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Stirling permutations for partially ordered sets

Richard A. Brualdi∗ and Geir Dahl

Abstract. We generalize the notion of a Stirling permutation of the mul-
tiset {1, 1, 2, 2, . . . , n, n} based on the usual linear order of the integers
{1, 2, . . . , n} to any finite partially ordered set P, a P-Stirling permuta-
tion. We give an algorithmic characterization of P-Stirling permutations.
A partially ordered set determines a transitive directed graph, and a further
extension of Stirling permutations to directed graphs is discussed.

1 Introduction

Let n be a positive integer and Xn = {1, 2, . . . , n}. A Stirling permutation
of the 2-multiset X2

n = {1, 1, 2, 2, . . . , n, n} is defined by the property:

(∗) For each k = 1, 2, . . . , n, between the two occurrences of k only inte-
gers greater than k occur.

For example, with n = 4, 23443211 is a Stirling permutation, but 13234421
is not. A Stirling permutation is a permutation of a specific multiset and
so is a multipermutation. Stirling permutations have been generalized to
arbitrary multisets using the same property (∗).

In this paper we confine our attention to the multiset

X2
n = {1, 1, 2, 2, . . . , n, n},

that is, to the 2-permutations of {1, 2, . . . , n}. Stirling permutations were
introduced in [5] in connection with a study of Stirling numbers and Stir-
ling polynomials. The total number of Stirling permutations of X2

n is the
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double factorial (2n−1)!! = 1·3 · · · (2n−1). Stirling permutations have con-
nections to other combinatorial objects. In [6] it is explained how Stirling
permutations give rise to a combinatorial interpretation of the second-order
Eulerian numbers. Moreover, Stirling permutations arise naturally for cer-
tain walks in plane trees [7], which we return to later. For some recent work
on Stirling permutations, see [2, 3].

A Stirling permutation obtained from an ordinary permutation π of
{1, 2, . . . , n} by doubling each integer i in π is called a trivial-Stirling permu-
tation. Thus, for instance, 221133 is a trivial Stirling permutation. Between
the two occurrences of each integer k in a Stirling permutation, there is a
Stirling permutation σ of the multiset {l, l : k < l ≤ n}, indeed kσk is a Stir-
ling permutation of {k, k, k+1, k+1, . . . , n, n}. For example, in the Stirling
permutation 12344321, between the two 2’s there is a Stirling permutation
3443 of {3, 3, 4, 4} and between the two 1’s there is a Stirling permutation
of {2, 2, 3, 3, 4, 4}. Thus Stirling permutations of X2

n can be constructed as
follows: choose an integer k ≤ n and a subset Yk of {k, k + 1, . . . , n}, and
then choose a Stirling permutation σk of the 2-multiset Y 2

k with k as both
the first and last integer. Now choose a new integer l, a subset Yl of new
integers greater than or equal to l, and put a Stirling permutation σl of Y

2
l

with l as both the first and last integer on one of the two sides of σk, giving
a Stirling permutation of the 2-multiset Y 2

k ∪ Y 2
l . Continue like this until

all integers have been used.

A Stirling permutation of X2
n = {1, 1, 2, 2, . . . , n, n} can be regarded as

based on the reverse-permutation ζn = n(n− 1) · · · 1 of the set {1, 2, . . . , n}
in the sense that the order relation used in checking the Stirling property
corresponds to the inversions of the permutation ζn. We can replace the per-
mutation ζn by an arbitrary permutation πn = p1p2 · · · pn of {1, 2, . . . , n}
to obtain a generalization of the classical ζn-Stirling permutations. For a
permutation πn of {1, 2, . . . , n}, let I(πn) be the set of inversions of πn

where an inversion is a pair (π(i), π(j)) where i < j and π(i) > π(j). Thus
a πn-Stirling permutation is a permutation of X2

n such that the integers j
between two occurrences of an integer k satisfy that (j, k) is an inversion
of πn; in particular, we have j > k, but that in itself does not suffice, since
j must precede k in πn. Any πn-Stirling permutation is a ζn-Stirling per-
mutation, but the converse does not hold. For example, with the multiset
X2

3 = {1, 1, 2, 2, 3, 3} and π3 = 231, 123321 is not a π3-Stirling permutation
since 3, 2 is not an inversion of π3. In fact, the only nontrivial π3-Stirling
permutations are 122331 and 133221.

