7 for k ≥ −7
and ignore any vertices on P∞ with index less than -7 or greater than
n− 8. Hence, it follows that J−(Pn) = n− 11 for n ≥ 14.

(iii) For n ≤ 3, Merger selects v1 for the initial hole. As this leaves no
jumps available, the result follows. For n ≥ 4, Merger selects v0 as the
initial hole. Jumper is forced to jump v2· −→

v1 ·v0. This leaves holes in v1
and v2 and pegs elsewhere. Note that the only jump was forced and any
initial hole will allow for a jump. Hence, neither player can do better, and
the result follows.

(iv) It is obvious that M−(P2) = 1. If n = 3, then Merger selects v0 for
the initial hole and the jump v2· −→

v1 ·v0 is forced. As only one peg remains
and the only jump was forced, neither player can do better. Assume that
n ≥ 4 and that Merger selects vi for the initial hole. At least one of the
jumps vi−2· −→

vi−1 ·vi or vi+2· −→
vi+1 ·vi is available and therefore, forced. In

either case, there are no merges available and the result follows.

Theorem 3.4. For Cn, the cycle on n vertices:

(i) For n ≤ 11, J+(Cn) is given in Table 2. For n ≥ 12, J+(Cn) = n− 9.

(ii) For n ≤ 12, J−(Cn) is given in Table 2. For n ≥ 13, J−(Cn) = n−11.

(iii) M+(Cn) = M−(Cn) = n− 2.

Proof. Suppose that Jumper plays first. Let n ≤ 5. Without loss of general-
ity, Jumper places the initial hole in v1 and the first merge is (v0, v2) → v1.
When n = 3 or n = 4, this results in no further jumps. Thus J+(C3) =
J−(C3) = 1 and J+(C4) = J−(C4) = 2. When n = 5, there is an additional
jump, say v4· −→

v3 ·v2, which ends the game with J+(C5) = J−(C5) = 2.

For n ≥ 6, up to automorphisms on the vertices, the first four turns are
forced. So without loss of generality, we assume that Jumper begins with
the initial hole in v2, Merger merges (v1, v3) → v2, Jumper jumps v5· −→

v4
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·v3, and Merger merges (v0, v2) → v1. This results in holes in v0, v2,
v4, and v5 and pegs in v1, v3, v6,....,vn−1. Observe that for n = 6, this
ends the game with pegs in v1 and v3. Thus J+(C6) = J−(C6) = 2.
Likewise, for n = 7, this ends the game with pegs in v1, v3, and v6. Thus,
J+(C7) = J−(C7) = 3.

As in the proof of Theorem 2.5, for n ≥ 8, we begin on Jumper’s first
meaningful turn on the configuration where there are holes in v0, v2, v4, and
v5 and pegs in v1, v3, v6,....,vn−1. For n ∈ {8, 9}, Jumper has two possible
moves on his first meaningful turn. If he jumps v7· −→

v6 ·v5, then Merger
must either merge (v1, v3) → v2, (v3, v5) → v4 or, if n = 9, (v8, v1) → v0.
If he instead jumps vn−2· −→

vn−1 ·v0, then Merger must merge (v1, v3) → v2.
Any of these possibilities end the game. Thus J+(C8) = J−(C8) = 2 and
J+(C9) = J−(C9) = 3.

For n = 10, Jumper’s first meaningful move is either v8· −→
v9 ·v0 or v7· −→

v6

·v5. If he jumps v8· −→
v9 ·v0, then (v1, v3) → v2 is forced. At this point,

Jumper can either jump v7· −→
v6 ·v5, which forces (v0, v2) → v1 or v6· −→

v7 ·v8,
which forces either (v0, v2) → v1 or (v0, v8) → v9. In either case, this ends
the game with two remaining pegs. We will show that v7· −→

v6 ·v5 does no
better when either player acts as the minimizer. Merger has three possible
responses to this move: (v1, v9) → v0, (v1, v3) → v2, or (v3, v5) → v4.
The merge (v1, v9) → v0 ends the game with four remaining pegs. This is
clearly not optimal for Jumper when he is the minimizer. For this reason,
he will not choose v7· −→

v6 ·v5 for his first meaningful move when he is the
minimizer. Thus, J−(C10) = 2. Suppose that Jumper is the maximizer
and his first meaningful move is v7· −→

v6 ·v5, followed by (v1, v3) → v2. This
merge can be followed with either v9· −→

v8 ·v7 or v8· −→
v9 ·v0. Either of these

moves will set up a final merge, yielding a terminal set with two pegs.
Suppose instead that Merger responds to Jumper’s first meaningful move
with (v3, v5) → v4. This can be followed with either v8· −→

v9 ·v0 or v9· −→
v8

·v7, either of which ends the game with three pegs remaining. As either
player can make choices which yield a terminal state with two pegs when
they act as the minimizer, J+(C10) = J−(C10) = 2.

Suppose that n = 11. On his first meaningful turn, suppose that Jumper
jumps v9· −→

v10 ·v0, which forces (v1, v3) → v2. The jump v7· −→
v6 ·v5 forces

(v0, v2) → v1. This ends the game with pegs in v1, v5, and v8. Since all
merges were forced, J+(C11) ≥ 3 and J−(C11) ≤ 3. If instead Jumper’s
first meaningful jump is v7· −→

v6 ·v5, then Merger has three possible moves:
(v1, v10) → v0, (v1, v3) → v2, or (v3, v5) → v4. If Merger merges (v1, v10) →
v0, then Jumper can either jump v8· −→

v9 ·v10 or v9· −→
v8 ·v7. The jump v8·

−→
v9 ·v10 forces (v3, v5) → v4 and then either v10· −→

v0 ·v1 or v0· −→
v10 ·v9. As

Peg duotaire on graphs: jump versus merge

94



this results in a terminal set with two pegs, this is not optimal when either
players acts as the maximizer. If instead Jumper jumps v9· −→

v8 ·v7, then
there is one additional merge, which ends the game with three pegs. If
instead Merger responds to Jumper’s first meaningful move with (v1, v3) →
v2, then Jumper can either jump v9· −→

v10 ·v0 or v9· −→
v8 ·v7. Either of these

forces another merge, resulting in a terminal set with three pegs. If Merger
responds to Jumper’s first meaningful move with (v3, v5) → v4, then either
v9· −→

v8 ·v7 forces (v1, v10) → v0, which ends the game with three pegs, or
v9· −→

v10 ·v0 ends the game with four pegs. As either player can make choices
that result in a terminal set with three pegs, J+(C11) = J−(C11) = 3.

