BULIETIN of The

DESTHITE Of

FOWBNLIORABS and its

 IPPICIIIONS
Editors-in-Chief:

Marco Buratti, Donald Kreher, Ortrud Oellermann, Tran van Trung

Duluth, Minnesota, U.S.A.
ISSN: 2689-0674 [Online] ISSN: 1183-1278 [Print]

Stirling permutations for partially ordered sets

Richard A. Brualdi* and Geir Dahl

Abstract

We generalize the notion of a Stirling permutation of the multiset $\{1,1,2,2, \ldots, n, n\}$ based on the usual linear order of the integers $\{1,2, \ldots, n\}$ to any finite partially ordered set \mathcal{P}, a \mathcal{P}-Stirling permutation. We give an algorithmic characterization of \mathcal{P}-Stirling permutations. A partially ordered set determines a transitive directed graph, and a further extension of Stirling permutations to directed graphs is discussed.

1 Introduction

Let n be a positive integer and $X_{n}=\{1,2, \ldots, n\}$. A Stirling permutation of the 2-multiset $X_{n}^{2}=\{1,1,2,2, \ldots, n, n\}$ is defined by the property:
$(*)$ For each $k=1,2, \ldots, n$, between the two occurrences of k only integers greater than k occur.

For example, with $n=4,23443211$ is a Stirling permutation, but 13234421 is not. A Stirling permutation is a permutation of a specific multiset and so is a multipermutation. Stirling permutations have been generalized to arbitrary multisets using the same property (*).

In this paper we confine our attention to the multiset

$$
X_{n}^{2}=\{1,1,2,2, \ldots, n, n\}
$$

that is, to the 2 -permutations of $\{1,2, \ldots, n\}$. Stirling permutations were introduced in [5] in connection with a study of Stirling numbers and Stirling polynomials. The total number of Stirling permutations of X_{n}^{2} is the

[^0]double factorial $(2 n-1)!!=1 \cdot 3 \cdots(2 n-1)$. Stirling permutations have connections to other combinatorial objects. In [6] it is explained how Stirling permutations give rise to a combinatorial interpretation of the second-order Eulerian numbers. Moreover, Stirling permutations arise naturally for certain walks in plane trees [7], which we return to later. For some recent work on Stirling permutations, see $[2,3]$.

A Stirling permutation obtained from an ordinary permutation π of $\{1,2, \ldots, n\}$ by doubling each integer i in π is called a trivial-Stirling permutation. Thus, for instance, 221133 is a trivial Stirling permutation. Between the two occurrences of each integer k in a Stirling permutation, there is a Stirling permutation σ of the multiset $\{l, l: k<l \leq n\}$, indeed $k \sigma k$ is a Stirling permutation of $\{k, k, k+1, k+1, \ldots, n, n\}$. For example, in the Stirling permutation 12344321, between the two 2's there is a Stirling permutation 3443 of $\{3,3,4,4\}$ and between the two 1 's there is a Stirling permutation of $\{2,2,3,3,4,4\}$. Thus Stirling permutations of X_{n}^{2} can be constructed as follows: choose an integer $k \leq n$ and a subset Y_{k} of $\{k, k+1, \ldots, n\}$, and then choose a Stirling permutation σ_{k} of the 2-multiset Y_{k}^{2} with k as both the first and last integer. Now choose a new integer l, a subset Y_{l} of new integers greater than or equal to l, and put a Stirling permutation σ_{l} of Y_{l}^{2} with l as both the first and last integer on one of the two sides of σ_{k}, giving a Stirling permutation of the 2-multiset $Y_{k}^{2} \cup Y_{l}^{2}$. Continue like this until all integers have been used.

A Stirling permutation of $X_{n}^{2}=\{1,1,2,2, \ldots, n, n\}$ can be regarded as based on the reverse-permutation $\zeta_{n}=n(n-1) \cdots 1$ of the set $\{1,2, \ldots, n\}$ in the sense that the order relation used in checking the Stirling property corresponds to the inversions of the permutation ζ_{n}. We can replace the permutation ζ_{n} by an arbitrary permutation $\pi_{n}=p_{1} p_{2} \cdots p_{n}$ of $\{1,2, \ldots, n\}$ to obtain a generalization of the classical ζ_{n}-Stirling permutations. For a permutation π_{n} of $\{1,2, \ldots, n\}$, let $\mathcal{I}\left(\pi_{n}\right)$ be the set of inversions of π_{n} where an inversion is a pair $(\pi(i), \pi(j))$ where $i<j$ and $\pi(i)>\pi(j)$. Thus a π_{n}-Stirling permutation is a permutation of X_{n}^{2} such that the integers j between two occurrences of an integer k satisfy that (j, k) is an inversion of π_{n}; in particular, we have $j>k$, but that in itself does not suffice, since j must precede k in π_{n}. Any π_{n}-Stirling permutation is a ζ_{n}-Stirling permutation, but the converse does not hold. For example, with the multiset $X_{3}^{2}=\{1,1,2,2,3,3\}$ and $\pi_{3}=231,123321$ is not a π_{3}-Stirling permutation since 3,2 is not an inversion of π_{3}. In fact, the only nontrivial π_{3}-Stirling permutations are 122331 and 133221.

