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On tight 6-cycle and tight 9-cycle

decompositions of complete 3-uniform

hypergraphs minus a 1-factor

Ryan C. Bunge∗, Joel Jefferies, Ruben Reyes, Raul F. Reynoso
and Luis Vega Alejandre

Abstract. The complete 3-uniform hypergraph of order v, denoted byK
(3)
v ,

has a set V of size v as its vertex set and the set of all 3-element subsets
of V as its edge set. If v ≡ 0 (mod 3), then the edge set of K

(3)
v contains

a collection I of v/3 vertex-disjoint edges, called a 1-factor. Let K
(3)
v − I

denote any hypergraph isomorphic to the one obtained by removing the

edge set of a 1-factor from that of K
(3)
v . For m > 3, a 3-uniform tight m-

cycle, denoted TCm, is any hypergraph isomorphic to the one with vertex
set Zm and edge set

{
{i, i + 1, i + 2} : i ∈ Zm

}
. Necessary and sufficient

conditions for the existence of TC6- and TC9-decompositions of K
(3)
v have

previously been found. We show that there exists a TC6-decomposition of

K
(3)
v − I if and only if v ≡ 0, 3, or 6 (mod 12) and that there exists a TC9-

decomposition of K
(3)
v − I if and only if v ≡ 0 (mod 3) and v ̸= 6. Results

similar to ours were obtained independently and simultaneously by Keszler

and Tuza (Spectrum of 3-uniform 6- and 9-cycle systems over K
(3)
v − I,

arXiv:2212.11058.)

1 Introduction

In this work, we find necessary and sufficient conditions for the existence

of decompositions of K
(3)
v − I, the complete 3-uniform hypergraph of order

v minus a 1-factor, into the 3-uniform tight cycle on 6 vertices and also
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into the tight cycle on 9 vertices. Our results are a subset of similar ones
obtained simultaneously and independently by Keszler and Tuza [17].

Before proceeding with the motivation for this problem, we first note that
this paper is part of a sequence of results obtained by participants in a Re-
search Experiences for Undergraduates (REU) and Teachers program at the
first author’s home institution. Because there have been multiple papers
on similar problems by different groups of REU participants, definitions,
motivation and summaries of known results are sometimes stated in these
papers in similar ways to earlier ones in the sequence. As we are limited
in the number of ways we can vary definitions and statements of known
results without appearing to copy them, we will state upfront that we will
use the style of presentation of two of the earlier papers from the sequence
(see [1] and [8]). However, in all cases, the standard notations and defini-
tions should be credited to a 2014 groundbreaking paper by Bryant, Herke,
Maenhaut, and Wannasit [6], which also provides a template for settling
decomposition problems of complete 3-uniform hypergraphs into subgraphs
of small order.

1.1 Motivating results

A popular area of study in combinatorics pertains to partitions or decom-
positions of certain classes of incidence structures into isomorphic copies of
smaller regular structures. For example, an affine plane of order v corre-
sponds to a decomposition of Kv2 , the complete graph on v2 vertices, into
copies of Kv. Another example is the Oberwolfach problem, which seeks to
find a decomposition of Kv or of Kv − I, where I is a 1-factor, into isomor-
phic 2-factors on v vertices. Interest in m-cycle decompositions of Kv can
be traced back to the 1890’s and Walecki’s solution for decomposing Kv

into Hamiltonian cycles (see Lucas [19] and Alspach [2]). In 2001, Alspach
and Gavlas [3] fully settled the problem of decomposing Kv and Kv−I into
cycles of odd length. In 2002, Šajna [23] settled the corresponding problem
for even cycle lengths. In 2003, Buratti [9] gave an alternative solution for
the odd case. Relaxing the condition that requires edge sets in graphs to
be 2-element subsets of the vertices leads to the concept of a hypergraph
and many of the same classical problems for graphs yield corresponding
decomposition problems.