(i) Suppose that n ≥ 12 and that Jumper acts as the maximizer. Suppose
that on his first meaningful turn he jumps vn−2· −→

vn−1 ·v0. This forces
(v1, v3) → v2. Jumper jumps v7· −→

v6 ·v5, which forces (v0, v2) → v1. The
jump vn−4· −→

vn−3 ·vn−2 ends the game with n − 9 pegs remaining. As all
merges were forced, Merger can do no better. Thus, J+(Cn) ≥ n − 9 for
n ≥ 12. Observe that if Jumper replaces vn−4· −→

vn−3 ·vn−2 with v9· −→
v8

·v7, then this sets up at least one more move. Hence it is not optimal
for Jumper. Note that if Jumper’s second meaningful move is vn−4· −→

vn−3

·vn−2, then Merger can respond with (v0, v2) → v1. The jump vn−6· −→
vn−5

·vn−4 sets up at least one more move, hence it is not optimal for Jumper.
Whereas v7· −→

v6 ·v5 ends the game with n− 9 pegs remaining.

If instead Jumper’s first meaningful move is v7· −→
v6 ·v5, then Merger can

respond with one of (v1, vn−1) → v0, (v1, v3) → v2, or (v3, v5) → v4. If
Merger merges (v1, vn−1) → v0, then Jumper can either jump vn−3· −→

vn−2

·vn−1 or v9· −→
v8 ·v7, either of which allows at least two more moves, result-

ing in a terminal set with at most n − 9 pegs. If Merger instead merges
(v1, v3) → v2, then Jumper must respond with either vn−2· −→

vn−1 ·v0 or v9·
−→
v8 ·v7. The jump vn−2· −→

vn−1 ·v0 forces (v0, v2) → v1 and forces another
jump. Note that v9· −→

v8 ·v7 sets up an additional merge. Whereas vn−4·
−→
vn−3 ·vn−2 ends the game with n− 9 pegs remaining. Finally, suppose that
Merger merges (v3, v5) → v4. Jumper can respond with either v9· −→

v8 ·v7
or vn−2· −→

vn−1 ·v0. The jump v9· −→
v8 ·v7 will set up at least two additional

moves, resulting in a terminal set with at most n− 9 pegs. Whereas vn−2·
−→
vn−1 ·v0 ends the game with pegs in v0, v1, v4, v8,...,vn−3. As this results
in a terminal set with n− 7 pegs, Merger’s choice of (v3, v5) → v4 was not
her optimal move. As all possibilities have been examined, we have that
J+(Cn) = n− 9 for n ≥ 12.

(ii) Suppose that n ≥ 12 and that Jumper acts as the minimizer. Suppose
that on his first meaningful turn he jumps vn−2· −→

vn−1 ·v0. This forces
(v1, v3) → v2. Jumper jumps v7· −→

v6 ·v5, which forces (v0, v2) → v1. The
jump v9· −→

v8 ·v7 forces an additional merge (v5, v7) → v6. For n = 12
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(n = 13), this ends the game with two (three) pegs remaining. As all
merges were forced, J−(C12) ≤ 2 and J−(C13) ≤ 3. In order for Jumper
as the minimizer to do better when n = 12, the final merge would have to
result in two adjacent pegs. As this is impossible on the cycle, J−(C12) = 2.
A similar argument shows that J−(C13) = 3.

For n ≥ 14, we apply the same argument from the proof of Theorem 3.3
that shows J−(Pn) = n − 11 for n ≥ 14. Hence, J−(Cn) = n − 11 for
n ≥ 14.

(iii) Without loss of generality,Merger selects v0 for the initial hole. Jumper
either jumps v2· −→

v1 ·v0 or vn−2· −→
vn−1 ·v0. In either case, there are no merges

available. Hence the result follows.

We now determine the competitive graph parameters for the complete bi-
partite graph, Kn,m. As in the proof of Theorem 2.6, we will use ρ(X) and
ρ(Y ) denote the number of pegs currently in the partition sets X and Y ,
respectively.

Theorem 3.5. For Kn,m, the complete bipartite graph:

(i) J+(K1,m) = M+(K1,m) = m and J−(K1,m) = M−(K1,m) = 1.
J+(Kn,1) = M+(Kn,1) = n and J−(Kn,1) = M−(Kn,1) = 1.

(ii) J+(K2,m) = m and J+(Kn,2) = n. If n ≥ 3, m ≥ 3, and n + m is
even, then J+(Kn,m) = 2. If n ≥ 3, m ≥ 3, and n +m is odd, then
J+(Kn,m) = 3.

(iii) J−(K2,m) = J−(Kn,2) = 2. If n ≥ 3, m ≥ 3, and n+m is odd, then
J−(Kn,m) = 1. If n ≥ 3, m ≥ 3, and n and m are both odd, then
J−(Kn,m) = 2. If n ≥ 4, m ≥ 4, and n and m are both even, then
J−(Kn,m) = min{n,m}.

(iv) M+(K2,m) = M+(Kn,2) = 2. If n is odd, m is even, and m ≥ 4,
then M+(Kn,m) = m. If n is even, m is odd, and n ≥ 4, then
M+(Kn,m) = n. If n ≥ 3, m ≥ 3, and n and m are both odd, then
M+(Kn,m) = max{n,m}. If n ≥ 4, m ≥ 4, and n and m are both
even, then M+(Kn,m) = 1.

(v) If n+m is odd, then M−(Kn,m) = 2. If n is even and m ∈ {2, 4}, then
M−(Kn,m) = 2. If m is even and n ∈ {2, 4}, then M−(Kn,m) = 2. If
n+m is even, n ≥ 5, and m ≥ 5 or n = m = 3, then M−(Kn,m) = 3.

Proof.

(i) Per Proposition 3.1, J+(K1,m) = 1. Similarly, if Merger plays first,
then she selects the center vertex x1 as the initial hole. As this leaves no
jumps available, M+(K1,m) = m.
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The other results are similar to the “star purge” utilized in [11]. Suppose
that Jumper plays first. He selects the center vertex x1 for the initial
hole. On her ith move, where i = 1, ..., ⌊m/2⌋, Merger is forced to merge
(y1, y2i) → x1. Jumper responds with y2i+1· −→

x1 ·y1, if this jump is available.
If m is even, then this results in a single peg in x1. If m is odd, then this
results in a single peg in y1. In either case, J−(K1,m) = 1.

Suppose that Merger plays first. She selects y1 for the initial hole. On
his ith move, where i = 1, ..., ⌊m/2⌋, Jumper is forced to jump y2i· −→

x1 ·y1.
Merger responds with (y1, y2i+1) → x1, if this merge is available. If m is
even, then this results in a single peg in y1. If m is odd, then this results
in a single peg in x1. In either case, M−(K1,m) = 1.

Similar arguments hold for Kn,1. For the remainder of the proof, assume
that n ≥ 2 and m ≥ 2.

(ii) Assume that Jumper chooses the initial hole and that he is the maxi-
mizer.

Suppose that n = 2. Jumper selects ym for the initial hole. This forces
(x1, x2) → ym, which leaves no jumps available. The only merge was forced,
so Merger cannot do better. Regardless of the placement of the initial
hole, there will be at least one merge. So Jumper cannot do better. Thus
J+(K2,m) = m. A similar argument holds when m = 2.

Suppose that n ≥ 3, m ≥ 3, and n+m is even.