The weak Bruhat order \preceq_{b} on the set \mathcal{S}_{n} of permutations of $\{1,2, \ldots, n\}$ is defined by: $\sigma_{n} \preceq_{b} \pi_{n}$ provided that $\mathcal{I}\left(\sigma_{n}\right) \subseteq \mathcal{I}\left(\pi_{n}\right)$. This is equivalent
to the property that σ_{n} can be obtained from π_{n} by a sequence of adjacent transpositions. On the other hand, the Bruhat order \preceq_{B} is defined by $\sigma_{n} \preceq_{B} \pi_{n}$ provided that σ_{n} can be obtained from π_{n} by a sequence of transpositions each of which reduces the number of inversions by 1 ; thus $\mathcal{I}\left(\sigma_{n}\right)$ need not be a subset of $\mathcal{I}\left(\pi_{n}\right)$. It follows that if $\sigma_{n} \preceq_{B} \pi_{n}$, the set of σ_{n}-Stirling permutations need not be a subset of the set of π_{n}-Stirling permutations.

From the definitions we conclude that: If $\sigma_{n} \preceq_{b} \pi_{n}$, then a σ_{n}-Stirling permutation is also a π_{n}-Stirling permutation. In particular, as already remarked, any σ_{n}-Stirling permutation is also a ζ_{n}-Stirling permutation. Denote by $\mathcal{S}\left(\pi_{n}\right)$ the set of π_{n}-Stirling permutations. We thus have that
$\mathcal{S}\left(\pi_{n}\right) \subseteq \mathcal{S}\left(\sigma_{n}\right)$ if and only if $\pi_{n} \preceq_{b} \sigma_{n}$ where equality holds if and only if $\pi_{n}=\sigma_{n}$.

Example 1.1. Let $n=3$ and let π_{3} be the permutation 312. In this case, we have $\mathcal{I}\left(\pi_{3}\right)=\{(3,1) ;(3,2)\}$. Thus in a π_{3}-Stirling permutation between the two occurrences of 1 , we cannot have a 2 , since $(2,1)$ is not an inversion of π_{3}. An example of a π_{3}-Stirling permutation is 112332 , but 122331 is not.

The set $\mathcal{I}\left(\pi_{n}\right)$ of the inversions of a permutation π_{n} determines a partially ordered set on $\{1,2, \ldots, n\}$ whereby $i \preceq j$ if either $i=j$ or (j, i) is an inversion of π_{n} so that, in particular, $j>i$. In the classical case in which π_{n} is the permutation $\zeta_{n}=n(n-1) \cdots 21$, this reduces to $j>i$. This suggests a possible further generalization of Stirling permutations obtained by replacing a permutation π_{n}, its associated partially ordered set (poset), with an arbitrary finite poset $\mathcal{P}=(P, \preceq)$. This concept of a \mathcal{P}-Stirling permutation, is introduced and explored in Section 2. A characterization of \mathcal{P}-Stirling permutations is given in Section 3, and it gives an algorithm for constructing all such objects. Finally, in Section 4 we discuss Stirling permutations for directed graphs.

2 Stirling permutations for a poset

Let $\mathcal{P}=(P, \preceq)$ be a (finite) poset where $P=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$. A \mathcal{P}-Stirling permutation σ is a permutation of the 2 -multiset $\left\{p_{1}, p_{1}, p_{2}, p_{2}, \ldots, p_{n}, p_{n}\right\}$ such that, for $i=1,2, \ldots, n$, the following condition holds:
(I) For $i=1,2, \ldots, n$, each element $x \neq p_{i}$ that occurs between a pair of p_{i} 's in σ satisfies $p_{i} \prec x$.