The weak Bruhat order ⪯b on the set Sn of permutations of {1, 2, . . . , n}
is defined by: σn ⪯b πn provided that I(σn) ⊆ I(πn). This is equivalent
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to the property that σn can be obtained from πn by a sequence of adjacent
transpositions. On the other hand, the Bruhat order ⪯B is defined by
σn ⪯B πn provided that σn can be obtained from πn by a sequence of
transpositions each of which reduces the number of inversions by 1; thus
I(σn) need not be a subset of I(πn). It follows that if σn ⪯B πn, the set
of σn-Stirling permutations need not be a subset of the set of πn-Stirling
permutations.

From the definitions we conclude that: If σn ⪯b πn, then a σn-Stirling
permutation is also a πn-Stirling permutation. In particular, as already
remarked, any σn-Stirling permutation is also a ζn-Stirling permutation.
Denote by S(πn) the set of πn-Stirling permutations. We thus have that

S(πn) ⊆ S(σn) if and only if πn ⪯b σn where equality holds if and only if
πn = σn.

Example 1.1. Let n = 3 and let π3 be the permutation 312. In this case,
we have I(π3) = {(3, 1); (3, 2)}. Thus in a π3-Stirling permutation between
the two occurrences of 1, we cannot have a 2, since (2, 1) is not an inversion
of π3. An example of a π3-Stirling permutation is 112332, but 122331 is
not. □

The set I(πn) of the inversions of a permutation πn determines a partially
ordered set on {1, 2, . . . , n} whereby i ⪯ j if either i = j or (j, i) is an
inversion of πn so that, in particular, j > i. In the classical case in which
πn is the permutation ζn = n(n − 1) · · · 21, this reduces to j > i. This
suggests a possible further generalization of Stirling permutations obtained
by replacing a permutation πn, its associated partially ordered set (poset),
with an arbitrary finite poset P = (P,⪯). This concept of a P-Stirling
permutation, is introduced and explored in Section 2. A characterization
of P-Stirling permutations is given in Section 3, and it gives an algorithm
for constructing all such objects. Finally, in Section 4 we discuss Stirling
permutations for directed graphs.

2 Stirling permutations for a poset

Let P = (P,⪯) be a (finite) poset where P = {p1, p2, . . . , pn}. A P-Stirling
permutation σ is a permutation of the 2-multiset {p1, p1, p2, p2, . . . , pn, pn}
such that, for i = 1, 2, . . . , n, the following condition holds:

Stirling permutations for partially ordered sets

116



(I) For i = 1, 2, . . . , n, each element x ̸= pi that occurs between a pair of
pi’s in σ satisfies pi ≺ x.

In this definition (I), x cannot be incomparable to pi. This suggests a
modification of the definition of a Stirling permutation on a poset using the
condition:

(II) For i = 1, 2, . . . , n, each element x ̸= pi that occurs between a pair of
pi’s in σn satisfies x ̸≺ pi. So either pi ≺ x or x is incomparable to
pi.

We use P-Stirling permutation to mean that (I) is satisfied and use weak
Stirling permutation to mean that (II) is satisfied. Both instances of each
maximal element of P = (P,⪯) must be consecutive in P-Stirling permu-
tations. In weak P-Stirling permutations between two maximal elements
pi there can only be incomparable elements to pi. In Example 1.1, with
the multiset X2

3 = {1, 1, 2, 2, 3, 3} and π3 = 312, 112332 is a π3-Stirling
permutation but 132231 is not, but it is a weak π3-Stirling permutation,
since (2, 1) is not an inversion of π3 and thus 1 and 2 are incomparable in
this P.

