
BULLETIN of the 
INSTITUTE of 

Volume 79
January 2017 

COMBINATORICS and its 
APPLICATIONS 
Editors-in-Chief: Marco Buratti, Donald Kreher, Tran van Trung 

Boca Raton, FL, U.S.A. ISSN 1183 - 1278 



Classroom Note: An Application of Edge

Clustering Centrality to Brain Connectivity

Joy Lind

Department of Mathematics
University of Sioux Falls

Frank Garcea

Brain and Cognitive Sciences, University of Rochester
Rochester Center for Brain Imaging, University of Rochester

Bradford Mahon

Brain and Cognitive Sciences, U. of Rochester
Rochester Center for Brain Imaging, U. of Rochester

Department of Neurosurgery, U. of Rochester Medical Center

Roger Vargas

Department of Systems Biology, Harvard University

Darren A. Narayan

School of Mathematical Sciences, R.I.T
Rochester Center for Brain Imaging, U. of Rochester

Abstract

Edge clustering centrality measures the frequency an edge ap-
pears across the closed neighborhoods over all vertices. This problem
is analogous to the structural graph theory problem of finding the
maximum sized book graph (K2 ∨ mK1, m ≥ 1) in a given graph.
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We apply this property to data from the Rochester Center for Brain
Imaging and obtain results involving functional connectivity of the
human brain. We give a series of exercises where students in an
undergraduate discrete mathematics or graph theory course can ex-
perience an interdisciplinary real world application of mathematics.

1 Introduction

Graph theory can be used to model biological and social networks. In a
social network, each person in the network is represented by a vertex, and
for a pair of individuals who are connected in the network (e.g. who know
each other), there is a corresponding edge in the graph. Certain individuals
(and their relationships) will be more central to the network than others,
and various metrics have been developed to quantify how well-connected
each member of the network is (Borgatti [1] Pavlopoulos [2]) by measuring
the centrality of vertices. In this paper, we instead consider the centrality of
edges, with an interest in identifying connections that are more important
to the network as a whole. The measure we use is called edge clustering
centrality, with the edge clustering centrality of an edge e in a graph G
defined as follows: Ccent(e) =

∑
i fi(e) where fi(e) = 1 if e ∈ E(Gi) and

fi(e) = 0 if e 6∈ E(Gi) and where Gi is the subgraph of G induced by
vertex i and all of its neighbors. We note this problem is analogous to the
structural graph theory problem of finding the maximum sized book graph
(K2 ∨mK1, m ≥ 1) in a given graph.

As a simple example, consider the below graph G with 6 vertices and 8
edges, and its corresponding subgraphs Gi.

Here, Ccent(BC) = 4, Ccent(AB) = Ccent(AC) = Ccent(BD)

= Ccent(CD) = 3, and Ccent(BE) = Ccent(CF ) = Ccent(EF ) = 2. Since
BC has the highest clustering centrality, it can be considered to be the edge
most important to the network’s connectivity.

2 Edge clustering centrality in book graphs

The graph G in the above example has as a subgraph a book graph. A book
graph, denoted Bm, is a graph that consists either of m triangles sharing a
common edge or of m quadrilaterals sharing a common edge. The former
is called a triangular book graph and the latter a quadrilateral book graph.
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Figure 1: Closed neighborhoods of the vertices in G

These are shown in Figures 2 and 3 respectively. The common edge is called
the spine of the book graph. Below are some of the smaller book graphs in
each of the two categories.

Figure. 2. Triangular book graphs (each with spine s)

Figure 3. Quadrilateral book graphs (each with spine s)

For book graphs, and graphs that contain book graphs as subgraphs, there
is an efficient way of identifying the edge(s) with greatest edge clustering
centrality. In particular, the spine of a book graph will have the highest
edge clustering centrality of any edge in the graph. Moreover, the spine of
the largest book subgraph in a graph will have the highest edge clustering
centrality of any edge in that graph. (The student exercises at the end
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explore these ideas further.) Note that the graph G in Figure 1 has the
triangular book graph B2 as its (only) book subgraph; its spine (edge BC)
was found to have the highest edge clustering centrality.

