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Abstract

An edge coloring of a graph G is proper if every two adjacent
edges of G have different colors. A graph G is Hamiltonian-connected
if every two vertices of G are connected by a Hamiltonian path.
An edge coloring of a Hamiltonian-connected graph G is a proper
Hamiltonian-path coloring if every two vertices of G are connected
by a properly colored Hamiltonian path. The minimum number
of colors in a proper Hamiltonian-path coloring of G is the proper
Hamiltonian-connection number of G. Proper Hamiltonian-connection
numbers are determined for several classes of Hamiltonian-connected
graphs.

Key Words: Hamiltonian-connected graph, proper Hamiltonian-path col-
oring , proper Hamiltonian-connection number.
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1 Introduction

A Hamiltonian cycle in a graph G is a cycle containing every vertex of G and
a graph having a Hamiltonian cycle is a Hamiltonian graph. A Hamiltonian
path in a graph G is a path containing every vertex of G. A graph G is
Hamiltonian-connected if G contains a Hamiltonian u − v path for every
pair u, v of distinct vertices of G. For a graph G, let δ(G) and ∆(G) denote
the minimum and maximum degree of G, respectively, and for a nontrivial
graph G, let σ2(G) = min{deg u + deg v : uv /∈ E(G)} where degw is the
degree of a vertex w in G. Ore [14] proved the following results in 1963.
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Theorem 1.1. If G is a graph of order n ≥ 4 such that σ2(G) ≥ n + 1,
then G is Hamiltonian-connected.
Corollary 1.2. If G is a graph of order n ≥ 4 such that δ(G) ≥ (n+1)/2,
then G is Hamiltonian-connected.

During 1960-1980, there was a great deal of research activity involving
Hamiltonian properties of powers of graphs. For a connected graph G and
a positive integer k, the kth power Gk of G is that graph whose vertex set
is V (G) such that uv is an edge of Gk if 1 ≤ dG(u, v) ≤ k where dG(u, v) is
the distance between two vertices u and v in G (or the length of a shortest
u− v path in G). The graph G2 is called the square of G and G3 the cube
of G. In 1960, Sekanina [13] proved the following result.
Theorem 1.3. If G is a nontrivial connected graph, then the cube of G is
Hamiltonian-connected.

In the 1960s, it was conjectured independently by Nash-Williams [12] and
Plummer (see [6, p.139]) that the square of every 2-connected graph is
Hamiltonian. In 1974, Fleischner [7] verified this conjecture. Also, in 1974
and using Fleischner’s result, Chartrand, Hobbs, Jung, Kapoor and Nash-
Williams [4] proved the following.
Theorem 1.4. If G is a 2-connected graph, then the square of the graph G
is Hamiltonian-connected. In particular, the square of every Hamiltonian
graph is Hamiltonian-connected.

A proper edge coloring c of a nonempty graph G is a function c on E(G)
with the property that c(e) 6= c(f) for every two adjacent edges e and f
of G. If the colors are chosen from a set of k colors, then c is called a
k-edge coloring of G. The minimum positive integer k for which G has a
proper k-edge coloring is called the chromatic index of G and is denoted by
χ′(G). It is immediate for every nonempty graph G that χ′(G) ≥ ∆(G).
The most important theorem dealing with chromatic index is one obtained
by Vizing [15].
Theorem 1.5. (Vizing’s Theorem) For every nonempty graph G,

χ′(G) ≤ ∆(G) + 1.

As a result of Vizing’s theorem, the chromatic index of every nonempty
graph G is one of two numbers, namely ∆(G) or ∆(G) + 1.

A rainbow coloring of a connected graph G is an edge coloring c of G with
the property that for every two vertices u and v of G, there exists a u− v
rainbow path (no two edges of the path are colored the same). In this case,
G is rainbow-connected (with respect to c). The minimum number of colors
needed for a rainbow coloring of G is referred to as the rainbow connection
number of G. These concepts were introduced and studied by Chartrand,

49



Johns, McKeon and Zhang in 2006. The first paper [5] on this topic was
published in 2008. In recent years, this topic has been studied by many
and there is a book [10] on rainbow colorings, published in 2012. In 2016,
Hamiltonian-connected rainbow colorings were introduced by Chartrand
and studied by Bi, Byers and Zhang [1]. An edge coloring of a Hamiltonian-
connected graph G is a Hamiltonian-connected rainbow coloring if every two
vertices of G are connected by a rainbow Hamiltonian path. The minimum
number of colors required of a Hamiltonian-connected rainbow coloring
of G is the rainbow Hamiltonian-connection number of G. Here we study
the corresponding concept for proper edge colorings.