We begin by examining a configuration in which ρ(X) = 2, ρ(Y ) = 3, and
it is Merger’s turn. For purposes of exposition, this will be referred to as a
(3,3)-configuration. Note that the merge (yi, yj) → xk forces yℓ· −→

xk ·yi. The
merge (xi, xj) → yℓ ends the game with two pegs. It is easy to check that
neither player can do better once the (3,3)-configuration has been reached.
Thus, J+(K3,3) = 2.

We now consider the graph K3,m, where m is odd and m ≥ 5. If the initial
hole is in X, then the merge (yi, yj) → xi is forced. Jumper responds with
yk· −→

xi ·yj . Note that if ρ(X) = 2 and Merger merges the two pegs inX, then
the game ends with ρ(Y ) pegs remaining. As she is the minimizer, this is not
optimal for her. So she will merge (yi, yj) → xk and Jumper will respond
with yℓ· −→

xk ·yi until the (3,3)-configuration is reached. Since all of Merger’s
moves were forced, J+(K3,m) ≥ 2, where m is odd and m ≥ 5. Note that
when the initial hole is in X, all of Jumper’s moves were also forced. Thus
we consider the possibility that he places the initial hole in Y . This forces
the next three moves, namely (xi, xj) → yk, xℓ· −→

yk ·xi, and (yi, yj) → xℓ.
We will refer to configuration in which ρ(X) = 2, ρ(Y ) = p, and Jumper to
play as the (2, p)-configuration. Once this configuration has been reached,
if Jumper continues to jump over pegs in Y , then we will eventually reach
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the (3,3)-configuration. If Jumper instead jumps over a peg in X, then
he forces the merge (yi, yj) → xk, resulting in a (2, p − 2)-configuration.
Therefore, Merger will eventually play on a (3, 3)-configuration, or Jumper
will eventually play on a (2, 2)-configuration. We have already examined
the (3,3)-configuration. In the case of the (2, 2)-configuration, all moves
are forced (up to automorphism on the vertices) and we are again left with
two pegs. Hence, neither player can do better. Thus, J+(K3,m) = 2 when
m is odd.

We now consider Kn,m, where n is odd, m is odd, and m ≥ n ≥ 5. Again,
Jumper begins with the hole in X, forcing (yi, yj) → xk and yℓ· −→

xk ·yi.
Notice that ρ(X) is even and ρ(Y ) is odd and there are holes in both X
and Y . If Merger merges (xi, xj) → yk on any of her turns, then either
we have the (2, p)-configuration or Jumper responds with xk· −→

yi ·xj . If
Merger merges (yi, yj) → xk, then Jumper responds with yℓ· −→

xk ·yi. This
again results in a configuration in which ρ(X) is even and ρ(Y ) is odd and
there are holes in both X and Y . Note that if Jumper instead responds by
jumping over a peg in Y , then we get an analogous configuration in which
ρ(Y ) is even and ρ(X) is odd. Thus eventually the (2, p)-configuration will
be reached and will result in two pegs remaining. The case where the initial
hole is in Y follows similarly. Thus, J+(Kn,m) = 2 when n and m are both
odd.

Consider Kn,m, where n and m are both even. After the placement of the
initial hole exactly one of ρ(X) and ρ(Y ) is even. Thus this reduces to the
case where n and m are both odd after the first merge and the first jump.
Thus, J+(Kn,m) = 2 when n and m are both even.

Suppose that n ≥ 3, m ≥ 3, and n + m is odd. Since n + m is odd,
we can assume without loss of generality that n is even and m is odd.
Suppose that the initial hole is in Y . As long as ρ(X) ≥ 3 on her turn,
Merger merges (xi, xj) → yk. Until ρ(X) ≤ 2, this forces xp· −→

yq ·xr.
Thus after each player has made (n− 2)/2 moves, there are pegs in x1, x2,
y1,...,ym−1 and holes elsewhere. If ρ(X) ≤ 2 and ρ(Y ) ≥ 3 on her turn, then
Merger instead merges (yi, yj) → xk. Since n is even and m is odd, this
strategy will eventually result in Merger playing on a graph with (without
loss of generality) pegs in x1, x2, y1, and y2 and holes elsewhere (i.e., a
(2,2)-configuration) or a board with pegs in x1, x2, x3, and y1 and holes
elsewhere (i.e., a (3,1)-configuration). On the (2,2)-configuration, a merge
will end the game with three pegs. On the (3,1)-configuration, it is easy
to see that the best either player can do is two pegs. We now show that
Merger cannot force the (3,1)-configuration. Since n is even and m is odd,
then regardless of strategy, on each of Merger’s turns, ρ(X) and ρ(Y ) are
either both even or both odd. Likewise, on each of Jumper’s turns exactly
one of ρ(X) and ρ(Y ) is even. Thus, once each side has a hole, he can
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choose which side he wants to jump over. Hence, at some point Jumper
can jump over the odd side of the partition so that Merger is playing on
a board in which ρ(X) and ρ(Y ) are both even. Indeed, his selection of
the initial hole in the above strategy guarantees this from the beginning.
To complete the proof, notice that once the initial hole is selected, all of
Jumper’s moves were forced until there are pegs in x1, x2, y1,...,ym−1 and
holes elsewhere. After that, Merger adopts a strategy that will ensure that
either ρ(X) ≥ 2 and ρ(Y ) ≥ 2 or (without loss of generality) ρ(X) = 1
and ρ(Y ) ≥ 3 on each of Jumper’s turns. Both of these scenarios were
examined and resulted in the same endgame. Further, if Jumper places the
initial hole in X, then Merger adopts an analogous strategy. However, due
to the parity of the sets her final merge occurs on a graph with pegs in x1,
x2, x3, and y1 and holes elsewhere. As we saw above, this is not better
for Jumper who is playing as the maximizer. Hence, neither player can do
better, and J+(Kn,m) = 3 when n ≥ 3, m ≥ 3, and n+m is odd.

(iii) Assume that Jumper selects the initial hole and that he is the mini-
mizer.

If n = 2, then Jumper places the initial hole in X. On each of Jumper’s
turns, he jumps yi· −→

xj ·yk. This strategy forces (yp, yq) → xr on each of
Merger’s turns. If m is even, then this will result in pegs in x1 and x2

and holes elsewhere after Merger’s last turn. If m is odd, then we have
an additional peg in y1, which forces an additional jump. In either case,
two pegs remain. Since all merges were forced, J−(K2,m) ≤ 2. After the
selection of the initial hole, all moves by both players were forced. Hence
neither player can do better if the initial hole is in X. If instead the initial
hole is in ym, then Merger ends the game with (x1, x2) → ym. This results
in m pegs on the graph at the end of the game. As Jumper is the minimizer,
this choice of initial hole is not optimal for him. Ergo, J−(K2,m) = 2. A
similar argument holds for Kn,2.