A hypergraph H consists of a finite nonempty set V of vertices and a set
E of nonempty subsets of V called hyperedges, or simply edges. As with
graphs, the number of edges that contain a vertex u is the degree of u
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and a hypergraph H is k-regular if every vertex in H has degree k. A
k-regular spanning subhypergraph of H is called a k-factor in H. If H ′

is a subhypergraph of H, then H − H ′ denotes the hypergraph obtained
from H by deleting the edges of H ′. If for each e ∈ E, we have |e| = t,
then H is said to be t-uniform. Thus graphs are 2-uniform hypergraphs.

Let V be a nonempty set and let t ≥ 2 be an integer. Let K
(t)
V denote the

hypergraph with vertex set V and edge set the set of all t-element subsets

of V . If |V | = v, let K
(t)
v denote any hypergraph isomorphic to K

(t)
V . We

refer to K
(t)
v as the complete t-uniform hypergraph of order v.

A decomposition of a hypergraph K is a set ∆ = {H1, H2, . . . ,Hs} of sub-
hypergraphs of K such that E(H1) ∪ E(H2) ∪ · · · ∪ E(Hs) = E(K) and
E(Hi) ∩ E(Hj) = ∅ for all 1 ≤ i < j ≤ s. If each element Hi of ∆ is
isomorphic to a fixed hypergraph H, then Hi is called an H-block, and ∆
is called an H-decomposition of K or a (K,H)-design. We may in this case
say that H decomposes K or that K is decomposable into copies of H. A(
K

(t)
v , H

)
-design is also known as an H-design of order v. The problem of

determining all values of v for which there exists an H-design of order v is
known as the spectrum problem for H.

A (K
(t)
v ,K

(t)
k )-design is a generalization of a Steiner system and is equiv-

alent to what is known as an S(t, k, v)-design. A summary of results on
S(t, k, v)-designs appears in [10]. Keevash [16] has recently shown that for
all t and k the obvious necessary conditions for the existence of an S(t, k, v)-
design are sufficient for sufficiently large values of v. Similar results were
obtained by Glock, Kühn, Lo, and Osthus [12, 13] and extended to in-
clude the corresponding asymptotic results for H-designs of order v for all
uniform hypergraphs H. These results for t-uniform hypergraphs mirror
Wilson’s asymptotic results for graphs [24]. Although Glock et al.’s [12, 13]
assure the existence of H-designs of order v for sufficiently large values of v
for any uniform hypergraph H, the spectrum problem has been settled for
very few hypergraphs of uniformity larger than 2. As stated earlier, a 2014
groundbreaking paper by Bryant et al. [6] provides a template for settling
the spectrum problem for 3-uniform H-designs, especially in the case when
H is 3-colorable (i.e., H has chromatic number 3).

There are multiple ways defining an m-cycle in a t-uniform hypergraph. In
this work, we focus on the concept of a tight m-cycle, which generalizes the
Katona-Kierstead [15] definition of a Hamilton cycle (also called a Hamilto-
nian chain in [15]). Form > t ≥ 2, let Zm denote the group of integers mod-

ulo m and let TC
(t)
m denote any hypergraph isomorphic to the t-uniform hy-

pergraph with vertex set Zm and edge set
{
{i, i+1, . . . , i+t−1} : i ∈ Zm

}
.
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We call TC
(t)
m a t-uniform tight m-cycle. We note that TC

(t)
t+1 is also the

complete hypergraph K
(t)
t+1. As we deal exclusively with 3-uniform tight

cycles in this manuscript, we will henceforth use TCm to denote a TC
(3)
m .

The 3-uniform tight m-cycle decomposition problem was first introduced
by Bailey and Stevens [4] in the context of investigations of Hamilton cycle

decompositions ofK
(3)
m . Also in 2009, Meszka and Rosa [22] added to the re-

sults from [4] and introduced the idea of TCm-decompositions of K
(3)
v with

particular focus on the case m = 5. They also noted that, as a consequence
of Hanani’s classic result on the existence of Steiner quadruple systems

(i.e., S(3, 4, v)-designs) [14], there exists a (K
(3)
v , TC4)-design if and only

if v ≡ 2 or 4 (mod 6). More recently, several additional partial results on

(K
(3)
v , TC5)-designs and (K

(3)
v , TC7)-designs were given by multiple various

authors (see [18], [11], and [20]).