Let G be an edge-colored connected graph, where adjacent edges may be
colored the same. A path P in G is properly colored or, more simply, P is
a proper path in G if no two adjacent edges of P are colored the same. An
edge coloring c is a proper-path coloring of a connected graph G if every
pair u, v of distinct vertices of G are connected by a proper u−v path in G.
If k colors are used, then c is referred to as a proper-path k-coloring. The
minimum k for which G has a proper-path k-coloring is called the proper
connection number of G. Recently, this topic has been studied by many
(see [2, 3] for example). In fact, there is a dynamic survey of this topic due
to Li and Magnant [9].

2 Proper Hamiltonian-Path Colorings

If G is a Hamiltonian-connected graph with a proper edge coloring, then for
every two vertices u and v of G, there is a proper Hamiltonian u− v path
in G. However, if our primary interest concerns edge colorings of graphs G
with the property that for every two vertices u and v of G, there exists a
proper Hamiltonian u − v path in G, then this may very well be possible
using fewer than χ′(G) colors. Of course, graphs possessing such edge color-
ings are necessarily Hamiltonian-connected. For a Hamiltonian-connected
graph G, an edge coloring c : E(G) → [k] is a proper Hamiltonian-path
k-coloring if every two vertices of G are connected by a proper Hamiltonian
path in G. An edge coloring c is a proper Hamiltonian-path coloring if c
is a proper Hamiltonian-path k-coloring for some positive integer k. The
minimum number of colors in a proper Hamiltonian-path coloring of G is
the proper Hamiltonian-connection number of G, denoted by hpc(G). Since
every proper edge coloring of a Hamiltonian-connected graph G is a proper
Hamiltonian-path coloring of G and there is no proper Hamiltonian-path
1-coloring of G, it follows that

2 ≤ hpc(G) ≤ χ′(G). (1)
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To illustrate these concepts, consider the graph G = C2
6 . Since ∆(G) = 4

and the edge coloring of G in Figure 1(a) is a proper 4-edge coloring, it
follows that χ′(G) = ∆(G) = 4. Next, consider the 2-edge coloring c of G
shown in Figure 1(b).
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Figure 1: A proper 4-edge coloring and a
proper Hamiltonian-path 2-coloring of C2

6

We show that c is a proper Hamiltonian-path coloring of G; that is, every
two vertices u and v of G are connected by a proper Hamiltonian u − v
path P in G. If {u, v} = {v1, v2} or {u, v} = {v1, v6}, say the former,
let P = (v1, v6, v5, v4, v3, v2); if {u, v} = {v1, v3} or {u, v} = {v1, v5}, say
the former, let P = (v1, v2, v6, v5, v4, v3); while if {u, v} = {v1, v4}, let
P = (v1, v2, v6, v5, v3, v4). By the symmetry of this edge coloring, c is proper
a Hamiltonian-path 2-coloring and so hpc(G) = 2. Thus, hpc(G) < χ′(G).

Next, we give an example of a graph G with hpc(G) = χ′(G). Let G =
K3 � K2, where the two triangles K3 in G are (u, x, w, u) and (v, y, z, v)
and uv, xy, wz ∈ E(G). Since there is a proper 3-edge coloring of G shown
in Figure 2 and ∆(G) = 3, it follows that χ′(G) = 3. Hence, hpc(G) ≤ 3.
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Figure 2: A proper 3-edge coloring of K3 � K2

We now show that hpc(G) ≥ 3. Assume, to the contrary, that there is a

51



proper Hamiltonian-path 2-coloring c of G using the colors red (color 1)
and blue (color 2). There are only two Hamiltonian u − v paths, namely
(u,w, x, y, z, v) and (u, x, w, z, y, v). Because of the symmetry of these
paths, we may assume that the first path is a proper Hamiltonian u−v path
and whose edges are colored as c(uw) = c(xy) = c(zv) = 1 and c(wx) =
c(yz) = 2. Next, we consider a proper Hamiltonian x − z path. There
are only two Hamiltonian x − z paths in G, namely, Q1 = (x,w, u, v, y, z)
and Q2 = (x, y, v, u, w, z). Since the path Q = (w, u, v, y) lies on both Q1

and Q2, it follows that Q must be proper. This implies that c(uv) = 2
and c(vy) = 1. Similarly, there are only two Hamiltonian w − y paths in
G, each of which contains the path (x, u, v, z), and so this path must be
proper. This implies that c(ux) = 1. We now consider a proper Hamil-
tonian x − v path. There are only two Hamiltonian x − v paths in G,
namely, R1 = (x, u, w, z, y, v) and R2 = (x, y, z, w, u, v). Since the path
R = (y, z, w, u) lies on both R1 and R2, it follows that R must be properly
colored by the colors 1 and 2. Since c(yz) = 2 and c(wu) = 1, this is
impossible. Thus, there is no proper Hamiltonian x − v path in G, which
is a contradiction. Therefore, hpc(G) ≥ 3 and so hpc(G) = 3.