Suppose that n ≥ 3, m ≥ 3, and n + m is odd. Since n + m is odd, we
can assume without loss of generality that n is even and m is odd. Jumper
begins with the initial hole in X. After the first merge and the first jump,
there is a hole in X, a hole in Y , and ρ(X) and ρ(Y ) are both odd. If
Merger merges (xi, xj) → yk ((yi, yj) → xk), then Jumper responds with
xp· −→

yk ·xi (yp· −→
xk ·yi). Jumper maintains this strategy until he is playing

on a graph with pegs in x1, y1, and y2 (without loss of generality) and holes
elsewhere. He then jumps y1· −→

x1 ·y3, forcing a final merge. This ends the
game with one peg. Clearly, Jumper cannot do better. As Jumper had
responses to all of Merger’s possible moves, she cannot do better. Thus
J−(Kn,m) = 1 when n ≥ 3, m ≥ 3, and n+m is odd.
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Suppose that n ≥ 3, m ≥ 3, and n and m are both odd. Jumper adopts
an analogous strategy as in the case where n + m is odd until ρ(X) ≤ 2
or ρ(Y ) ≤ 2. If ρ(X) = 2 (ρ(Y ) = 2), then Jumper instead jumps yi· −→

xj

·yk (xi· −→
yj ·xk), which forces (yk, yp) → xj ((xk, xp) → yi). Due to the

different parity, Jumper’s endgame is now played on a graph with pegs in
x1, y1, and y2 and holes elsewhere. He jumps x1· −→

y2 ·x3, which forces a final
merge (x2, x3) → y2. This ends the game with two pegs. Since Jumper has
responses for each of Merger’s possible moves, Merger cannot do better.
Note that Merger can force all of Jumper’s moves by merging (yi, yj) → xi

until there is a single peg in Y . At which point, Merger is forced to merge
(xi, xj) → yk. Note that once ρ(Y ) = 2 (ρ(X) = 2), Jumper must remove
pegs from X (Y ); otherwise Merger can end the game with (yi, yj) → xi

((xi, xj) → yk). As Jumper is the minimizer, he will avoid this as long as
possible. Thus, the game will continue until Jumper is playing on a board
with pegs in x1, x2, y1, and y2 and holes elsewhere. Ergo, he cannot do
better, and J−(Kn,m) = 2 when n ≥ 3, m ≥ 3, and n and m are both odd.

Suppose that n ≥ 4, m ≥ 4, and n and m are both even. Without loss
of generality, assume that n ≤ m. Jumper begins with the initial hole
in X. On each of her turns, Merger merges (yi, yj) → xk. If ρ(Y ) = 2
on Merger’s turn, then this ends the game with n pegs remaining in X.
If ρ(Y ) ≥ 4 on Merger’s turn, then this forces yp· −→

xq ·yr. Since Merger
was able to force all of Jumper’s moves, Jumper cannot do better after
the selection of the initial hole. If instead Jumper places the initial hole
in Y , then Merger adopts an analogous strategy, which results in m pegs
at the end of the game. As n ≤ m, this is not optimal for Jumper as the
minimizer. Hence J−(Kn,m) ≥ n. To see that Merger cannot do better,
consider a configuration with at least n+ 1 pegs. If there are pegs in both
X and Y , then there is at least one move available for each player. Thus we
assume that all pegs are in Y . In this case, there is clearly another merge.
If the game were to end after Merger’s turn, then her final merge would be
(x1, x2) → yi. However, Jumper can avoid the configuration with pegs in
x1, x2, and Y and a hole in Y on Merger’s turn by instead jumping yi· −→

x2

·yj . Thus neither player can do better, and J−(Kn,m) = min{n,m} when
n ≥ 4, m ≥ 4, and n and m are both even.

(iv) Suppose that Merger selects the initial hole and that she is the max-
imizer. Note that after the selection of the initial hole and the first jump,
there is a hole in xn, a hole in ym, and pegs elsewhere. This being the case,
we begin on Merger’s first meaningful move, namely on the configuration
in which there is a hole in xn, a hole in ym, and pegs elsewhere.

Let n = 2. For each of Merger’s moves, she is forced to merge (yi, yj) → xk,
which forces yp· −→

xq ·yr (if available). If m is odd, then this continues until
there are two pegs in X. If m is even, then this continues until there
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is a peg in X and a peg in Y . As both players’ moves are forced up to
automorphism on the vertices, neither can do better, and M+(K2,m) = 2.
A similar argument holds when m = 2.

Suppose that n is odd, m is even, and m ≥ 4. On each of Merger’s turns,
she merges (xi, xj) → yk. Either this merge ends the game with m pegs in
Y or it forces xp· −→

yq ·xr. Since all of Jumper’s moves are forced, he cannot
do better. Hence M+(Kn,m) ≥ m. To see that Merger cannot do better,
consider a set of k pegs, where k ≥ m+1. If there are pegs inX and Y , then
both players have an available move. Hence we can assume that all k pegs
are in X. If it is Merger’s turn, then clearly she has another available move.
Thus we can assume that it is Jumper’s turn. If k = n, then Merger’s moves
would have all been of the form (yp, yq) → xr and Jumper’s moves would
have all been of the form yi· −→

xr ·yj . However, since m is even, this would
result in ρ(X) = n − 1 and ρ(Y ) = 1 on Merger’s turn. Hence, she would
have another available move. Thus we assume that m + 1 ≤ k ≤ n − 1.
For a set of k pegs to be in X, Merger would have to merge (y1, y2) → xk

on a graph with pegs in x1,...,xk−1, y1, and y2 and holes elsewhere. For
this to happen, Jumper’s previous jump would have been y3· −→

xk ·y2 on a
board with pegs in x1,...,xk, y1, y3 and holes elsewhere. However, Jumper
could have instead jumped xk· −→

y3 ·xk+1 on this board. As this forces at
least two more moves, at most m pegs can be left on the board. Hence,
M+(Kn,m) = m when n is odd, m is even, and m ≥ 4. By reversing the
roles of X and Y , the same argument shows that M+(Kn,m) = n when n is
even, m is odd, and n ≥ 4. Likewise, if n and m are both odd with n ≥ 4,
then the same argument shows that M+(Kn,m) = max{n,m}.
Suppose that n and m are both even with n ≥ 4 and m ≥ 4. After the
selection of the initial hole and the first jump, ρ(X) and ρ(Y ) are both odd.
As before, any merge will change the parity of exactly one of ρ(X) and ρ(Y ).
Thus after the first merge, either ρ(X) = n or ρ(Y ) = m. Without loss of
generality, assume that ρ(X) = n. This forces yi· −→

xj ·yk. We now examine
two cases.