Example 2.1. Consider P = (P,⪯), a totally unordered poset where

P = {p1, p2, . . . , pn}

has cardinality n (so no two elements are comparable). Then:

1. the number of P-Stirling permutations is n!, since each collection of
pi’s has to be consecutive, and

2. the number of weak P-Stirling permutations is (2n)!
2n since now there

are no restrictions. (These are just the permutations of {1, 1, 2, 2, . . . ,
n, n}.) □

Example 2.2. Consider the poset P with elements {p1, p2, p3} where only
p1 ≺ p3 and p2 ≺ p3. Examples of P-Stirling permutations are p1p1p3p3p2p2
and p1p3p3p1p2p2. We have that p1p2p1p2p3p3 is a weak-P-Stirling permu-
tation but not a P-Stirling permutation, since there is a p2 between the
two p1’s for which p1 ̸≺ p2. □

Let Qn = (Xn,⊆) denote the Boolean lattice of all subsets of Xn =
{1, 2, . . . , n} partially ordered by inclusion. A Qn-Stirling permutation is
a sequence of all the subsets of Xn, each appearing twice, so that between
each pair of subsets A of Xn only supersets of A occur. We refer to such
Qn-Stirling permutations as Boolean-Stirling permutations in general.
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The Qn-Stirling permutations can also be expressed in terms of n-tuples of
0’s and 1’s. Take the set of 2n n-tuples of 0’s and 1’s (binary representations
a1a2 · · · an of the integers from 0 to 2n − 1) with partial order defined by

a1a2 · · · an ⪯ b1b2 · · · bn if and only if ai = 1 implies bi = 1.

Between two equal integers in this sequence only larger integers can occur,
but not all larger integers are possible. Geometrically, we have the vertices
of an n-cube Qn. A (0, 1) n-tuple x having k 1’s determines a face Fx of
Qn of dimension n − k whose vertices are all n-tuples of 0’s and 1’s with
1’s in those k places that x has 1’s and possibly elsewhere. The Stirling
property requires that between the two copies of the n-tuple x with these
k 1’s only vertices on this (n − k)-dimensional face Fx can occur (so they
have 1’s in those k places and possibly elsewhere). If k = 0, then there are
no restrictions (the empty set is a subset of all sets).

Example 2.3. Take n = 2 so that we have the 2-tuples 00, 10, 01, 11. Then
the following is a Q2-Stirling permutation:

00, 10, 11, 11, 10, 01, 01, 00

or in terms of the corresponding integers 02332110. If n = 3, we have the
example of a Q3-Stirling permutation of {0, 1, 2, 3, 4, 5, 6, 7} in terms of its
binary representation:

000, 001, 010, 010, 001, 000, 101, 110, 111, 111, 110, 101, 011, 100, 100, 011, (1)

or, in terms of the corresponding integers, 0122105677653443. But this is
not an ordinary Stirling permutation of {0, 1, 2, 3, 4, 5, 6, 7}: between 101
and 101 (representing integers 5), we cannot have 110 (representing 6), even
though 6 is larger that 5.

This example can be generalized to any integer n ≥ 2. For example if n = 4,

01233210, 456665, 89(10)(11)(11)(10)98, (12)(13)(14)(15)(15)(14)(13)(12).

Moreover, the parts separated by commas can be arbitrarily permuted. □

For this Boolean lattice Qn, a weak Qn-Stirling permutation is a listing of
the subsets of Xn, each appearing twice, so that between two equal subsets
A there are only supersets or subsets incomparable to A.

Another partially ordered set that may be of interest is the partially ordered
set on Xn = {1, 2, . . . , n} where the partial order is that of divisibility.

Example 2.4. Consider the partially ordered set Pn = (Xn,⪯) on the set
Xn = {1, 2, . . . , n} where the partial order is that of divisibility. If n = 6,
then a P6-Stirling permutation is 144122366355. □
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3 Characterization of P-Stirling permutations

Let P = (P,⪯) be an arbitrary finite poset where P = {p1, p2, . . . , pn}. A
P-Stirling permutation σ is a 2-permutation of P with the property that,
for i = 1, 2, . . . , n, each element x ̸= pi that occurs between the two pi’s in
σ satisfies pi ≺ x. Associated with P we define the directed graph G(P)
with vertex set P = {p1, p2, . . . , pn} and edges pi → pj provided pi ≺ pj .
By the transitive law for posets, the directed graph G(P) is transitive, that
is, pi → pj , pj → pk imply pi → pk. So, in the usual Hasse diagram where
an element pi is below another element pj in the diagram if pi ≺ pj , we
have a directed edge pi → pj from pi to pj in G(P). Given a finite poset
P, we want to characterize the P-Stirling permutations and possibly find
their number. In what follows, we will give a complete characterization of
these permutations.