We now consider some well-known Hamiltonian-connected graphs, begin-
ning with complete graphs, which are supergraphs of all Hamiltonian-
connected graphs. It is easy to see that hpc(K3) = 3. When n ≥ 4,
hpc(Kn) = 2, however, which we verify next.
Theorem 2.1. For every integer n ≥ 4, hpc(Kn) = 2.

Proof. We consider two cases, according to whether n is even or n is odd.

Case 1. n is even. The complete graph G = Kn contains a 1-factor F .
Define an edge coloring c of G by assigning the color red to each edge of F
and the color blue to the remaining edges of G. We show that c is a proper
Hamiltonian-path 2-coloring of G; that is, for every two vertices u and v
of G, there is a proper Hamiltonian u − v path in G. Let n = 2k and let
V (G) = {v1, v2, . . . , v2k}. Suppose that E(F ) = {v2i−1v2i : 1 ≤ i ≤ k}.
There are two possibilities, depending on whether uv is a blue edge or uv
is a red edge. Thus, we may assume that either (1) u = v1 and v = v2k or
(2) u = v2 and v = v1. Consider the properly colored Hamiltonian cycle
C = (v1, v2, . . . , v2k, v1) of G. If (1) occurs, then (u = v1, v2, . . . , v2k = v)
is a proper Hamiltonian u − v path in G; while if (2) occurs, then (u =
v2, v3, . . . , v2k, v1 = v) is a proper Hamiltonian u− v path in G. Therefore,
hpc(Kn) = 2.

Case 2. n ≥ 5 is odd. Let C = (v1, v2, . . . , vn, v1) be a Hamiltonian cycle
in G = Kn. Define a coloring c of G by assigning the color red to each edge
of C and the color blue to the remaining edges of G. We show that c is a

52



proper Hamiltonian-path 2-coloring of G; that is, for every two vertices u
and v of G, there is a proper Hamiltonian u−v path in G. We may assume
that v = vn and u = vi for some integer i with 1 ≤ i ≤ (n− 1)/2.

First, suppose that u = v1. If n ≡ 1 (mod 4), then

(u = v1, v2, v4, v3, v5, v6, v8, v7, v9, . . . , vn−3, vn−1, vn−2, vn = v)

is a proper Hamiltonian u− v path in G; while if n ≡ 3 (mod 4), then

(u = v1, v2, v4, v3, v5, v6, v8, v7, v9, . . . , vn−5, vn−3, vn−4, vn−1, vn−2, vn = v)

is a proper Hamiltonian u− v path in G.

Next, suppose that u = vj where 2 ≤ j ≤ (n − 1)/2. If n = 5, then
u = v2 and (v5, v3, v4, v1, v2) is a proper Hamiltonian u − v path in G.
Thus, we may assume that n ≥ 7 is odd. Let A = {v1, v2, . . . , vj−1} and
B = {vj+1, vj+2, . . . , vn−1}. Let |A| = a and |B| = b. Since n ≥ 7 is odd,
it follows that (1) b ≥ 3 and (2) a+ b = n− 2 is odd and so a and b are of
opposite parity. We consider two subcases, according to whether a is even
or a is odd.

Subcase 2.1. a is even. Then

Q = (u = vj , vj−2, vj−1, vj−4, uj−3, vj−6, vj−5, . . . , v1, v2, vj+2)

is a proper u− vj+2 path in G with V (Q) = {v1, v2, . . . , vj} ∪ {vj+2} and

Q′ = (u = vj+2, vj+1, vj+4, vj+3, uj+6, vj+5, vj+8, uj+7, . . . ,

vn−2, vn−3, vn−1, vn = v)

is a proper vj+2 − v path in G with V (Q′) = {vj+1, vj+2, . . . , vn}. Thus,
V (Q) ∪ V (Q′) = V (G), V (Q) ∩ V (Q′) = {vj+1} and v2vj+2 and vj+1vj+2

have distinct colors (namely, v2vj+2 is blue and vj+1vj+2 is red). Therefore,
the path Q followed by Q′ produces a proper Hamiltonian u− v path in G.