In this definition (I), x cannot be incomparable to p_{i}. This suggests a modification of the definition of a Stirling permutation on a poset using the condition:
(II) For $i=1,2, \ldots, n$, each element $x \neq p_{i}$ that occurs between a pair of p_{i} 's in σ_{n} satisfies $x \nprec p_{i}$. So either $p_{i} \prec x$ or x is incomparable to p_{i}.
We use \mathcal{P}-Stirling permutation to mean that (I) is satisfied and use weak Stirling permutation to mean that (II) is satisfied. Both instances of each maximal element of $\mathcal{P}=(P, \preceq)$ must be consecutive in \mathcal{P}-Stirling permutations. In weak \mathcal{P}-Stirling permutations between two maximal elements p_{i} there can only be incomparable elements to p_{i}. In Example 1.1, with the multiset $X_{3}^{2}=\{1,1,2,2,3,3\}$ and $\pi_{3}=312,112332$ is a π_{3}-Stirling permutation but 132231 is not, but it is a weak π_{3}-Stirling permutation, since $(2,1)$ is not an inversion of π_{3} and thus 1 and 2 are incomparable in this \mathcal{P}.

Example 2.1. Consider $\mathcal{P}=(P, \preceq)$, a totally unordered poset where

$$
P=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}
$$

has cardinality n (so no two elements are comparable). Then:

1. the number of \mathcal{P}-Stirling permutations is n !, since each collection of p_{i} 's has to be consecutive, and
2. the number of weak \mathcal{P}-Stirling permutations is $\frac{(2 n)!}{2^{n}}$ since now there are no restrictions. (These are just the permutations of $\{1,1,2,2, \ldots$, $n, n\}$.)

Example 2.2. Consider the poset \mathcal{P} with elements $\left\{p_{1}, p_{2}, p_{3}\right\}$ where only $p_{1} \prec p_{3}$ and $p_{2} \prec p_{3}$. Examples of \mathcal{P}-Stirling permutations are $p_{1} p_{1} p_{3} p_{3} p_{2} p_{2}$ and $p_{1} p_{3} p_{3} p_{1} p_{2} p_{2}$. We have that $p_{1} p_{2} p_{1} p_{2} p_{3} p_{3}$ is a weak- \mathcal{P}-Stirling permutation but not a \mathcal{P}-Stirling permutation, since there is a p_{2} between the two p_{1} 's for which $p_{1} \nprec p_{2}$.

Let $\mathcal{Q}_{n}=\left(X_{n}, \subseteq\right)$ denote the Boolean lattice of all subsets of $X_{n}=$ $\{1,2, \ldots, n\}$ partially ordered by inclusion. A \mathcal{Q}_{n}-Stirling permutation is a sequence of all the subsets of X_{n}, each appearing twice, so that between each pair of subsets A of X_{n} only supersets of A occur. We refer to such \mathcal{Q}_{n}-Stirling permutations as Boolean-Stirling permutations in general.

The \mathcal{Q}_{n}-Stirling permutations can also be expressed in terms of n-tuples of 0 's and 1's. Take the set of $2^{n} n$-tuples of 0's and 1's (binary representations $a_{1} a_{2} \cdots a_{n}$ of the integers from 0 to $2^{n}-1$) with partial order defined by

$$
a_{1} a_{2} \cdots a_{n} \preceq b_{1} b_{2} \cdots b_{n} \text { if and only if } a_{i}=1 \text { implies } b_{i}=1
$$

Between two equal integers in this sequence only larger integers can occur, but not all larger integers are possible. Geometrically, we have the vertices of an n-cube \mathbf{Q}_{n}. A $(0,1) n$-tuple x having k 's determines a face \mathcal{F}_{x} of \mathbf{Q}_{n} of dimension $n-k$ whose vertices are all n-tuples of 0's and 1's with 1's in those k places that x has 1's and possibly elsewhere. The Stirling property requires that between the two copies of the n-tuple x with these k 1's only vertices on this $(n-k)$-dimensional face \mathcal{F}_{x} can occur (so they have 1's in those k places and possibly elsewhere). If $k=0$, then there are no restrictions (the empty set is a subset of all sets).
Example 2.3. Take $n=2$ so that we have the 2 -tuples $00,10,01,11$. Then the following is a \mathcal{Q}_{2}-Stirling permutation:

$$
00,10,11,11,10,01,01,00
$$

or in terms of the corresponding integers 02332110 . If $n=3$, we have the example of a \mathcal{Q}_{3}-Stirling permutation of $\{0,1,2,3,4,5,6,7\}$ in terms of its binary representation:

$$
\begin{equation*}
000,001,010,010,001,000,101,110,111,111,110,101,011,100,100,011 \tag{1}
\end{equation*}
$$

or, in terms of the corresponding integers, 0122105677653443 . But this is not an ordinary Stirling permutation of $\{0,1,2,3,4,5,6,7\}$: between 101 and 101 (representing integers 5), we cannot have 110 (representing 6), even though 6 is larger that 5 .

This example can be generalized to any integer $n \geq 2$. For example if $n=4$, $01233210,456665,89(10)(11)(11)(10) 98,(12)(13)(14)(15)(15)(14)(13)(12)$.
Moreover, the parts separated by commas can be arbitrarily permuted.