We now introduce a specific procedure for determining a walk W in G(P)
where its vertices, using some specified rules, give a 2-permutation σ of P.
The walk is considered in the associated (undirected) graph of G(P), so we
can move forward or backward along edges of G(P). We call this procedure
a P-depth-search, or P-DS, for short (see [1, 4] for more on depth-first-
search). The map ℓ : P → {0, 1, 2} gives a label to each element in P which
counts the number of occurrences of each vertex in the walk as it progresses.
Initially, ℓ(pi) = 0 (i = 1, 2, . . . , n) and, when we terminate, ℓ(pi) = 2 for
each vertex in the walk. We also define a predecessor function ‘prev’ for
the vertices as they are visited in the walk.

P-depth-search: Choose some initial vertex pi1 for the walk W as well
as for σ, and set ℓ(pi1) = 1 and prev(pi1) = pi1 . For the general step, if u
is the last vertex of W determined so far, where ℓ(u) = 1, then the next
vertex v of W is obtained by either a forward-step or a backward-step as
follows:

(i) Forward-step: Choose a vertex v with ℓ(v) = 0 such that u → v.
Define prev(v) = u (the predecessor), relabel ℓ(v) = 1, and add v onto
both W and σ;

(ii) Backward-step: Let v = prev(u) and relabel ℓ(u) = 2. Add v onto W
and add u (but not v) onto σ.

Thus, in both types of steps we add to σ the head (terminal end vertex)
of the directed edge. We terminate when the (initial) vertex pi1 is met for
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the second time in W , and we then add pi1 to σ. Associated with such a
walk W there is a tree TW consisting of the vertices and forward-step edges
used in W . Note that some of the vertices of G(P) may not be included in
T and σ, and that W and σ may have different lengths.

Example 3.1. Let n = 9 and consider the poset P whose Hasse diagram
is shown in Fig.1. A P-DS-search may give the following walk W and
corresponding 2-permutation σ

W : p1, p3, p6, p9,p6,p3, p5, p8,p5,p3,p1;
σ : p1, p3, p6, p9, p9, p6, p5, p8, p8, p5, p3, p1.

The vertices obtained in a backward step are indicated in boldface in W .
The associated tree TW is indicated by thick lines in the figure. Note that
vertices p2, p4, p7 are not included in W and σ.

p1 p2

p3 p4

p5 p6 p7

p8 p9

Figure 1: Poset P and a P-DS-search.

Lemma 3.2. P-DS terminates and the constructed σ is a 2-permutation
of its vertex set, i.e., each vertex v in σ occurs twice. Moreover, each vertex
x that occurs between these two v’s satisfies v → x, i.e., v ≺ x, so σ is a
Stirling permutation of the corresponding 2-multiset.

Proof. Consider the general step in the construction of W and σ (as above)
and let u be the last vertex so far (in W ). Let PW be the set of vertices in
the current W (so no repetition).

Claim. PW is the vertex set of a subtree TW in G(P) with (directed)
edges (u, v) associated with each forward-step from u to v. Moreover
ℓ(v) ∈ {1, 2} for each v ∈ PW , and the vertices in TW with ℓ(v) = 1
is a directed subtree with root pi1 .