Subcase 2.2. a is odd. If a ≡ 3 (mod 4), then

Q = (u = vj , vj−1, vj−3, vj−2, uj−4, vj−5, vj−7, uj−6, . . . , v1, v2, vj+1)

is a proper u− vj+1 path in G; while if a ≡ 1 (mod 4), then

Q = (u = vj , vj−1, vj−3, vj−2, uj−4, vj−5, vj−7, uj−6, . . . , v3, v4, v1, v2, vj+1)

is a proper u− vj+1 path in G. We now show that Q can be extended to a
proper Hamiltonian u− v path in G. If b ≡ 0 (mod 4), then

Q′ = (vj+1, vj+2, vj+4, vj+3, uj+5, vj+6, vj+8, uj+7, . . . ,

vn−3, vn−1, vn−2, vn = v)
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is a proper vj+1 − v path in G; while if b ≡ 2 (mod 4), then b ≥ 6 (since
b ≥ 3) and

Q′ = (vj+1, vj+2, vj+4, vj+3, uj+5, vj+6, vj+8, uj+7, . . . ,

vn−4, vn−1, vn−2, vn = v)

is a proper vj+1 − v path in G. Thus, as in Case 1, the path Q followed by
Q′ produces a proper Hamiltonian u− v path in G.

We saw that if G is a Hamiltonian-connected graph of order at least 4,
then δ(G) ≥ 3. There are infinitely many Hamiltonian-connected cubic
graphs. For each odd integer n ≥ 3, the prism Cn � K2 is cubic and
Hamiltonian-connected (see [8]). We saw that hpc(C3 � K2) = 3. In fact,
hpc(Cn � K2) = 3 for all odd integers n ≥ 3.
Theorem 2.2. For each odd integer n ≥ 3, hpc(Cn � K2) = 3.

Proof. For an odd integer n ≥ 3, let G = Cn � K2, which is constructed
from the two n-cycles (u1, u2, . . . , un, u1) and (v1, v2, . . . , vn, v1) by adding
the n edges uivi for 1 ≤ i ≤ n. Since χ′(G) = 3, it follows by (1) that
hpc(G) ≤ 3. It remains to show that hpc(G) ≥ 3. Assume, to the contrary,
that there is a proper Hamiltonian-path 2-coloring c of G using the colors 1
and 2.

First, consider a proper Hamiltonian u1 − u3 path P in G. Observe that
either P begins with u1, u2 or P ends with u2, u3. Suppose first that P
begins with u1, u2. Hence, P must begin with u1, u2, v2 and so u1un, u1v1 /∈
E(P ). Since each vertex in V (G) − {u1, u3} has degree 2 in P , it follows
that v1vn, v1v2 ∈ E(P ) and so P begins with the subpath (u1, u2, v2, v1, vn).
Since unu1 /∈ E(P ) and un has degree 2 in P , it follows that unvn, unun−1 ∈
E(P ) and so P contains the subpath (u1, u2, v2, v1, vn, un, un−1). Similarly,
vnvn−1 /∈ E(P ) and un−1vn−1, vn−1vn−2 ∈ E(P ). Continuing in this way,
we see that P is the following path

P1 = (u1, u2, v2, v1, vn, un, un−1, vn−1, vn−2, un−2, . . . , u4, v4, v3, u3). (2)

Next, suppose that P ends with u2, u3. This implies that u1u2, u3v3, u3u4 /∈
E(P ) and so u2v2, v2v3, v3v4 ∈ E(P ). Hence, P ends at the subpath
(v4, v3, v2, u2, u3). An argument similar to the one above shows that P
is the following path

P2 = (u1, v1, vn, un, un−1, vn−1, vn−2, un−2, . . . , u4, v4, v3, v2, u2, u3).

In either case, P must contain the subpath

P ′ = (v1, vn, un, un−1, vn−1, vn−2, un−2, . . . , u4, v4, v3).
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By the symmetry of the graph G, we may assume, without loss of generality,
that P = P1, described in (2). Since c is a proper Hamiltonian-path 2-
coloring of G using the colors 1 and 2, we may assume, without loss of
generality, that c(u1u2) = 1. Since P1 is a proper path and c(u1u2) = 1,
it follows that c(u2v2) = 2 and c(v1v2) = 1. For the remaining edges e of
P1, it follows that c(e) = 1 if e = uivi and c(e) = 2 if e belongs to one
of the two n-cycles. In particular, c(v1vn) = 2. Next, consider a proper
Hamiltonian u3 − u5 path Q in G. An argument above shows that there
are two possibilities for Q. Furthermore, Q must contain the subpath

Q′ = (v3, v2, u2, u1, v1, vn, un, un−1, vn−1, vn−2, un−2, . . . , u6, v6, v5).