Using an approach similar to the one by Bryant et al. [6], Akin et al.
[1] recently settled the spectrum problem for 3-uniform tight 6-cycles by

showing that there exists a TC6-decomposition of K
(3)
v if and only if v ≡ 1,

2, 10, 20, 28, or 29 (mod 36) and v ≥ 10. Similarly, Bunge et al. [8]
settled the corresponding problem for 3-uniform tight 9-cycles and showed

that there exists a TC9-decomposition of K
(3)
v if and only if v ≡ 1 or 2

(mod 27).

Because TCm is 3-regular and K
(3)
v is

(
v−1
2

)
-regular, a necessary degree

condition for the existence of a TCm-decomposition of K
(3)
v is v ≡ 1 or 2

(mod 3). In the case where v ≡ 0 (mod 3), we have
(
v−1
2

)
≡ 1 (mod 3),

and hence the removal of a 1-factor, say I, fromK
(3)
v results in a hypergraph

K
(3)
v − I that satisfies the degree condition for a TCm-decomposition. For

convenience, we may denote K
(3)
v − I by K

(3)∗
v . Meszka and Rosa [22] were

the first to propose investigating tight cycle decompositions of K
(3)∗
v and

gave a TC6-decomposition of K
(3)∗
6 , a TC9-decomposition of K

(3)∗
9 , and a

TC12-decomposition of K
(3)∗
12 .

In this manuscript, we find necessary and sufficient conditions for the ex-

istence of TC6- and TC9-decompositions of K
(3)∗
v . As noted earlier, our

results are a subset of similar ones obtained simultaneously and indepen-
dently by Keszler and Tuza [17].

On tight 6-cycle and tight 9-cycle decompositions...

72



1.2 Additional notation

If a and b are integers, we define [a, b] to be {r ∈ Z : a ≤ r ≤ b}. For any
edge-disjoint hypergraphs G and H, we use G ∪ H to indicate the hyper-
graph with vertex set V (G) ∪ V (H) and edge set E(G) ∪E(H). Similarly,
if H is a hypergraph and r is a nonnegative integer, we let rH denote the
edge-disjoint union of r copies of H.

We next define additional notation for certain types of multipartite-like 3-
uniform hypergraphs. Our notation is a variation of the one used by Bryant
et al. in [6] and has been incorporated into the majority of the prior papers
from the beforementioned undergraduate research program (e.g., [1] and
[8]). Let A,B,C be pairwise-disjoint sets. The hypergraph with vertex
set A ∪ B ∪ C and edge set consisting of all 3-element sets having exactly

one vertex in each of A,B,C is denoted by K
(3)
A,B,C . The hypergraph with

vertex set A∪B and edge set consisting of all 3-element sets having at most

2 vertices in each of A and B is denoted by L
(3)
A,B . If |A| = a, |B| = b, and

|C| = c, we may use K
(3)
a,b,c to denote any hypergraph that is isomorphic

to K
(3)
A,B,C and L

(3)
a,b to denote any hypergraph that is isomorphic to L

(3)
A,B .

We further let L
(2,1)
A,B denote the subgraph of L

(3)
A,B where each edge contains

two vertices from A and one vertex from B. We define L
(2,1)
a,b , L

(1,2)
A,B , and

L
(1,2)
a,b , correspondingly.

It is simple to see and has been observed previously (see [1] and [8]) that if

A, A′, B, and C are pairwise-disjoint, then K
(3)
A∪A′,B,C = K

(3)
A,B,C ∪K

(3)
A′,B,C

and L
(3)
A∪A′,B = L

(3)
A,B ∪ L

(3)
A′,B ∪K

(3)
A,A′,B . Thus we have the following basic

lemmas.

Lemma 1.1. If a, b, c, x, y, z are positive integers, then K
(3)
xa,yb,zc is decom-

posable into xyz copies of K
(3)
a,b,c.

Lemma 1.2. If a, b, x, y are positive integers, then L
(3)
xa,yb is decomposable

into xy copies of L
(3)
a,b, and

(
x
2

)
y copies of K

(3)
a,a,b, and x

(
y
2

)
copies of K

(3)
a,b,b.