For this Boolean lattice \mathcal{Q}_{n}, a weak \mathcal{Q}_{n}-Stirling permutation is a listing of the subsets of X_{n}, each appearing twice, so that between two equal subsets A there are only supersets or subsets incomparable to A.

Another partially ordered set that may be of interest is the partially ordered set on $X_{n}=\{1,2, \ldots, n\}$ where the partial order is that of divisibility.
Example 2.4. Consider the partially ordered set $\mathcal{P}_{n}=\left(X_{n}, \preceq\right)$ on the set $X_{n}=\{1,2, \ldots, n\}$ where the partial order is that of divisibility. If $n=6$, then a \mathcal{P}_{6}-Stirling permutation is 144122366355 .

3 Characterization of \mathcal{P}-Stirling permutations

Let $\mathcal{P}=(P, \preceq)$ be an arbitrary finite poset where $P=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$. A \mathcal{P}-Stirling permutation σ is a 2 -permutation of P with the property that, for $i=1,2, \ldots, n$, each element $x \neq p_{i}$ that occurs between the two p_{i} 's in σ satisfies $p_{i} \prec x$. Associated with \mathcal{P} we define the directed graph $G(\mathcal{P})$ with vertex set $P=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$ and edges $p_{i} \rightarrow p_{j}$ provided $p_{i} \prec p_{j}$. By the transitive law for posets, the directed $\operatorname{graph} G(\mathcal{P})$ is transitive, that is, $p_{i} \rightarrow p_{j}, p_{j} \rightarrow p_{k}$ imply $p_{i} \rightarrow p_{k}$. So, in the usual Hasse diagram where an element p_{i} is below another element p_{j} in the diagram if $p_{i} \prec p_{j}$, we have a directed edge $p_{i} \rightarrow p_{j}$ from p_{i} to p_{j} in $G(\mathcal{P})$. Given a finite poset \mathcal{P}, we want to characterize the \mathcal{P}-Stirling permutations and possibly find their number. In what follows, we will give a complete characterization of these permutations.

We now introduce a specific procedure for determining a walk W in $G(\mathcal{P})$ where its vertices, using some specified rules, give a 2-permutation σ of \mathcal{P}. The walk is considered in the associated (undirected) graph of $G(\mathcal{P})$, so we can move forward or backward along edges of $G(\mathcal{P})$. We call this procedure a \mathcal{P}-depth-search, or \mathcal{P}-DS, for short (see $[1,4]$ for more on depth-firstsearch). The map $\ell: P \rightarrow\{0,1,2\}$ gives a label to each element in P which counts the number of occurrences of each vertex in the walk as it progresses. Initially, $\ell\left(p_{i}\right)=0(i=1,2, \ldots, n)$ and, when we terminate, $\ell\left(p_{i}\right)=2$ for each vertex in the walk. We also define a predecessor function 'prev' for the vertices as they are visited in the walk.
\mathcal{P}-depth-search: Choose some initial vertex $p_{i_{1}}$ for the walk W as well as for σ, and set $\ell\left(p_{i_{1}}\right)=1$ and $\operatorname{prev}\left(p_{i_{1}}\right)=p_{i_{1}}$. For the general step, if u is the last vertex of W determined so far, where $\ell(u)=1$, then the next vertex v of W is obtained by either a forward-step or a backward-step as follows:
(i) Forward-step: Choose a vertex v with $\ell(v)=0$ such that $u \rightarrow v$. Define $\operatorname{prev}(v)=u$ (the predecessor), relabel $\ell(v)=1$, and add v onto both W and σ;
(ii) Backward-step: Let $v=\operatorname{prev}(u)$ and relabel $\ell(u)=2$. Add v onto W and add u (but not v) onto σ.

Thus, in both types of steps we add to σ the head (terminal end vertex) of the directed edge. We terminate when the (initial) vertex $p_{i_{1}}$ is met for
the second time in W, and we then add $p_{i_{1}}$ to σ. Associated with such a walk W there is a tree T_{W} consisting of the vertices and forward-step edges used in W. Note that some of the vertices of $G(\mathcal{P})$ may not be included in T and σ, and that W and σ may have different lengths.

Example 3.1. Let $n=9$ and consider the poset \mathcal{P} whose Hasse diagram is shown in Fig.1. A \mathcal{P}-DS-search may give the following walk W and corresponding 2-permutation σ

$$
\begin{aligned}
W: & p_{1}, p_{3}, p_{6}, p_{9}, \mathbf{p}_{\mathbf{6}}, \mathbf{p}_{\mathbf{3}}, p_{5}, p_{8}, \mathbf{p}_{\mathbf{5}}, \mathbf{p}_{\mathbf{3}}, \mathbf{p}_{\mathbf{1}} \\
\sigma: & p_{1}, p_{3}, p_{6}, p_{9}, p_{9}, p_{6}, p_{5}, p_{8}, p_{8}, p_{5}, p_{3}, p_{1}
\end{aligned}
$$

The vertices obtained in a backward step are indicated in boldface in W. The associated tree T_{W} is indicated by thick lines in the figure. Note that vertices p_{2}, p_{4}, p_{7} are not included in W and σ.