Case 1: So long as ρ(Y ) ≥ 2, Merger only makes merges of the form
(yp, yq) → xr. This forces yi· −→

xr ·yj . Eventually Jumper plays on a board
with pegs in x1,...,xn, and y1 and holes elsewhere. Thus y1· −→

xn ·y2 and
(xn−2, xn−1) → y1 are forced. At this point, Jumper does not want to
jump over any of the pegs in X, as this would allow Merger to end the
game with (yp, yq) → xr. So Jumper is forced to continue to make jumps
of the form xi· −→

yj ·xk, which forces (xp, xq) → yr. Since n and m are both
even, eventually Jumper plays on a graph with pegs in x1, y1, and y2 and
holes elsewhere. Jumper jumps y1· −→

x1 ·y3, which forces (y2, y3) → x1.
This ends the game with one peg.
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Case 2: Suppose that Merger makes a merge of the form (xp, xq) → yr
before she is forced to do so. Without loss of generality, assume that her
second merge is of this form. From this point, exactly one of ρ(X) and
ρ(Y ) will be odd on each of Jumper’s turns. If ρ(X) (ρ(Y )) is odd on
Jumper’s turn, then he jumps xi· −→

yj ·xk (yi· −→
xj ·yk). Notice that this

strategy forces Merger to play on a board in which ρ(X) and ρ(Y ) are
both odd. Hence Jumper can continue this strategy until he plays on a
graph with (without loss of generality) pegs in x1, y1, and y2 and holes
elsewhere. Jumper jumps y1· −→

x1 ·y3, which forces (y2, y3) → x1. This
ends the game with one peg.

In both cases, clearly Jumper cannot do better as the minimizer. As we
examined all possibilities for Merger, she cannot do better as the maxi-
mizer. Hence M+(Kn,m) = 1 when n ≥ 4, m ≥ 4, and n and m are both
even.

(v) Suppose that Merger selects the initial hole and that she is the mini-
mizer. As in (iv), we begin on Merger’s first meaningful move where there
is a hole in xn, a hole in ym, and pegs elsewhere.

Suppose that n is even. Note that on Merger’s first meaningful move, ρ(X)
is odd. As long as ρ(X) ≥ 3, Merger merges (xi, xj) → yk, which forces xp·
−→
yq ·xr. This strategy continues until (up to automorphism on the vertices)
there are pegs in x1 and y1,...,ym−1 and holes elsewhere at the beginning
of Merger’s turn. If m = 2, then the game ends with two pegs. As all of
Jumper’s moves are forced, he cannot do better. Since m = 2, Merger’s
moves are also forced. Thus M−(Kn,2) = 2 when n is even. Note that
Merger adopts an analogous strategy when n = 2.

Thus we may assume that n is even, n ≥ 4, and m ≥ 3. We begin on
Merger’s turn with pegs in x1 and y1,...,ym−1 and holes elsewhere. At
this point, Merger merges (ym−2, ym−1) → x2 resulting in pegs in x1, x2,
y1,...,ym−3 and holes elsewhere. If m = 3, then the game ends with two
pegs in X. Again, both players’ moves were forced, so neither can do
better. If m = 4, then Jumper can either jump y1· −→

x2 ·y2 or x2· −→
y1 ·x3. In

the first case, the game ends with two pegs. However, x2· −→
y1 ·x3 sets up

(x1, x3) → y1, which ends the game with one peg. As we have examined all
possibilities, M−(Kn,4) = 2 when n is even. An analogous argument holds
when n = 4. We now examine two cases.

Case 1: Assume that n is even, m is odd, n ≥ 6, and m ≥ 5. We begin
on Jumper’s turn with pegs in x1, x2, y1,...,ym−3 and holes elsewhere.
Note that ρ(X) = 2 and ρ(Y ) is even. After each of Jumper’s next
turns, if ρ(X) ≤ 2, then Merger merges (yi, yj) → xk. We note that this
merge is either forced or must be taken to continue to game after Merger’s
turn. If ρ(X) ≥ 3, then Merger merges (xi, xj) → yk. This ensures that
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ρ(X) ≤ 3 on Jumper’s turns. Merger adopts analogous strategies when
ρ(Y ) ≤ 3. This continues until, without loss of generality, Jumper plays
on a board with pegs in x1, y1, y2, and y3 and holes elsewhere (i.e.,
a (1,3)-configuration) or a board with pegs in x1, x2, y1, and y2 and
holes elsewhere (i.e., a (2,2)-configuration). If Jumper plays on the (1,3)-
configuration and jumps y3· −→

x1 ·y4, then Merger responds with (y1, y2) →
x1, and y4· −→

x1 ·y1 or x1· −→
y4 ·x2 ends the game with one peg. As Jumper

is the maximizer, this is not optimal. So instead, he jumps x1· −→
y3 ·x2.

Likewise, on the (2,2)-configuration, he jumps y1· −→
x2 ·y3. In either case,

a final merge ends the game with two pegs. As all jumps (except perhaps
a non-optimal one) are forced or Merger has a response, Jumper cannot
do better. In order for Merger to do better, the game would have to end
with one peg after a jump, say x1· −→

y1 ·x2. Without loss of generality,
the previous merge would be (x2, x3) → y1. Therefore, the previous jump
would be x4· −→

y1 ·x3. The configuration at this point is precisely the (1,3)-
configuration. However, we have already examined this configuration and
have seen that Jumper cannot do better. Thus, M−(Kn,m) = 2 when n
is even, m is odd, n ≥ 6, and m ≥ 5.

Case 2: Assume that n is even, m is even, n ≥ 6, and m ≥ 6. We begin
on Jumper’s turn with pegs in x1, x2, y1,...,ym−3 and holes elsewhere.
Note that ρ(X) = 2 and ρ(Y ) is odd. Merger uses the strategy from
Case 1 above, Jumper jumps xi· −→

yj ·xk on his first unforced move, and
yi· −→

xj ·yk on each of his remaining moves. Because it is not optimal for
Merger as minimizer to merge (xi, xk) → yk if only two pegs are in X on
her turn, this forces Merger to merge (yp, yq) → xi on her next moves.
This eventually forces Jumper to play on a board with, without loss of
generality, pegs in x1, x2, y1, y2, and y3 and holes elsewhere. The jump
x1· −→

y3 ·x3 forces (y1, y2) → x1, which ends the game with three pegs in
X. If Jumper instead jumps y3· −→

x1 ·y4, then it is easy to see that the best
Jumper can do is two pegs at the end of the game. In general, Jumper
cannot do better because Merger has responses to all of his jumps, with
the exception of the one non-optimal one. The argument that Merger
cannot do better is similar to the case above. Thus M−(Kn,m) = 3 when
n is even, m is even, n ≥ 6, and m ≥ 6.

Suppose that n and m are both odd. Merger adopts an analogous strategy
to the case where n is even. Since the parity of n has changed, Merger’s
endgame is played on a board with pegs in x1, x2, y1, and y2 and holes
elsewhere. A final merge ends the game with three pegs remaining. The
argument that neither player can do better follows similarly to above. Hence
M−(Kn,m) = 3 when n and m are both odd.
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The competitive graph parameters on the complete bipartite graph have
several interesting properties. Consider the parameters in which each player
adopts the same role (i.e., the minimizer versus the maximizer). For in-
stance, for both J+(G) andM−(G), Jumper is the maximizer and Merger is
the minimizer. The difference is which player moves first. Likewise, for both
J−(G) and M+(G), Jumper is the minimizer and Merger is the maximizer.
Since J+(K1,m) = M+(K1,m) = m and J−(K1,m) = M−(K1,m) = 1, the
differences J+(K1,m)−M−(K1,m) = m− 1 and M+(K1,m)− J−(K1,m) =
m− 1 can be made arbitrarily large.