2 Foundational decompositions

In this section we show several examples of TC6- and TC9-decompositions
that are used in proving our main result. As noted earlier, Meszka and
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a

b

c

d

e

f

(a) the TC6 denoted
by [a, b, c, d, e, f ]

a

b

c

d

ef

g

h

i

(b) the TC9 denoted by
[a, b, c, d, e, f, g, h, i]

Figure 1: The 3-uniform tight 6- and 9-cycles shown with the notation used
in the examples throughout Section 2.

Rosa [22] gave a TC6-decomposition of K
(3)∗
6 and a TC9-decomposition

of K
(3)∗
9 . We give our own decompositions here in Examples 2.1 and 2.5,

respectively. Similarly, the decompositions in Examples 2.3 and 2.7 can be
found in [1] and [8], respectively. We include these example decompositions
here for completeness of the results. Also, the approach in Example 2.9
was suggested by Meszka [21].

We use [a, b, c, d, e, f ] to denote the hypergraph (isomorphic to TC6) with
vertex set {a, b, c, d, e, f} and edge set

{
{a, b, c}, {b, c, d}, {c, d, e}, {d, e, f},

{e, f, a}, {f, a, b}
}
. Similarly, we use [a, b, c, d, e, f, g, h, i] to denote the

hypergraph (isomorphic to TC9) with vertex set {a, b, c, d, e, f, g, h, i} and
edge set

{
{a, b, c}, {b, c, d}, {c, d, e}, {d, e, f}, {e, f, g}, {f, g, h}, {g, h, i},

{h, i, a}, {i, a, b}
}
. This notation is used for brevity in the many example

decompositions of this section. It is also demonstrated in Figure 1.

2.1 TC6-decompositions

Example 2.1. Let V
(
K

(3)∗
6

)
= [0, 5] with

{
{0, 2, 4}, {1, 3, 5}

}
as the edge

set of the removed 1-factor. Then

B =
{
[0, 1, 2, 3, 4, 5], [0, 1, 4, 5, 2, 3], [0, 3, 4, 1, 2, 5]

}

is a TC6-decomposition of K
(3)∗
6 .
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Example 2.2. Let V
(
K

(3)∗
15

)
= Z15 with

{
{0, 5, 10}, {1, 6, 11}, {2, 7, 12},

{3, 8, 13}, {4, 9, 14}
}
as the edge set of the removed 1-factor and let

B1 =
{
[0, 1, 4, 3, 2, 5], [0, 2, 4, 12, 9, 6], [0, 7, 1, 12, 2, 9],

[0, 8, 7, 1, 2, 11], [0, 8, 10, 5, 1, 12]
}
.

Then a TC6-decomposition of K
(3)∗
15 consists of the orbits of the TC6-blocks

in B1 under the action of the map j 7→ j + i (mod 15) for i ∈ Z15.

Example 2.3. Let V
(
K

(3)
2,3,3

)
= {0, 1, . . . , 7} with vertex partition

{
{0, 1},

{2, 3, 4}, {5, 6, 7}
}
. Then

B =
{
[0, 2, 5, 1, 3, 6], [0, 3, 7, 1, 4, 5], [0, 4, 6, 1, 2, 7]

}

is a TC6-decomposition of K
(3)
2,3,3.

Example 2.4. Let V
(
L
(3)
6,6

)
= Z12 with vertex partition

{
{0, 2, 4, 6, 8, 10},

{1, 3, 5, 7, 9, 11}
}
and let

B1 =
{
[0, 1, 9, 4, 3, 7], [0, 2, 11, 8, 10, 5]

}
,

B2 =
{
[0, 1, 2, 6, 7, 8]

}
.

Then a TC6-decomposition of L
(3)
6,6 consists of the orbits of the TC6-blocks

in B1 under the action of the map j 7→ j + i (mod 12) for i ∈ Z12 and
the orbit of the TC6-block in B2 under the action of the map j 7→ j + i
(mod 12) for i ∈ {0, 1, 2, 3, 4, 5}.