Proof of Claim. The first statement follows directly from the fact
that we start with a single vertex pi1 and in each forward step a new
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vertex v is added to PW and a new directed edge from an existing
vertex u to v. The new vertex is given the label 1. (This is a standard
way to construct trees.) In a backward-step from u to its predecessor
v = prev(u), no new vertex is added, so PW is unchanged, and u is
given label 2. The first time we do a backward step we leave a pendant
vertex u of the subtree TW ; let T ′

W be the subtree obtained by deleting
u (and the incident edge). Then T ′

W is a directed subtree with root
pi1 where each of its vertices has label 1. The next backward-step
has the same property: a pendant vertex u′ gets the label 2 and the
updated subtree T ′

W obtained by deleting u′ is a directed subtree with
root pi1 where each of its vertices has label 1. The second statement
of the claim now follows by induction.

The process P-DS has at most n− 1 forward-steps (as each such step leads
to a new vertex not visited before). Thus, when the forward-steps are all
done, the remaining steps are backward-steps and gradually the tree T ′

W

shrinks to the single vertex pi1 . Each vertex in PW is visited exactly twice
(when its ℓ-label is changed from 0 to 1, and later from 1 to 2). This
proves the lemma because between the two occurrences of a vertex v in the
generated sequence there are only vertices that are reachable from v by a
directed path in the tree TW .

The Stirling 2-permutation σ as constructed in Lemma 3.2 will be called a
P-DS block, and we let Pσ denote its vertex set (which equals PW for the
corresponding walk W ). We may now repeat this construction, and find a
P ′-DS block in the subposet P ′ induced by P \ Pσ. This process may be
repeated, for the remaining elements in P , until we have found P-DS blocks
such that their vertex sets define an ordered partition of P . The concate-
nation of these P-DS blocks will be called a P-DS sequence. Associated
with each of the P-DS blocks is a rooted directed tree, as described above.

We now state and prove a main result in this paper, a characterization of
P-Stirling permutations in a general poset P.

Theorem 3.3. Let P = (P,⪯) be a poset, and let σ be a 2-permutation of
P . Then σ is a P-Stirling permutation if and only if σ is a P-DS sequence.

Proof. Consider a P-DS sequence σ. Then each of its P-DS blocks is a
2-permutation of its vertex set, by Lemma 3.2, and it follows that σ is a
P-Stirling permutation.

Conversely, let σ be a P-Stirling permutation

σ : v1, v2, v3, . . . , vs.

(Thus, these elements are not distinct.)
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Claim (Nestedness property). For each i, j ≤ s, i ̸= j, between
the two occurrences of vi in σ the vertex vj occurs either 0 or 2 times.

Proof of Claim. Assume vj only occurs once between the two occur-
rences of vi in σ. Then the other vj must be before the first vi or
after the second vi, so their internal order is e.g.

vi · · · vj · · · vi · · · vj .

By the Stirling property this gives vi ≺ vj and also vj ≺ vi which
contradicts the poset property (as vi ̸= vj). The other case, when vj
before the first vi, is similar. This proves the Claim.

Let k be maximal such that the first k vertices in σ are distinct. Thus

v1 ≺ v2 ≺ · · · ≺ vk

and vk+1 = vi for some i ≤ k. Then i = k, i.e., vk+1 = vk. This follows
from the Nestedness property because if i < k, then vk would occur once
between the two occurrences of vi. Moreover, the internal order in σ of the
occurrences of v1, v2, . . . , vk is as follows:

σ : v1, v2, v3, . . . , vk−1, vk, vk, . . . , vk−1, . . . , v2, . . . , v1, . . . (2)

Thus, the second occurrences of these vi’s are in the opposite order. This
is again due to the Nestedness property. Now we connect the structure of
σ in (2) to a P-DS sequence. Consider a walk W with vertices

v1, v2, v3, . . . , vk−1, vk,

these are k − 1 forward-steps. Next, do a backward-step from vk to vk−1.
This gives the following initial part of a P-DS block σ∗

σ∗ : v1, v2, v3, . . . , vk−1, vk, vk

which coincides with the initial part of σ. Next, consider the part σ′ of σ
that is between (the second) vk and vk−1. There are two possibilities:

Case 1: σ′ is empty. Then we perform a backward-step from vk−1 to
vk−2, so vk−2 is added to W and vk−1 is added to σ∗. Thus σ and σ∗

coincide in the next position as well.