Figure 1: Poset \mathcal{P} and a \mathcal{P}-DS-search.
Lemma 3.2. \mathcal{P}-DS terminates and the constructed σ is a 2-permutation of its vertex set, i.e., each vertex v in σ occurs twice. Moreover, each vertex x that occurs between these two v 's satisfies $v \rightarrow x$, i.e., $v \prec x$, so σ is a Stirling permutation of the corresponding 2-multiset.
Proof. Consider the general step in the construction of W and σ (as above) and let u be the last vertex so far (in W). Let P_{W} be the set of vertices in the current W (so no repetition).

Claim. P_{W} is the vertex set of a subtree T_{W} in $G(\mathcal{P})$ with (directed) edges (u, v) associated with each forward-step from u to v. Moreover $\ell(v) \in\{1,2\}$ for each $v \in P_{W}$, and the vertices in T_{W} with $\ell(v)=1$ is a directed subtree with root $p_{i_{1}}$.
Proof of Claim. The first statement follows directly from the fact that we start with a single vertex $p_{i_{1}}$ and in each forward step a new
vertex v is added to P_{W} and a new directed edge from an existing vertex u to v. The new vertex is given the label 1. (This is a standard way to construct trees.) In a backward-step from u to its predecessor $v=\operatorname{prev}(u)$, no new vertex is added, so P_{W} is unchanged, and u is given label 2. The first time we do a backward step we leave a pendant vertex u of the subtree T_{W}; let T_{W}^{\prime} be the subtree obtained by deleting u (and the incident edge). Then T_{W}^{\prime} is a directed subtree with root $p_{i_{1}}$ where each of its vertices has label 1. The next backward-step has the same property: a pendant vertex u^{\prime} gets the label 2 and the updated subtree T_{W}^{\prime} obtained by deleting u^{\prime} is a directed subtree with root $p_{i_{1}}$ where each of its vertices has label 1 . The second statement of the claim now follows by induction.

The process \mathcal{P}-DS has at most $n-1$ forward-steps (as each such step leads to a new vertex not visited before). Thus, when the forward-steps are all done, the remaining steps are backward-steps and gradually the tree T_{W}^{\prime} shrinks to the single vertex $p_{i_{1}}$. Each vertex in P_{W} is visited exactly twice (when its ℓ-label is changed from 0 to 1 , and later from 1 to 2). This proves the lemma because between the two occurrences of a vertex v in the generated sequence there are only vertices that are reachable from v by a directed path in the tree T_{W}.

The Stirling 2-permutation σ as constructed in Lemma 3.2 will be called a $\mathcal{P}-D S$ block, and we let P_{σ} denote its vertex set (which equals P_{W} for the corresponding walk W). We may now repeat this construction, and find a $\mathcal{P}^{\prime}-D S$ block in the subposet \mathcal{P}^{\prime} induced by $P \backslash P_{\sigma}$. This process may be repeated, for the remaining elements in P, until we have found \mathcal{P}-DS blocks such that their vertex sets define an ordered partition of P. The concatenation of these \mathcal{P}-DS blocks will be called a \mathcal{P}-DS sequence. Associated with each of the \mathcal{P}-DS blocks is a rooted directed tree, as described above.

We now state and prove a main result in this paper, a characterization of \mathcal{P}-Stirling permutations in a general poset \mathcal{P}.
Theorem 3.3. Let $\mathcal{P}=(P, \preceq)$ be a poset, and let σ be a 2 -permutation of P. Then σ is a \mathcal{P}-Stirling permutation if and only if σ is a \mathcal{P}-DS sequence. Proof. Consider a \mathcal{P}-DS sequence σ. Then each of its \mathcal{P}-DS blocks is a 2-permutation of its vertex set, by Lemma 3.2, and it follows that σ is a \mathcal{P}-Stirling permutation.

Conversely, let σ be a \mathcal{P}-Stirling permutation

$$
\sigma: v_{1}, v_{2}, v_{3}, \ldots, v_{s}
$$

(Thus, these elements are not distinct.)