Since Q′ is proper and c(u2v2) = 2, it follows that c(v3v2) = 1 and so
the colors of Q′ are alternately colored by 1 and 2, beginning with 1. In
particular, c(v1vn) = 1, which contradicts the fact that c(v1vn) = 2.

3 Minimum Hamiltonian-Connected Graphs

We start this section with a useful observation.
Observation 3.1. If H is a Hamiltonian-connected spanning subgraph of
a graph G, then hpc(G) ≤ hpc(H).

If G is a Hamiltonian-connected graph that is not complete and u and v are
nonadjacent vertices of G, then G+ uv is also Hamiltonian-connected and
hpc(G+uv) ≤ hpc(G) by Observation 3.1. This suggests that Hamiltonian-
connected graphs having the greatest proper Hamiltonian connection num-
bers are minimal Hamiltonian-connected graphs. This leads us to con-
sider Hamiltonian-connected graphs of order n and minimum size. Every
Hamiltonian-connected graph of order at least 4 is 3-connected. Therefore,
if G is a Hamiltonian-connected graph of n ≥ 4, then δ(G) ≥ 3, which
implies that the minimum possible size of a Hamiltonian-connected graph
of order n is

⌊
3n+1

2

⌋
. The following result is due to Moon [11].

Theorem 3.2. For each integer n ≥ 4, there exists a Hamiltonian-connected
graph of order n and size

⌊
3n+1

2

⌋
.

We now determine the proper Hamiltonian connection numbers of graphs
belonging to two classes of Hamiltonian-connected graphs of order n and
size

⌊
3n+1

2

⌋
, one class for n even and the other class for n odd, beginning

with the case when n is even.

For each integer k ≥ 2, let Pk � K2 be the grid of order 2k in which two
paths of order k are Pk = (x1, x2, . . . , xk) and P ′k = (y1, y2, . . . , yk) such
that xiyi ∈ E(Pk � K2) for 1 ≤ i ≤ k. Now, let Hk be the cubic graph
of order 2k + 2 obtained by adding two adjacent vertices u and v to the
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grid Pk � K2 and joining (1) the vertex u to x1 and y1 and (2) the vertex
v to xk and yk in Pk � K2. Each graph Hk has the property that it is
Hamiltonian-connected (see [11]) and hpc(Hk) = χ′(Hk) = ∆(Hk) = 3.
We verify this now.
Theorem 3.3. For each integer k ≥ 2, hpc(Hk) = 3.

Proof. Let C = (u, x1, x2, . . . , xk, v, yk, yk−1, . . . , y3, y2, y1, u) be a
Hamiltonian cycle of Hk. Define a proper 3-edge coloring of Hk by alter-
nately assigning the colors 1 and 3 to the edges of C and assigning the
color 2 to the remaining edges of Hk. Thus, hpc(Hk) ≤ χ′(Hk) = 3. Fig-
ure 3(a) shows this edge coloring for the case when k is odd and Figure 3(b)
shows this edge coloring for the case when k is even.
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Figure 3: Edge colorings of Hk

It therefore remains to show that hpc(Hk) ≥ 3. Assume, to the contrary,
that there is a proper Hamiltonian-path 2-coloring c of Hk using the colors 1
and 2. First, consider a proper Hamiltonian u − v path. There are only
two Hamiltonian u − v paths in G. Because of the symmetry of these
paths, we consider the path (u, x1, y1, y2, x2, x3, y3, . . . , xk, yk, v) if k is odd
and (u, x1, y1, y2, x2, x3, y3, . . . , yk, xk, v) if k is even. Choosing c(ux1) = 1,
the colors of the remaining edges on the path are determined as shown
in Figure 4 when k is odd.

Next, consider a proper Hamiltonian u−x2 path P in Hk. If P begins with
u, y1, then P cannot contain x1, which is impossible. Suppose that P begins
with u, v. Then P must end as x3, y3, y2, y1, x1, x2. Since c(x3y3) = 2, it
follows that c(y2y3) = 1, which is impossible as c(y1y2) = 1. Hence, P must
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Figure 4: A step in the proof of Proposition 3.3 when k is odd

begin with u, x1 and so

P = (u, x1, y1, y2, . . . , yk, v, xk, xk−1, . . . , x2).