Case 2: σ′ is nonempty. Since σ′ is between the two occurrences of vk−1,
see (2), the Stirling property means that every vertex v in σ′ satisfies
vk−1 ≺ v. Moreover, due to the Nestedness property, each such v
occurs two times in σ′. Let v′ be the first vertex in σ′. Then we
perform a forward-step from vk−1 to v′, so v′ is added both to W and
σ∗. Thus σ and σ∗ coincide in the next position as well.
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In both cases we can repeat the argument to a smaller sequence of vertices.
In Case 2 we will then construct a subtree with root vk−1. It is clear that
by induction the final constructed σ∗ equals σ, as desired. Thus, every P-
Stirling permutation is also a P-DS sequence, and the proof is complete.

Example 3.4. Consider again the poset P whose Hasse diagram is shown
in Fig.1. We have already discussed the P-DS-block

p1, p3, p6, p9, p9, p6, p5, p8, p8, p5, p3, p1.

Another P-DS-block is
p2, p4, p7, p7, p4, p2.

Concatenating these we get the P-DS sequence and therefore P-Stirling
permutation

p1, p3, p6, p9, p9, p6, p5, p8, p8, p5, p3, p1, p2, p4, p7, p7, p4, p2.

We remark that our characterization Theorem 3.3 of P-Stirling permuta-
tions is of a similar nature as the characterization of Stirling permutations
via plane trees [7].

4 Stirling permutations for directed graphs

As discussed in Section 3, a poset P = (P,⪯) defines a directed graph G(P)
with vertex set P = {p1, p2, . . . , pn} and edges pi → pj provided pi ≺ pj .
By the transitive law for posets, the directed graph G(P) is transitive:
pi → pj , pj → pk imply pi → pk. Stirling permutations can be defined
for any directed graph. The original definition of a Stirling permutation
corresponds to the (linearly ordered) directed graph 1 → 2 → · · · → n,
extended with edges due to transitivity.

Consider an arbitrary directed graph G = (V,E). We can extend our
definitions of P-Stirling permutation and weak Stirling permutation as a
2-permutation σ of V in the obvious way:

(I) G-Stirling permutation: For v ∈ V , each element x ̸= v that occurs
between a pair of v’s in σ satisfies v → x.

(II) weak G-Stirling permutation: For v ∈ V , each element x ̸= v that
occurs between a pair of v’s in σ satisfies v → x or there is no edge
between x and v in either direction.
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Example 4.1.
• Consider the directed graph G of order 3 consisting of the 3-cycle
a → b, b → c, c → a (so this does not result from a poset). Then the
following are G-Stirling permutations:

aabbcc (6 of these); ccabba (6 of these).

In this case, every weak G-Stirling permutation is a G-Stirling permu-
tation.

• Consider the directed graph G with V = {x, a, b, c}, where only
a → x, b → x, c → x. Then e.g. axxabbcc is a G-Stirling permutation
and caxxbabc is a weak G-Stirling permutation. □

Let σ be a 2-permutation of V . For v ∈ V let σ(v−v) denote the set of
vertices occurring (at least once) between the two occurrences of v in σ.
Also, let Γ+

G(v) be the set of vertices w with v → w in G. Then σ is
G-Stirling permutation if and only if

σ(v−v) ⊆ Γ+
G(v) (v ∈ V ). (3)

We call a 2-permutation of V a trivial 2-permutation provided that the two
occurrences of v are consecutive for each v ∈ V , i.e., σ(v−v) = ∅. There
are n! trivial 2-permutations (when n = |V |), and each of these is clearly
a G-Stirling permutation. The following proposition contains some basic
properties of G-Stirling permutations.

Proposition 4.2.

(i) The set of G-Stirling permutations is the set of all trivial 2-permutations
of V if and only if G has no edges.

(ii) If G = (V,E) and G′ = (V,E′) with E ⊆ E′, then every G-Stirling
permutation is also a G′-Stirling permutation.

(iii) Let G = (V,E) be the complete directed graph on n vertices, i.e.,
E = {(i, j) : i, j ∈ V, i ̸= j}. Then the G-Stirling permutations consists
of all 2-permutations of V .