Note that the complete bipartite graph Kn,m, where n ≥ 3, m ≥ 3, and
n+m is even, is an infinite family of graphs where M−(Kn,m) > J+(Kn,m).
In other words, both the maximizer and the minimizer do strictly better
when they are the second player. Seo and Slater define such graphs as
second player optimal. Second player optimal graphs are discussed in the
context of other competitive graph parameters in [25]. Our last family of
graphs, the double star, provide examples in which not only is J−(G) >
M+(G), but the difference J−(G)−M+(G) can be made arbitrarily large.
As in the proof of Theorem 2.7, we will let ρ(X) and ρ(Y ) denote the
number of pegs in X and Y , respectively.

Theorem 3.6. For Sn,m, the double star:

(i) J+(Sn,m) = n+m+ 1.

(ii) If n or m is even, then J−(Sn,m) = 2. If n and m are both odd, then
J−(Sn,m) = min{n+ 1,m+ 1}.

(iii) M+(Sn,1) = n+1. If n even and m are both even, then M+(Sn,m) =
max{n + 1,m + 1}. If n is even, m is odd, and m ≥ 3, then
M+(Sn,m) = m + 1. If n is odd, m is even, and n ≥ 3, then
M+(Sn,m) = n+1. If n and m are both odd, n ≥ 3, and m ≥ 3, then
M+(Sn,m) = 2.

(iv) If n and m are both even, then M−(Sn,m) = min{n + 1,m + 1}. If
n ∈ {1, 3} or m ∈ {1, 3}, then M−(Sn,m) = 2. If n is odd and n ≥ 5
or if m is odd and m ≥ 5, then M−(Sn,m) = 4.

Proof.

(i) This follows from Proposition 3.1.

(ii) Assume that Jumper plays first and that he is the minimizer. If Jumper
places the initial hole in a vertex of degree one, then the game ends with
n+m−1 pegs by Proposition 3.1. As this is not optimal for the minimizer,
we assume that Jumper places the initial hole in either x or y throughout
this case.
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Suppose that n or m is even. Without loss of generality, assume that m is
even. Jumper places the initial hole in y, and his strategy is to maintain an
even number of pegs in Y and a peg in x until ρ(Y ) = 2 on Merger’s turn.
To do so, if Merger merges (yi, yj) → y ((x, yi) → y), then Jumper responds

with yk· −→
y ·yj (yj · −→

y ·x). Because m is even, this strategy results in an
even number of pegs in Y and a peg in x on each of Merger’s turns. This
continues until ρ(Y ) = 2 and a peg is in x on Merger’s turn. Merger may
now make one of two merges. If Merger merges (yi, yj) → y ((yi, x) → y),

then Jumper responds with x· −→
y ·yi (yk· −→

y ·yi). In either case, Merger
is forced to merge two pegs from X into x on her next turn. On Jumper’s
remaining turns, he jumps xi· −→

x ·xj , which forces (xk, xℓ) → x on all of
Merger’s remaining turns. If n is even, then the game ends with a peg in
x and a peg in yi. If n is odd, then the game ends with a peg in xj and a
peg in yi. Since Jumper has a response for all of Merger’s moves, she can
do no better. Thus, J−(Sn,m) ≤ 2.

We now show that Jumper cannot do better. Suppose that Jumper allows
x to have a hole on any of Merger’s turns before ρ(Y ) = 2. Merger then
merges (xi, xj) → x. At this point, Merger can force play on X, x, and y
by responding to xi· −→

x ·y (xi· −→
x ·xj) with (xj , y) → x ((xj , xk) → x). If

n is even, then Merger can force the game to end with pegs remaining in x
and Y . If n is odd, then Merger can prevent Jumper from removing all but
one peg from the graph by forcing play on X, x, and y as described above
until ρ(X) = 1 on Jumper’s turn. At which point, if Jumper jumps xi· −→

x

·y, then the game ends with ρ(Y )+ 1 pegs. Hence Jumper must jump over
x and into xi. Merger can then force at least two pegs remain at the end of
the game by merging into y on each of her remaining turns, never leaving
a peg in x on Jumper’s turn.

Likewise, if Jumper follows the above strategy until ρ(Y ) = 2, then when
ρ(Y ) = 2 and a peg is in x on Merger’s turn, Jumper’s responses to Merger’s
next turn both result in a peg in Y . Any other response to this turn is either
not possible or will end the game. Since Jumper is the minimizer, it is not
optimal for him to end the game early. Because Merger can always respond
to a jump of the form xi· −→

x ·y with (xj , y) → x, Merger can ensure that
a peg is never in y on Jumper’s turn. Likewise, because all of Jumper’s
jumps at this point in the game will eliminate a peg from x, a peg will
never be in x on Merger’s turn. Thus, at least two pegs will remain at the
end of the game.

Finally, consider the case where Jumper selects x for the initial hole. Merger
merges (xi, y) → x on her first move. If Jumper jumps xj · −→

x ·y (xj · −→
x

·xℓ), then Merger merges (xk, y) → x ((xk, xℓ) → x). If n is odd, then
this eventually results in a peg in x, m pegs in Y , and holes elsewhere on
Jumper’s turn. As no jumps are possible, the game is over with m+1 pegs

Peg duotaire on graphs: jump versus merge

105



remaining. If n is even, then the argument is similar to when the initial
hole is in y. As all possibilities are exhausted, J−(Sn,m) = 2 if n or m is
even.

Suppose that n and m are both odd. Without loss of generality, assume
that m ≥ n. Jumper places the initial hole in y. Merger’s strategy is to
force Jumper to only play on x, y, and Y . Merger merges (y1, x) → y on
her first turn. If Jumper jumps yi· −→

y ·yj (yi· −→
y ·x), then Merger responds

with (yj , yk) → y ((x, yk) → y). Because m is odd, this continues until
ρ(Y ) = 0, a hole is in x, and all other vertices have pegs on Jumper’s turn.
As no jumps are available, the game is over with n + 1 pegs remaining.
We note that Merger cannot end the game any sooner, as all other merges
result in a peg in y (x) and a peg in some yi (xi) on Jumper’s turn.

If Jumper selects x for the initial hole, then Merger uses a similar strategy
to force the game to end with m + 1 pegs. As we assumed that m ≥ n,
this is not optimal for Jumper as the minimizer. As all possibilities are
exhausted, J−(Sn,m) = min{n+ 1,m+ 1} if n and m are both odd.

(iii) Suppose that Merger plays first and that she is the maximizer.