Furthermore,

the edges of P are alternately colored 1 and 2. (3)

We now consider the Hamiltonian x1 − x2 paths in G. There are only two
Hamiltonian x1 − x2 paths Q and Q′ in G, where

Q = (x1, u, y1, y2, . . . , yk, v, xk, xk−1, . . . , x2)

and

Q′ =

{
(x1, y1, u, v, yk, xk, xk−1, yk−1, . . . , y2, x2) if k is even
(x1, y1, u, v, xk, yk, yk−1, xk−1, . . . , y2, x2) if k is odd.

If c(uy1) = 1, then Q is not proper and so Q′ must be proper. However then,
c(xixi+1) = 1 for each integer i with 1 ≤ i ≤ k − 1, which contradicts (3).
Hence, the edges of the Hamiltonian x1−x2 path Q are alternately colored 1
and 2, beginning and ending with 1. Now, consider a Hamiltonian u − y2
path Q. Proceeding as above with the path P , we see that Q must contain
x1y1, x1x2, x2x3 as consecutive edges on Q. Since c(x1y1) = 2, it follows
that c(x1x2) = 1. However, c(x2x3) = 1, which is impossible. Thus, no
such proper Hamiltonian u − y2 path exists. Therefore, hpc(Hk) ≥ 3 and
so hpc(Hk) = 3.

For each integer k ≥ 3, recall that Pk � K2 is the grid of order 2k in which
two paths of order k are Pk = (x1, x2, . . . , xk) and P ′k = (y1, y2, . . . , yk)
such that xiyi ∈ E(Pk � K2) for 1 ≤ i ≤ k. The graph Fk of order
2k + 1 is constructed from Pk � K2 by adding a new vertex u and joining
u to each vertex in {x1, xk, y1, yk}. Thus, Fk has 2k vertices of degree 3
and one vertex of degree 4. It is known [11] that Fk is a Hamiltonian-
connected graph of odd order and has the minimum size of a Hamiltonian-
connected graph of order 2k + 1 for each integer k ≥ 3. Furthermore,
χ′(Fk) = ∆(Fk) = 4. We show that hpc(Fk) = 3.
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Theorem 3.4. For each integer k ≥ 3, hpc(Fk) = 3.

Proof. For each integer k ≥ 3, let Pk �K2 be the grid of order 2k in which
two paths of order k are Pk = (x1, x2, . . . , xk) and P ′k = (y1, y2, . . . , yk) such
that xiyi ∈ E(Pk � K2) for 1 ≤ i ≤ k. The graph Fk of order 2k + 1 is
constructed from Pk � K2 by adding a new vertex u and joining u to each
vertex in {x1, xk, y1, yk}. Define an edge coloring c : E(Fk) → {1, 2, 3}
of Fk by alternately assigning the colors 1 and 3 to the edges of Pk and
P ′k beginning with 1 and assigning the color 2 to the remaining edges of
Pk � K2. Furthermore, if k ≥ 3 is odd, then let c(ux1) = c(uy1) = 3 and
c(uxk) = c(uyk) = 1 and if k ≥ 4 is even, then let c(ux1) = c(uy1) = 3
and c(uxk) = c(uyk) = 2. Figure 5(a) shows this edge coloring for the case
when k is odd and Figure 5(b) shows this edge coloring for the case when
k is even.
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Figure 5: Edge colorings of Fk

Next, we show that the 3-edge coloring of Fk described in Figure 5 is a
proper Hamiltonian-path 3-coloring of Fk; that is, we show that Fk contains
a proper Hamiltonian w − z path for each pair w, z of distinct vertices of
Fk. First, observe that every Hamiltonian path P of Fk is proper unless P
contains both ux1 and uy1 or contains both uxk and uyk. Hence, if either
w or z is u, then Fk contains a proper Hamiltonian w− z path with initial
vertex u. Therefore, we may assume that neither w nor z is u. We consider
the following cases.

Case 1. {w, z} = {xi, xj} or {w, z} = {yi, yj}, where i < j, say the former.
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If i is even, then consider the xi − u path

P ′ = (xi, xi+1, . . . , xj−1, yj−1, yj−2, . . . ,

yi, yi−1, xi−1, xi−2, yi−2, . . . , y1, x1, u);

while if i is odd, then consider the xi − u path

P ′ = (xi, xi+1, . . . , xj−1, yj−1, yj−2, . . . ,

yi, yi−1, xi−1, xi−2, yi−2, . . . , x1, y1, u).