(iv) Let G = (V,E) be a complete bipartite directed graph, i.e., V consists
of color classes I and J and all edges (i, j) where i ∈ I and j ∈ J .
Then the G-Stirling permutations consists of all 2-permutations σ of
V satisfying σ(j−j) = ∅ (j ∈ J) and σ(i−i) ⊆ J (i ∈ I).
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Proof.

(i) If G has no edge, then, for a G-Stirling permutation σ, σ(v−v) = ∅
for each v ∈ V , so σ is a trivial 2-permutation. If G has an edge, say
v1 → v2, then σ = v1v2v2v1v3v3 · · · vnvn is a G-Stirling permutation
which is not a trivial-permutation.

(ii) This is immediate from (3).

(iii) When G is complete, Γ+
G(v) = V \ {v} so then (3) holds for any

2-permutations of V .

(iv) This also follows from (3).

Example 4.3. Let Tn be the star with V = {1, 2, . . . , n} and edges n →
1, n → 2, . . . , n → (n − 1). This is a special complete bipartite graph; see
case (iv) in Proposition 4.2. Consider this star with n = 4. So we have
only 4 → i for i = 1, 2, 3. Let σ be a Tn-Stirling permutation. Thus the
two occurrences of j have to be together (j ≤ 3), and some examples of
such Tn-Stirling permutations are 41122334, 22411334 and 33411422.

Corollary 4.4. The number of Tn-Stirling permutations when Tn is the
star with n vertices in Example 4.3 is n!(n− 1)/2.

Proof. Let N be the number to be computed. Let σ be a Tn-Stirling per-
mutation. Then for each j ≤ n − 1 the two occurrences of j in σ must
be consecutive. So, N equals (n − 1)! times the number of Tn-Stirling
permutations with 1, 2, . . . , n − 1 occuring as 1, 1, 2, 2, . . . , n − 1, n − 1.
We can place the two n’s in σ in any of the n positions labeled x in
x, 1, 1, x, 2, 2, . . . , x, n− 1, n− 1, x. Thus

N = (n− 1)!

(
n

2

)
= n!(n− 1)/2.

as desired.

For weak Tn-Stirling permutations there are additional possibilities since,
for each j ≤ n− 1, the two occurrences of j need not be consecutive.

Proposition 4.5. The number of weak Stirling permutations for the star
Tn equals

(n− 1)!

∑

a≥0, b≥0, c≥0,
a+b+c = n−1

(2a)!(2b)!(2c)!

a!b!c!

Proof. Now, for each j ≤ n − 1 the two j’s must be either before the first
n, or between the two n’s, or after the second n. Choosing a, b, and c
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of them before, between, and after the n’s and then taking an arbitrary
permutation of both of the integers chosen, we get by direct computation

∑

a≥0, b≥0, c≥0,
a+b+c = n−1

(n− 1)!

a!b!c!
(2a)!(2b)!(2c)!

as desired.

Now let T ∗
n denote the digraph obtained from Tn be reversing the direction

for each edge, so the edges are now i → n (i ≤ n − 1). This is also a
complete bipartite graph, so we can again apply Proposition 4.2.

Proposition 4.6. The number of T ∗
n-Stirling permutations is

(2n− 1) · (n− 1)!.

Proof. First we note that 1, 2, . . . , (n − 1) can be arbitrarily permuted in
such a Stirling permutation and we cannot have i, j, i (1 ≤ i, j ≤ n −
1, i ̸= j) occurring as a subsequence; so the number is (n − 1)! times the
number of those in which 1, 2, . . . , (n − 1) are in their natural order. The
n’s have to be together and can be in any of the (2n− 1) places in-between
1, 1, 2, 2, . . . , (n− 1), (n− 1).

Proposition 4.7. The number of weak Stirling permutations for the star
T ∗
n equals

(2n− 1)!

2n−1
.

Proof. Take an arbitrary permutation of {1, 1, 2, 2, . . . , n − 1, n − 1} and
then insert the two n’s together in any of the resulting 2n− 1 places.
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