3 An application from neuroscience

Functional magnetic resonance imaging (fMRI) is a technique that measures
brain activity and is used in many studies to understand how a healthy
brain functions and/or how its normal function is disrupted due to disease
[4]. We consider a graph model of the brain, where vertices correspond
to physical regions of the brain (Regions of Interest, or ROIs), and edges
correspond to correlations in the functional activation profiles associated
with the two vertices [3]. In particular, an edge is present between two
regions of the brain if there is a strong correlation between the time series of
Blood Oxygenated Level Dependent (BOLD) signals between the respective
regions. Figure 4 (which appeared in [3]) depicts a model of the brain with
12 regions selected across the temporal, parietal, and frontal lobes.
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1. Left Ventral Premotor Cortex 7. Left Dorsal Occipital Cortex

2. Left Dorsal Premotor Cortex 8. Right Medial Fusiform Gyrus

3. Right Hand Motor Representation 9. Right Lateral Occipital Complex

4. Left Anterior Intraparietal Sulcus 10. Left Lateral Occipital Complex

5. Right Foot Motor Representation 11. Left Medial Fusiform Gyrus

6. Left Hand Motor Representation 12. Left Post. Middle Temporal Gyrus

Figure 4. A model with 12 regions of the brain

The fMRI data used in the model was collected at the Rochester Center
for Brain Imaging at the University of Rochester, from 12 healthy right-
handed individuals performing two different tasks, where they were shown
images of various tools: hammer, scissors, screwdriver, knife, pliers, and
corkscrew. [3]. In one task, participants were asked to pantomime the
use of an object with their right hand during the fMRI, and during the
second task, participants were asked to identify the images. Figure 5 (which
appeared in [3]) shows the edges where regions had higher correlations for
pantomiming than for identification.

Figure 5. Edge clustering centrality: pantomiming greater than viewing

Note the triangular book graph B3, with edges highlighted in red, or-
ange, and yellow. The connections among these regions comprising the
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book graph are expected, since they are involved in accessing manipulation
knowledge from the visual structure of objects and actually manipulating
the tools [3]. The spine of this book graph is the connection between the
Left Dorsal Premotor Cortex and Right Hand Motor Representation. In
fact, this edge has the highest edge clustering centrality of any edge in
the graph, indicating that it is the most prominent connection in the net-
work. Figure 6 shows the edges where regions had higher correlations for
identification than for pantomiming.

Figure 6. Edge clustering centrality: viewing greater than pantomiming

In this graph (also appearing in [3]), we observe that four regions form
the triangular book graph B2. These connections are expected, since the
four regions support the visual processing and representation of tools [3].
The spine of this book graph is the connection between the Left Posterior
Middle Temporal Gyrus and Left Lateral Occipital Complex. This edge has
the highest edge clustering centrality of any edge in the graph, indicating
that it is the most prominent connection in the network.
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4 Student Exercises

In this section, we include a collection of exercises based on the concepts
developed in this paper. These exercises would be appropriate for im-
plementation in an undergraduate discrete mathematics or graph theory
course.

Exercise 1. For the graph in Figure 5, calculate the edge clustering central-
ity for each edge e by applying the formula for Ccent(e) that was provided
in the introduction to this paper; confirm that the spine of the embedded
book graph in fact has the highest edge clustering centrality. Repeat this
exercise for the graph in Figure 9.

Exercise 2. Repeat the above exercise for the graph in Figure 6.

Exercise 3. Repeat the above exercise for the quadrilateral book graphs
in Figure 3.

Exercise 4. An alternative definition of the quadrilateral book graph Bm

is the graph Cartesian product Sm+1×P2, where Sm is a star graph and P2

is the path graph on two vertices [5]. Show that in fact this is equivalent to
forming Bm from a collection of m quadrilaterals sharing a common edge.
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