Claim (Nestedness property). For each $i, j \leq s, i \neq j$, between the two occurrences of v_{i} in σ the vertex v_{j} occurs either 0 or 2 times.
Proof of Claim. Assume v_{j} only occurs once between the two occurrences of v_{i} in σ. Then the other v_{j} must be before the first v_{i} or after the second v_{i}, so their internal order is e.g.

$$
v_{i} \cdots v_{j} \cdots v_{i} \cdots v_{j}
$$

By the Stirling property this gives $v_{i} \prec v_{j}$ and also $v_{j} \prec v_{i}$ which contradicts the poset property (as $v_{i} \neq v_{j}$). The other case, when v_{j} before the first v_{i}, is similar. This proves the Claim.
Let k be maximal such that the first k vertices in σ are distinct. Thus

$$
v_{1} \prec v_{2} \prec \cdots \prec v_{k}
$$

and $v_{k+1}=v_{i}$ for some $i \leq k$. Then $i=k$, i.e., $v_{k+1}=v_{k}$. This follows from the Nestedness property because if $i<k$, then v_{k} would occur once between the two occurrences of v_{i}. Moreover, the internal order in σ of the occurrences of $v_{1}, v_{2}, \ldots, v_{k}$ is as follows:

$$
\begin{equation*}
\sigma: v_{1}, v_{2}, v_{3}, \ldots, v_{k-1}, v_{k}, v_{k}, \ldots, v_{k-1}, \ldots, v_{2}, \ldots, v_{1}, \ldots \tag{2}
\end{equation*}
$$

Thus, the second occurrences of these v_{i} 's are in the opposite order. This is again due to the Nestedness property. Now we connect the structure of σ in (2) to a \mathcal{P}-DS sequence. Consider a walk W with vertices

$$
v_{1}, v_{2}, v_{3}, \ldots, v_{k-1}, v_{k}
$$

these are $k-1$ forward-steps. Next, do a backward-step from v_{k} to v_{k-1}. This gives the following initial part of a \mathcal{P}-DS block σ^{*}

$$
\sigma^{*}: v_{1}, v_{2}, v_{3}, \ldots, v_{k-1}, v_{k}, v_{k}
$$

which coincides with the initial part of σ. Next, consider the part σ^{\prime} of σ that is between (the second) v_{k} and v_{k-1}. There are two possibilities:

Case 1: $\boldsymbol{\sigma}^{\prime}$ is empty. Then we perform a backward-step from v_{k-1} to v_{k-2}, so v_{k-2} is added to W and v_{k-1} is added to σ^{*}. Thus σ and σ^{*} coincide in the next position as well.

Case 2: σ^{\prime} is nonempty. Since σ^{\prime} is between the two occurrences of v_{k-1}, see (2), the Stirling property means that every vertex v in σ^{\prime} satisfies $v_{k-1} \prec v$. Moreover, due to the Nestedness property, each such v occurs two times in σ^{\prime}. Let v^{\prime} be the first vertex in σ^{\prime}. Then we perform a forward-step from v_{k-1} to v^{\prime}, so v^{\prime} is added both to W and σ^{*}. Thus σ and σ^{*} coincide in the next position as well.

In both cases we can repeat the argument to a smaller sequence of vertices. In Case 2 we will then construct a subtree with root v_{k-1}. It is clear that by induction the final constructed σ^{*} equals σ, as desired. Thus, every \mathcal{P} Stirling permutation is also a \mathcal{P}-DS sequence, and the proof is complete.

Example 3.4. Consider again the poset \mathcal{P} whose Hasse diagram is shown in Fig.1. We have already discussed the \mathcal{P}-DS-block

$$
p_{1}, p_{3}, p_{6}, p_{9}, p_{9}, p_{6}, p_{5}, p_{8}, p_{8}, p_{5}, p_{3}, p_{1}
$$

Another \mathcal{P}-DS-block is

$$
p_{2}, p_{4}, p_{7}, p_{7}, p_{4}, p_{2}
$$

Concatenating these we get the \mathcal{P}-DS sequence and therefore \mathcal{P}-Stirling permutation

$$
p_{1}, p_{3}, p_{6}, p_{9}, p_{9}, p_{6}, p_{5}, p_{8}, p_{8}, p_{5}, p_{3}, p_{1}, p_{2}, p_{4}, p_{7}, p_{7}, p_{4}, p_{2}
$$

We remark that our characterization Theorem 3.3 of \mathcal{P}-Stirling permutations is of a similar nature as the characterization of Stirling permutations via plane trees [7].

4 Stirling permutations for directed graphs

As discussed in Section 3, a poset $\mathcal{P}=(P, \preceq)$ defines a directed graph $G(\mathcal{P})$ with vertex set $P=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$ and edges $p_{i} \rightarrow p_{j}$ provided $p_{i} \prec p_{j}$. By the transitive law for posets, the directed graph $G(\mathcal{P})$ is transitive: $p_{i} \rightarrow p_{j}, p_{j} \rightarrow p_{k}$ imply $p_{i} \rightarrow p_{k}$. Stirling permutations can be defined for any directed graph. The original definition of a Stirling permutation corresponds to the (linearly ordered) directed graph $1 \rightarrow 2 \rightarrow \cdots \rightarrow n$, extended with edges due to transitivity.