2.2 TC9-decompositions

Example 2.5. Let V
(
K

(3)∗
9

)
= Z9 with

{
{0, 3, 6}, {1, 4, 7}, {2, 5, 8}

}
as

the edge set of the removed 1-factor and let

B1 =
{
[0, 2, 5, 1, 4, 3, 8, 6, 7]

}
.

Then a TC9-decomposition of K
(3)∗
9 consists of the orbit of the TC9-block

in B1 under the action of the map j 7→ j + i (mod 9) for i ∈ Z9.

Example 2.6. Let V
(
K

(3)∗
12

)
= Z12 with

{
{0, 4, 8}, {1, 5, 9}, {2, 6, 10},

{3, 7, 11}
}
as the edge set of the removed 1-factor and let

B1 =
{
[0, 2, 7, 4, 6, 1, 5, 8, 11], [0, 4, 11, 10, 5, 1, 3, 2, 6]

}
.
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Then a TC9-decomposition of K
(3)∗
12 consists of the orbits of the TC9-blocks

in B1 under the action of the map j 7→ j + i (mod 12) for i ∈ Z12.

Example 2.7. Let V
(
K

(3)
3,3,3

)
= {0, 1, . . . , 8} with the vertex partition

{{0, 3, 6}, {1, 4, 7}, {2, 5, 8}}. Then

B =
{
[0, 1, 2, 3, 4, 5, 6, 7, 8], [0, 2, 4, 6, 8, 1, 3, 5, 7], [0, 4, 8, 3, 7, 2, 6, 1, 5]

}

is a TC9-decomposition of K
(3)
3,3,3.

Example 2.8. Let V
(
L
(3)
6,6

)
= Z12 with vertex partition {{0, 2, 4, 6, 8, 10},

{1, 3, 5, 7, 9, 11}} and let

B1 =
{
[0, 1, 4, 6, 9, 2, 10, 7, 11]

}
,

B2 =
{
[0, 3, 6, 4, 7, 10, 8, 11, 2], [0, 7, 2, 8, 3, 10, 4, 11, 6]

}
.

Then a TC9-decomposition of L
(3)
6,6 consists of the orbit of the TC9-block

in B1 under the action of the map j 7→ j + i (mod 12) for i ∈ Z12 and
the orbits of the TC9-blocks in B2 under the action of the map j 7→ j + i
(mod 12) for i ∈ {0, 1, 2, 3}.

Example 2.9. Let V
(
L
(2,1)
9,3

)
= Z9∪{∞1,∞2,∞3} with the obvious vertex

partition and let

B1 =
{
[0, 3,∞1, 1, 4,∞2, 2, 5,∞3], [0,∞2, 3, 1,∞3, 4, 2,∞1, 5],

[0, 1,∞1, 5, 3,∞2, 7, 8,∞3], [0,∞2, 1, 5,∞3, 3, 7,∞1, 8]
}
.

Then a TC9-decomposition of L
(2,1)
9,3 consists of the orbits of the TC9-blocks

in B1 under the action of the map ∞k 7→ ∞k, for k ∈ {1, 2, 3}, and j 7→
j + 3i (mod 9) for i ∈ {0, 1, 2}.

3 Main results

In order for K
(3)
v to contain a 1-factor, we must have 3 | v. That is, K(3)∗

v ,

or K
(3)
v − I, is only defined for v ≡ 0 (mod 3). Also, as mentioned in the

introduction, the degree condition for a decomposition of K
(3)∗
v into a 3-

regular graph is necessarily satisfied when v ≡ 0 (mod 3). We set out to
prove that this one necessary condition is almost sufficient for the existence

of TC6- and TC9-decompositions of K
(3)∗
v . First, we establish all necessary

conditions for each decomposition.
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Lemma 3.1. Let v be a positive integer such that v ≡ 0 (mod 3). If there

exists a TC6-decomposition of K
(3)∗
v , then v ̸≡ 9 (mod 12).

Proof. Let v = 3m for some positive integer m. Note that TC6 has 6 edges

while K
(3)∗
3m has

(
3m
3

)
−m edges. Hence, for a TC6-decomposition of K

(3)∗
3m

to exist, we must have 6 divides 3m(3m−1)(3m−2)/6−m = 9
2m

2(m−1).
Therefore, we must have 4 | m2(m− 1). Thus, m ≡ 0, 1, or 2 (mod 4).