For Sn,1, Merger places the initial hole in x. This forces y1· −→
y ·x, which

ends the game with n + 1 pegs. As any placement of the initial hole will
result in at least one jump, this is optimal when Merger is the maximizer.
Ergo, M+(Sn,1) = n+ 1.

Suppose that n and m are both even. Without loss of generality, assume
that n ≥ m. Merger selects x for the initial hole. Jumper is forced to
jump y1· −→

y ·x. Merger merges (x, y2) → y. If m = 2, then the game
is over and the result follows. Assume that m ≥ 4. Merger’s strategy
is to restrict Jumper’s play to x, y, and Y . If Jumper jumps yi· −→

y ·yj
(yi· −→

y ·x) on any of his turns, then Merger responds with (yj , yk) → y
((yj , x) → y). Because m is even, this will eventually result in a peg in
y, n pegs in X, and holes elsewhere. As no jumps are available, the game
ends. As Merger had responses to all of Jumper’s moves, he can do no
better. Hence, M+(Sn,m) ≥ n+1. To show that Merger cannot do better,
consider a terminal configuration of n+ 2ℓ+ 1 pegs, where ℓ ≥ 1. Because
of parity, this must occur at the beginning of Merger’s turn. Hence both
x and y must be filled, otherwise a Merge is available. However, Jumper
can always remove a peg from the center on his turn. Likewise, a terminal
configuration of n + 2ℓ pegs, where ℓ ≥ 1, must occur at the beginning of
Jumper’s turn. As Merger can never remove both pegs from the center, a
jump is available in this scenario. Thus n+ 1 pegs is the best that Merger
can do. Ergo, M+(Sn,m) = n+1 when n and m are both even and n ≥ m.

An analogous argument holds for the case where n is odd, m is even, and
n ≥ 3 and the case where m is odd, n is even, and m ≥ 3.
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We now consider the case where n and m are both odd and n ≥ m ≥ 3. If
on any of Merger’s turns ρ(X) and ρ(Y ) are both odd and there are holes
in both x and y, then we will refer to this as an (odd,odd)-configuration.
On the (odd,odd)-configuration, Jumper can eventualy force the game to
end with two pegs by responding to the merge (xi, xj) → x ((yi, yj) → y)

with xk· −→
x ·xj (yk· −→

y ·yj) until one peg remains in each of X and Y . For
this reason, Merger tries to avoid the (odd,odd)-configuration.

If Merger selects a pendant, say x1, for the initial hole, then Jumper can
force the (odd,odd)-configuration with y· −→

x ·x1. Assume that Merger
selects x for the initial hole. Jumper is forced to jump y1· −→

y ·x. If Merger
merges (yi, yj) → y ((x, yi) → y), then Jumper jumps x· −→

y ·yi (yj · −→
y

·yi). This results in the (odd,odd)-configuration. Hence, Merger cannot do
better than two pegs at the end of the game. The case where Merger selects
y for the initial hole is analogous.

We now show that Jumper cannot force the game to end with only one
peg. Notice that the players are playing on two star subgraphs, and since
n and m are both odd, a peg will remain in one of the pendants, say x1.
For Jumper to remove the peg in x1, there must be a peg in x on his turn.
However, Merger can remove a peg in x with (yi, x) → y. Likewise, Merger
cannot merge into a pendant. Hence the result follows.

(iv) Suppose that Merger plays first and that she is the minimizer.

Suppose that n and m are both even. Without loss of generality, assume
that n ≥ m. If Merger selects x1 (y1) for the initial hole, then Jumper
responds with y· −→

x ·x1 (x· −→
y ·y1). On any of her turns if Merger merges

(xi, xj) → x or (y, xi) → x, then either the game ends or Jumper responds
with xk· −→

x ·y (or xp· −→
x ·xq if x and y both have pegs on his turn).

This results in the game ending after a merge with m+ 1 pegs remaining.
Further, if Merger’s second move is (yi, yj) → y, then Jumper can adopt an
analogous strategy to eliminate the pegs from Y and leave the pegs in X
alone. As this results in n+ 1 pegs remaining, it is not optimal for Merger
as the minimizer.

Suppose instead that Merger selects y for the initial hole. Jumper is forced
to jump x1· −→

x ·y. If Merger merges (xi, xj) → x ((xi, y) → x), then
Jumper responds with y· −→

x ·xi (xj · −→
x ·xi). Hence, this reduces to the

above argument. Likewise, if Merger selects x as the initial hole, then
Jumper’s above strategy results in n + 1 pegs remaining. In any case,
Jumper has a response for every possible merge. Thus, Merger cannot do
better and M−(Sn,m) ≥ m+ 1 when n and m are both even and n ≥ m.

To see that Jumper cannot do better, consider a set of at least m+2 pegs.
This either results in a configuration with at least one additional move or
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one in which m+ 2 pegs are in X ∪ {y}. However, as noted above, Merger
can make choices that prevent leaving pegs in X. Thus the result follows.

We now consider the case where n or m is odd. Note that if n = m = 1,
then S1,1 is isomorphic to P4, and the result follows from Theorem 3.3.

Suppose that n = 1 and m ≥ 2. Merger selects x1 for the initial hole,
which forces y· −→

x ·x1. Merger is forced to merge (y1, y2) → y. If m = 2,
then the game is over. If m = 3, then the game is over after an additional
jump. Assume that m ≥ 4. If Jumper jumps yi· −→

y ·yj (yi· −→
y ·x) on any

of his turns, then Merger responds with (yj , yk) → y ((x, yk) → y). This
continues until two pegs remain. If m is even, then the pegs are in x1 and
y. If m is odd, then the pegs are in x1 and either x or y1.

To show that Merger cannot force the game to end with only one peg
remaining, we note that if the initial hole is in y, then the game is over
after the first jump. Assume that the initial hole is in x. This forces y1· −→

y

·x and (y2, x) → y. After which, Jumper can restrict play to y and Y with
jumps of the form yi· −→

y ·yj , resulting in two pegs at the end of the game.
If instead Merger places the initial hole in y1 and Jumper responds with x·
−→
y ·y1, then this reduces to the case where there are pegs in x1, y1,...,ym
and holes elsewhere. Hence the result follows. The case where m = 1 and
n ≥ 2 is analogous.

Suppose that n = 3 and m ≥ 2. Merger begins with the hole in y, which
forces x3· −→

x ·y. Merger responds with (x1, x2) → x, which reduces this to
the case where n = 1 after the placement of the initial hole. Thus Jumper
cannot do any better than two pegs at the end. To see that Merger cannot
do better, it suffices to look at other placements of the initial hole. If the
initial hole is in xi, then Jumper jumps xj · −→

x ·xi. This reduces to the case
where the initial hole is in y after the first jump. If the initial hole is in x,
then Jumper is forced to jump yi· −→

y ·x. If m = 2, then Merger is forced
to respond with (yj , x) → y which ends the game with four pegs (hence it
is not optimal for her). Otherwise, so long as ρ(Y ) ≥ 1, Jumper responds
to (yi, yj) → y ((x, yi) → y) with yk· −→

y ·yℓ (yj · −→
y ·yi). If ρ(Y ) = 1,

then Jumper jumps x· −→
y ·yi. Note that Jumper’s strategy ensures that

there will be at least two pegs at the end of the game. If the initial hole
is in yi, then Jumper jumps yj · −→

y ·yi. This reduces to the case where the
initial hole is in x after the first jump. The case where m = 3 and n ≥ 2 is
analogous.