Consider an arbitrary directed graph $G=(V, E)$. We can extend our definitions of \mathcal{P}-Stirling permutation and weak Stirling permutation as a 2-permutation σ of V in the obvious way:
(I) G-Stirling permutation: For $v \in V$, each element $x \neq v$ that occurs between a pair of v 's in σ satisfies $v \rightarrow x$.
(II) weak G-Stirling permutation: For $v \in V$, each element $x \neq v$ that occurs between a pair of v 's in σ satisfies $v \rightarrow x$ or there is no edge between x and v in either direction.

Example 4.1.

- Consider the directed graph G of order 3 consisting of the 3 -cycle $a \rightarrow b, b \rightarrow c, c \rightarrow a$ (so this does not result from a poset). Then the following are G-Stirling permutations:

$$
a a b b c c \text { (6 of these); } c c a b b a \text { (} 6 \text { of these). }
$$

In this case, every weak G-Stirling permutation is a G-Stirling permutation.

- Consider the directed graph G with $V=\{x, a, b, c\}$, where only $a \rightarrow x, b \rightarrow x, c \rightarrow x$. Then e.g. $a x x a b b c c$ is a G-Stirling permutation and caxxbabc is a weak G-Stirling permutation.

Let σ be a 2-permutation of V. For $v \in V$ let $\sigma^{(v-v)}$ denote the set of vertices occurring (at least once) between the two occurrences of v in σ. Also, let $\Gamma_{G}^{+}(v)$ be the set of vertices w with $v \rightarrow w$ in G. Then σ is G-Stirling permutation if and only if

$$
\begin{equation*}
\sigma^{(v-v)} \subseteq \Gamma_{G}^{+}(v) \quad(v \in V) \tag{3}
\end{equation*}
$$

We call a 2-permutation of V a trivial 2-permutation provided that the two occurrences of v are consecutive for each $v \in V$, i.e., $\sigma^{(v-v)}=\emptyset$. There are n ! trivial 2-permutations (when $n=|V|$), and each of these is clearly a G-Stirling permutation. The following proposition contains some basic properties of G-Stirling permutations.

Proposition 4.2.

(i) The set of G-Stirling permutations is the set of all trivial 2-permutations of V if and only if G has no edges.
(ii) If $G=(V, E)$ and $G^{\prime}=\left(V, E^{\prime}\right)$ with $E \subseteq E^{\prime}$, then every G-Stirling permutation is also a G^{\prime}-Stirling permutation.
(iii) Let $G=(V, E)$ be the complete directed graph on n vertices, i.e., $E=\{(i, j): i, j \in V, i \neq j\}$. Then the G-Stirling permutations consists of all 2-permutations of V.
(iv) Let $G=(V, E)$ be a complete bipartite directed graph, i.e., V consists of color classes I and J and all edges (i, j) where $i \in I$ and $j \in J$. Then the G-Stirling permutations consists of all 2-permutations σ of V satisfying $\sigma^{(j-j)}=\emptyset(j \in J)$ and $\sigma^{(i-i)} \subseteq J(i \in I)$.

Proof.
(i) If G has no edge, then, for a G-Stirling permutation $\sigma, \sigma^{(v-v)}=\emptyset$ for each $v \in V$, so σ is a trivial 2-permutation. If G has an edge, say $v_{1} \rightarrow v_{2}$, then $\sigma=v_{1} v_{2} v_{2} v_{1} v_{3} v_{3} \cdots v_{n} v_{n}$ is a G-Stirling permutation which is not a trivial-permutation.
(ii) This is immediate from (3).
(iii) When G is complete, $\Gamma_{G}^{+}(v)=V \backslash\{v\}$ so then (3) holds for any 2-permutations of V.
(iv) This also follows from (3).

Example 4.3. Let T_{n} be the star with $V=\{1,2, \ldots, n\}$ and edges $n \rightarrow$ $1, n \rightarrow 2, \ldots, n \rightarrow(n-1)$. This is a special complete bipartite graph; see case (iv) in Proposition 4.2. Consider this star with $n=4$. So we have only $4 \rightarrow i$ for $i=1,2,3$. Let σ be a T_{n}-Stirling permutation. Thus the two occurrences of j have to be together $(j \leq 3)$, and some examples of such T_{n}-Stirling permutations are 41122334, 22411334 and 33411422.