Next, if k − j is even, then consider the u− xj path

P ′′ = (u, yk, xk, xk−1, yk−1, yk−2, . . . , yj , xj);

while if k − j is odd, then consider the u− xj path

P ′′ = (u, xk, yk, yk−1, xk−1, xk−2, yk−2, . . . , yj , xj).

Then, P ′ followed by P ′′ is a proper Hamiltonian xi − xj path.

Case 2. {w, z} = {xi, yj}. We may assume that i ≤ j. There are two
subcases.

Subcase 2.1. i = j. If i is even, then consider the xi − u path

P ′ = (xi, xi−1, yi−1, yi−2, xi−2, xi−3, . . . , x1, y1, u);

while if i is odd, then consider the xi − u path

P ′ = (xi, xi−1, yi−1, yi−2, xi−2, xi−3, . . . , y1, x1, u).

Next, if k − i is even, then consider the u− yi path

P ′′ = (u, yk, xk, xk−1, yk−1, yk−2, . . . , xi+1, yi+1, yi);

while if k − i is odd, then consider the u− yi path

P ′′ = (u, xk, yk, yk−1, xk−1, xk−2, . . . , xi+1, yi+1, yi).

Then, P ′ followed by P ′′ is a proper Hamiltonian xi − yi path.

Subcase 2.2. i < j. If i is even, then consider the xi − u path

P ′ = (xi, xi+1, . . . , xj−1, yj−1, yj−2, . . . ,

yi, yi−1, xi−1, xi−2, yi−2, . . . , y1, x1, u);

while if i is odd, then consider the xi − u path

P ′ = (xi, xi+1, . . . , xj−1, yj−1, yj−2, . . . ,

yi, yi−1, xi−1, xi−2, yi−2, . . . , x1, y1, u).

If k − j is even, then consider the u− yj path
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P ′′ = (u, xk, yk, yk−1, xk−1, xk−2, yk−2, . . . , xj , yj);

while if k − j is odd, then consider the u− yj path

P ′′ = (u, yk, xk, xk−1, yk−1, yk−2, xk−2, . . . , xj , yj).

Then, P ′ followed by P ′′ is a proper Hamiltonian xi − yj path.

It therefore remains to show that hpc(Fk) ≥ 3. Assume, to the contrary,
that there is a proper Hamiltonian-path 2-coloring c of Fk using the colors 1
and 2. First, consider a proper Hamiltonian u − v path. We consider two
cases, according to whether k is odd or k is even.

Case 1. k ≥ 3 is odd. Let k = 2t + 1 for some positive integer t. First,
consider the vertices xt+1 and u. Let P be a proper Hamiltonian xt+1 − u
path in Fk. First, observe that P cannot start with xt+1, yt+1. Thus, either
P starts with xt+1, xt or starts with xt+1, xt+2. Suppose, without loss of
generality, that P starts with xt+1, xt. Since xt+1xt+2, xt+1yt+1 /∈ E(P )
and yt+1 and xt+2 have degree 2 on P , it follows that

(yt, yt+1, yt+2, xt+2, xt+3) is a subpath of P . (4)

If t ≥ 2, then xtyt /∈ E(P ) (for otherwise, yt−1 cannot belong to P ).
Similarly, xiyi /∈ E(P ) for 2 ≤ i ≤ t. Hence, P contains the subpath
(xt+1, xt, . . . , x1, y1, y2, . . . , yt+1, yt+2). By (4), if t is odd, then

P = (xt+1, xt, . . . , x1, y1, y2, . . . , yt+1, yt+2, xt+2, xt+3, yt+3, . . . , yk, xk, u);

while if t is even, then

P = (xt+1, xt, . . . , x1, y1, y2, . . . , yt+1, yt+2, xt+2, xt+3, yt+3, . . . , xk, yk, u).

Since c is a proper Hamiltonian-path 2-coloring of Fk using the colors 1
and 2, we may assume that P is alternately colored 1 and 2, beginning
with 1 and ending with 2. Thus, the colors of some edges of Pk � K2

are determined. This is shown for k ∈ {5, 7} in Figure 6 where each
bold edge belongs to the path P . In particular, {c(y1y2), c(x2x3)} =
{c(xt+1xt), c(xt+2xt+3)} = {1, 2}.
Next, consider the vertices x1 and u. Let Q be a proper Hamiltonian x1−u
path in Fk. Since Q cannot begin with x1, u, exactly one of x1x2 and x1y1
is an edge of Q. We consider these two subcases.