Suppose that n is odd, n ≥ 5, andm /∈ {1, 3}. Merger begins with the initial
hole in y, which forces xi· −→

x ·y. So long as ρ(X) ≥ 4 at the beginning of
her turn, Merger responds to xi· −→

x ·y with (xj , y) → x. Likewise, so long
as ρ(X) ≥ 4 at the beginning of her turn, Merger responds to xi· −→

x ·xj

with (xj , xk) → x. This strategy continues until at the start of Merger’s
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turn either ρ(X) = 2, ρ(Y ) = m, a peg is in y, and a hole is in x (which
we will refer to as the (2,m)-configuration) or ρ(X) = 3, ρ(Y ) = m, and
holes are in x and y (which we will refer to as the (3,m)-configuration).
In case of the (2,m)-configuration, the Merger merges (xi, xj) → x, which
forces y· −→

x ·xi. At this point, Merger merges (yi, yj) → y. If on any of

his remaining turns Jumper jumps yi· −→
y ·x (yi· −→

y ·yj), then either the
game immediately ends with two pegs or Merger responds with (yj , x) → y
((yj , yℓ) → y). This move also will eventually result in a terminal state with
two pegs. However, Jumper can avoid the jump xi· −→

x ·y, which leads to
the (2,m)-configuration by jumping xi· −→

x ·xj instead. This results in the
(3,m)-configuration. As we will see, the (3,m)-configuration results in a
better outcome for Jumper as the maximizer. If Merger merges (xi, xj) → x
at any point, then Jumper can end the game with ρ(Y )+1 pegs by jumping
xk· −→

x ·y. As Merger is the minimizer, she will avoid this move as long as
possible. Thus Merger merges (yi, yj) → y. If on any of his remaining

moves, Jumper jumps yi· −→
y ·x (yi· −→

y ·yj), then either the game ends with
four pegs or Merger responds with (yj , x) → y ((yj , yk) → y). Note that
if m is even, then on Jumper’s turn, he will eventually play on a board
with ρ(X) = 3, ρ(Y ) = 2, a peg in y, and holes elsewhere. If he jumps
yi· −→

y ·x, then the merge (yj , x) → y ends the game with four pegs. If he

instead jumps yi· −→
y ·yj , then Merger instead responds with (xi, xj) → x

which forces at least one more jump. Hence the terminal configuration will
have at most three pegs. As Jumper is the maximizer, this choice is not
optimal for him. Thus, M−(Sn,m) ≤ 4 when m is even. If m is odd and
m /∈ {1, 3}, then an analogous strategy will result in Jumper playing on a
board with ρ(X) = 3, ρ(Y ) = 1, a peg in y, and holes elsewhere. Jumper
ends the game by jumping yi· −→

y ·x. A similar argument to the even case
shows that M−(Sn,m) ≤ 4 when m is odd.

We have argued that Merger cannot do better once the (3,m)-configuration
has been reached. Thus it suffices to examine her moves prior to this
configuration. We begin by examining what happens if Merger selects a
different initial hole. If Merger begins with the initial hole in yi, then
Jumper jumps x· −→

y ·yi. If Merger merges (xi, xj) → x and n = 5, then
Jumper responds with xi· −→

x ·xj . This results in the (3,m)-configuration.
If Merger merges (xi, xj) → x and n ≥ 7, then Jumper responds with xk·
−→
x ·y. This reduces to the case with the initial hole in y after the first jump
has been made. If Merger merges (yi, yj) → y, then Jumper responds with

yk· −→
y ·yi. This continues until Merger merges (xi, xj) → x or the game

ends with n + 1 pegs. If Merger merges (xi, xj) → x, then this results in
a case analogous to the one in which n is odd, n ≥ 5, and the initial hole
is in y. If Merger instead begins with the hole in x and m is odd, then
we reverse the roles of X and Y so that this is equivalent to starting with
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the hole in y. So assume that m is even. Jumper is forced to jump yi·−→
y ·x. If Merger merges (yi, yj) → y ((yi, x) → y) on any of her moves,

then either the game ends or Jumper responds with yk· −→
y ·yi (yj · −→

y ·x).
This strategy ensures that ρ(Y ) is odd at the beginning of each of Merger’s
turns. This continues until there are n pegs in X, there is a peg in either y
or yi, and holes elsewhere at the beginning of Jumper’s turn. As no jumps
are available, the game ends with n+1 pegs. Hence, starting with the hole
in x is worse for Merger when she is the minimizer. If instead Merger begins
with the initial hole in xi, then Jumper can jump xj · −→

x ·xi to reduce this
to the case where the initial hole is y after the first jump.

To continue this argument, we now examine the impact of Merger’s moves
after the first jump, assuming that the initial hole is in y. Suppose that
Merger responds to xi· −→

x ·y with (xj , xk) → x. If ρ(X) ≥ 4, then Jumper
responds with xℓ· −→

x ·xi to reduce to a configuration analogous to the
case where the initial hole is in x after the first jump has been made. If
ρ(X) = 2, then Jumper instead responds with y· −→

x ·xi, which results in
the (3,m)-configuration. In either case, Jumper ensures that the game will
end with at least four pegs.

Observe that if n and m are both odd with m,n ≥ 3, then M+(Sn,m) = 2
and J−(Sn,m) = min{n+ 1,m+ 1}. Hence these graphs are second player
optimal for the game in which Jumper is the minimizer and Merger is the
maximizer. Further, the difference J−(Sn,m) − M+(Sn,m) can be made
arbitrarily large.

4 Open problems

In this section, we present open problems related to this study as possible
avenues of future research. It may be interesting to consider a misère
version of the game. In the misère version, the last player to remove a peg
loses. Again, the goal would be to characterize those graphs for which each
player has a winning strategy in the misère version.

The pie rule (also known as the swap rule or Nash’s rule from Hex) is a
common method for mitigating the advantage of going first. If the pie rule
is implemented, then after the first move is made, the second player has one
of two options. If they let the move stand, then play proceeds as normal.
Otherwise, they “take” that move. In which case, Player One then plays
as if she were the second player. We could also consider a version which
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implements the pie rule that would allow the players to also switch roles
(i.e., the original Jumper becomes the Merger and vice versa).

In several of Slater’s papers on competitive graph parameters, he allows
players to “pass” their turn. Under what conditions is this advantageous?

What other graphs are second player optimal? In particular, is there a
family of graphs such that the difference M−(G) − J+(G) can be made
arbitrarily large?

Characterize those graphs for which J+(G) = M−(G), J−(G) = M+(G),
J+(G) = J−(G), and M+(G) = M−(G).
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