Lemma 3.2. Let v be a positive integer such that v ≡ 0 (mod 3). If there

exists a TC9-decomposition of K
(3)∗
v , then v ̸= 6.

Proof. Note that TC9 has 9 vertices, and K
(3)∗
6 has a nonempty edge set.

However, K
(3)∗
6 has too few vertices to admit a subhypergraph isomorphic

to TC9.

Next, we prove a lemma that is fundamental to our constructions that

establish sufficient conditions on TC6- and TC9-decompositions of K
(3)∗
v .

This lemma is an extension of variations which have used in prior REU
work (e.g., [1] and [8]), but this approach first appears in the paper by
Bryant et al. in [6].

Lemma 3.3. Let n, x be positive integers and let r be a nonnegative integer

such that n ≡ r ≡ 0 (mod 3). There exists a decomposition of K
(3)∗
nx+r that

is comprised of the following hypergraphs under the given conditions:

• 1 copy of K
(3)∗
n+r,

• x− 1 copies of L
(3)
r,n ∪K

(3)∗
n if x ≥ 2,

•
(
x
2

)
copies of K

(3)
r,n,n ∪ L

(3)
n,n if x ≥ 2,

•
(
x
3

)
copies of K

(3)
n,n,n if x ≥ 3.

Proof. Let R, V1, V2, . . . , Vx be pairwise-disjoint sets of vertices with |R| = r
and |V1| = |V2| = · · · = |Vx| = n and let V = R ∪ V1 ∪ V2 ∪ · · · ∪ Vx. Since

n ≡ r ≡ 0 (mod 3), each of K
(3)
V1∪R,K

(3)
V2

,K
(3)
V3

, . . . ,K
(3)
Vx

admits a 1-factor,

say I1, I2, I3, . . . , Ix, respectively. Let I = I1 ∪ I2 ∪ · · · ∪ Ix. Now, K
(3)
V − I

can be viewed as the edge-disjoint union

(
K

(3)
V1∪R − I1

)
∪

⋃

2≤i≤x

(
L
(3)
Vi,R

∪
(
K

(3)
Vi

− Ii

))

∪
⋃

1≤i<j≤x

(
K

(3)
R,Vi,Vj

∪ L
(3)
Vi,Vj

)
∪

⋃

1≤i<j<k≤x

(
K

(3)
Vi,Vj ,Vk

)
,

and the result thus follows.
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Regarding the hypergraphs mentioned in the above lemma and its proof,

we note that, if r = 0, then L
(3)
r,n and K

(3)
r,n,n are empty. Moreover, if r = 3,

then the 1-factor removed from K
(3)
V1∪R could (without loss of generality)

include the edge on the 3 vertices in R, and thus K
(3)∗
n+r is isomorphic to

L
(3)
Vi,R

∪K
(3)∗
Vi

for any value of i as in the above proof. This leads us to the
following corollary to Lemma 3.3.

Corollary 3.4. Let n, x be positive integers such that n ≡ 0 (mod 3) and

let r ∈ {0, 3}. There exists a decomposition of K
(3)∗
nx+r consisting of isomor-

phic copies of K
(3)∗
n+r, L

(3)
n,n (if x ≥ 2), K

(3)
n,n,n (if x ≥ 3), and K

(3)
3,n,n (if

r = 3 and x ≥ 2).

Besides being necessary for our proofs of the main results, the following
lemma and its proof employ the above corollary in a similar fashion to how
we show sufficiency in the more general case.

Lemma 3.5. There exists a TC9-decomposition of K
(3)∗
18 .

Proof. We note that 18 = 9 · 2 + 0, so by Corollary 3.4 the result follows

from TC9-decompositions of K
(3)∗
9 and L

(3)
9,9. First, a TC9-decomposition of

K
(3)∗
9 is given in Example 2.5. Second, consider pairwise-disjoint vertex sets

A1, A2, A3, B1, B2, B3 with three vertices each and let A = A1∪A2∪A3 and

B = B1∪B2∪B3. Then |A| = |B| = 9 and L
(3)
A,B =

⋃3
i=1 L

(2,1)
A,Bi

∪⋃3
i=1 L

(1,2)
Ai,B

.