Corollary 4.4. The number of T_{n}-Stirling permutations when T_{n} is the star with n vertices in Example 4.3 is $n!(n-1) / 2$.
Proof. Let N be the number to be computed. Let σ be a T_{n}-Stirling permutation. Then for each $j \leq n-1$ the two occurrences of j in σ must be consecutive. So, N equals $(n-1)$! times the number of T_{n}-Stirling permutations with $1,2, \ldots, n-1$ occuring as $1,1,2,2, \ldots, n-1, n-1$. We can place the two n 's in σ in any of the n positions labeled x in $x, 1,1, x, 2,2, \ldots, x, n-1, n-1, x$. Thus

$$
N=(n-1)!\binom{n}{2}=n!(n-1) / 2 .
$$

as desired.
For weak T_{n}-Stirling permutations there are additional possibilities since, for each $j \leq n-1$, the two occurrences of j need not be consecutive.
Proposition 4.5. The number of weak Stirling permutations for the star T_{n} equals

$$
(n-1)!\sum_{\substack{a \geq 0, b \geq 0, c \geq 0, a+b+c=n-1}} \frac{(2 a)!(2 b)!(2 c)!}{a!b!c!}
$$

Proof. Now, for each $j \leq n-1$ the two j 's must be either before the first n, or between the two n 's, or after the second n. Choosing a, b, and c
of them before, between, and after the n 's and then taking an arbitrary permutation of both of the integers chosen, we get by direct computation

$$
\sum_{\substack{a \geq 0, b \geq 0, c \geq 0, a+b+c=n-1}} \frac{(n-1)!}{a!b!c!}(2 a)!(2 b)!(2 c)!
$$

as desired.
Now let T_{n}^{*} denote the digraph obtained from T_{n} be reversing the direction for each edge, so the edges are now $i \rightarrow n(i \leq n-1)$. This is also a complete bipartite graph, so we can again apply Proposition 4.2.

Proposition 4.6. The number of T_{n}^{*}-Stirling permutations is

$$
(2 n-1) \cdot(n-1)!.
$$

Proof. First we note that $1,2, \ldots,(n-1)$ can be arbitrarily permuted in such a Stirling permutation and we cannot have $i, j, i(1 \leq i, j \leq n-$ $1, i \neq j$) occurring as a subsequence; so the number is $(n-1)$! times the number of those in which $1,2, \ldots,(n-1)$ are in their natural order. The n 's have to be together and can be in any of the $(2 n-1)$ places in-between $1,1,2,2, \ldots,(n-1),(n-1)$.

Proposition 4.7. The number of weak Stirling permutations for the star T_{n}^{*} equals

$$
\frac{(2 n-1)!}{2^{n-1}}
$$

Proof. Take an arbitrary permutation of $\{1,1,2,2, \ldots, n-1, n-1\}$ and then insert the two n 's together in any of the resulting $2 n-1$ places.

Acknowledgments

The authors are grateful to the referee for several useful comments.

References

[1] J.A. Bondy and U.S.R. Murty, Graph theory, Graduate Texts in Mathematics, vol. 244 Springer, New York, 2008. https://doi.or g/10.1007/978-1-84628-970-5.
[2] R.A. Brualdi, Stirling pairs of permutations, Graphs Combin. 36(4) (2020), 1145-1162.
[3] R.A. Brualdi and G. Dahl, Multipermutations and Stirling multipermutations, Graphs Combin. , 40 (2022), Art. 22, 22 pp. https://doi.org/10.1007/s00373-024-02751-2
[4] R. Diestel, Graph theory, Graduate Texts in Mathematics, vol. 173 fourth edn., Springer, Heidelberg, 2010. https://doi.org/10.100 7/978-3-642-14279-6.
[5] I. Gessel and R.P. Stanley, Stirling polynomials, J. Combinatorial Theory Ser. A 24(1) (1978), 24-33.
[6] R. L. Graham, D. E. Knuth, O. Patashnik, Concrete Mathematics, Addison-Wesley, Reading, Mass., 1994.
[7] S. Janson, Plane recursive trees, stirling permutations and an urn model, in Fifth Colloquium on Mathematics and Computer Science, Kiel, Germany, (2008), hal-01194667, 1126-1142. https://inria.ha l.science/hal-01194667/document.

Richard A. Brualdi
Department of Mathematics, University of Wisconsin, Madison, WI 53706, USA.
brualdi@math.wisc.edu

Geir Dahl
Department of Mathematics, University of Oslo, Norway.
geird@math.uio.no

[^0]: * Corresponding author: brualdi@math.wisc.edu

 Key words and phrases: permutation, multipermutation, Stirling permutation, partially ordered set, weak Bruhat order.
 AMS (MOS) Subject Classifications: 05A05, 05C20, 06A07