Therefore, a TC9-decomposition of L
(3)
9,9 follows from a TC9-decomposition

of L
(2,1)
9,3 , which is given in Example 2.9.

The next two lemmas are beneficial in applying the fundamental construc-
tion.

Lemma 3.6. Let x, y, z be positive integers. There exist TC6- and TC9-

decompositions of K
(3)
6x,3y,3z.

Proof. Note that TC6 decomposes K
(3)
2,3,3 (see Example 2.3). Also, TC9

decomposes K
(3)
3,3,3 (see Example 2.7). Hence, both results follow from

Lemma 1.1.

Lemma 3.7. Let x, y be positive integers. There exist TC6- and TC9-

decompositions of L
(3)
6x,6y.

Proof. Note that both TC6 and TC9 decompose L
(3)
6,6 (see Examples 2.4

and 2.8). Also, both TC6 and TC9 decomposeK
(3)
6,6,6 by Lemma 3.6. Hence,

both results follow from Lemma 1.2.

On tight 6-cycle and tight 9-cycle decompositions...

78



Finally, we have all that we need to prove our main results.

Theorem 3.8. There exists a TC6-decomposition of K
(3)∗
v if and only if

v ≡ 0, 3, or 6 (mod 12).

Proof. We note that K
(3)∗
v is only defined for positive integers v ≡ 0

(mod 3). Furthermore, the result is vacuously true when v = 3. Oth-
erwise, the necessary conditions for the decomposition are established in
Lemma 3.1. Thus, we need only establish their sufficiency for v ≥ 6.

First, if v ≡ 0, 6 (mod 12) ≡ 0 (mod 6), then we let v = 6x for some pos-
itive integer x. By Corollary 3.4, it suffices to show that TC6 decomposes

K
(3)∗
6 (see Example 2.1), L

(3)
6,6 (see Lemma 3.7), andK

(3)
6,6,6 (see Lemma 3.6).

Second, if v ≡ 3 (mod 12), then we let v = 12x + 3 for some positive

integer x. By Corollary 3.4, it suffices to show that TC6 decomposes K
(3)∗
15

(see Example 2.2), L
(3)
12,12 (see Lemma 3.7), K

(3)
12,12,12 (see Lemma 3.6), and

K
(3)
3,12,12 (see Lemma 3.6).

Theorem 3.9. There exists a TC9-decomposition of K
(3)∗
v if and only if

v ≡ 0 (mod 3) and v ̸= 6.

Proof. As before, we note that K
(3)∗
v is only defined for positive integers

v ≡ 0 (mod 3), and the result is vacuously true when v = 3. Otherwise, the
necessary conditions for the decomposition are established in Lemma 3.2.
Thus, we need only establish their sufficiency for v ≥ 9.

First, if v ≡ 3 (mod 6), then we let v = 6x+ 3 for some positive integer x.

By Corollary 3.4, it suffices to show that TC9 decomposes K
(3)∗
9 (see Ex-

ample 2.5), L
(3)
6,6 (see Lemma 3.7), K

(3)
6,6,6 (see Lemma 3.6), and K

(3)
3,6,6 (see

Lemma 3.6).

Second, if v ≡ 0 (mod 6), then we let v = 12x + r for some positive
integer x and with r ∈ {0, 6}. By Lemma 3.3, it suffices to show that

TC9 decomposes K
(3)∗
12 (see Example 2.6), K

(3)∗
18 (see Lemma 3.5), L

(3)
6,12

(see Lemma 3.7), L
(3)
12,12 (see Lemma 3.7), K

(3)
6,12,12 (see Lemma 3.6), and

K
(3)
12,12,12 (see Lemma 3.6).
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[12] S. Glock, D. Kühn, A. Lo, and D. Osthus, The existence of designs via
iterative absorption, arXiv:1611.06827v2, (2017), 63 pages.
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