Subcase 1.1. x1x2 ∈ E(Q) and x1y1 /∈ E(Q). Then

Q = (x1, x2, . . . , xk, yk, yk−1, . . . , y1, u).

Since c(xtxt+1) = 1, it follows that c(xt+1xt+2) = 2 and c(xt+2xt+3) = 1,
which is a contradiction.
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Figure 6: The colors of some edges of Pk � K2 in Case 1 for k ∈ {5, 7}

Subcase 1.2. x1x2 /∈ E(Q) and x1y1 ∈ E(Q). Here,

Q = (x1, y1, y2, x2, x3, . . . , yk−2, yk−1, xk−1, xk, yk, u).

Since {c(y1y2), c(x2x3)} = {1, 2}, there is no color for y2x2 and so Q is not
proper.

Case 2. k ≥ 4 is even. Let k = 2t for some integer t ≥ 2. First, consider
the vertices xt and u. Let P be a proper Hamiltonian xt − u path in Fk.
As in Case 1, the path P cannot start with xt, yt. Thus, either P starts
with xt, xt−1 or xt, xt+1. We consider these two subcases.

Subcase 2.1. P starts with xt, xt−1. Since yt and xt+1 have degree 2 in P ,
it follows that

(yt−1, yt, yt+1, xt+1, xt+2) is a subpath of P . (5)

If t ≥ 3, then xt−1yt−1 /∈ E(P ) (for otherwise, yt−2 cannot belong to P ).
Hence, P begins with the subpath (xt, xt−1, . . . , x1, y1, y2, . . . , yt). Because
of (5), if t ≥ 3 is odd, then

P = (xt, xt−1, . . . , x1, y1, y2, . . . , yt, yt+1, xt+1, xt+2, . . . , yk−1, yk, xk, u);

while if t ≥ 2 is even, then

P = (xt, xt−1, . . . , x1, y1, y2, . . . , yt, yt+1, xt+1, xt+2, . . . , xk−1, xk, yk, u).

Since c is a proper Hamiltonian-path 2-coloring of Fk using the colors 1
and 2, we may assume that P is alternately colored 1 and 2, beginning
with 1 which is shown in Figure 7. In particular, c(xt−1xt) = 1 and
c(xt+1xt+2) = 2 whether t is odd or even.
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Figure 7: The colors of some edges of Pk � K2 in Subcase 2.1 for k ∈ {6, 8}

Next, consider the vertices x1 and u. Let Q be a proper Hamiltonian x1−u
path in Fk. Since Q cannot begin with x1, u, exactly one of x1x2 and x1y1
is an edge of Q.

? First, suppose that x1x2 is an edge of Q and x1y1 is not an edge of Q.
Since each of x2 and y1 has degree 2 in Q, it follows that Q starts with
(x1, x2, x3) and ends at (y2, y1, u). This forces that Q is the following
path

Q = (x1, x2, . . . , xk, yk, yk−1, . . . , y2, y1, u).

Since c(xt−1xt) = 1 and c(xt+1xt+2) = 2, regardless of the color of
xtxt+1, it follows that Q is not proper.

? Next, suppose that x1y1 is an edge of Q and x1x2 is not an edge of Q.
Since each of x2 and y1 has degree 2 in Q, it follows that Q must start
with (x1, y1, y2, x2, x3). This forces that Q is the following path

Q = (x1, y1, y2, x2, x3, y3, y4, . . . , xk−2, xk−1, yk−1, yk, xk, u).

Since {c(y1y2), c(x2x3)} = {1, 2} (see Figure 7), regardless of the color
of x2y2, it follows that Q is not proper.

Subcase 2.2. P starts with xt, xt+1. Since xtxt−1, xtyt /∈ E(P ), it follows
that (xt−2, xt−1, yt−1, yt, yt+1) is a subpath of P . Thus, if t ≥ 3 is odd,
then

P = (xt, xt+1, . . . , xk, yk, yk−1, . . . , yt, yt−1, xt−1, xt−2, . . . , x2, x1, y1, u)

and if t ≥ 2 is even, then

P = (xt, xt+1, . . . , xk, yk, yk−1, . . . , yt, yt−1, xt−1, xt−2, . . . , y2, y1, x1, u).
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Since c is a proper Hamiltonian-path 2-coloring of Fk using the colors 1
and 2, we may assume that P is alternately colored 1 and 2, beginning
with 1 which is shown in Figure 8.
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Figure 8: The colors of some edges of Pk � K2 in Subcase 2.2

Next, consider the vertices x1 and u. Let Q be a proper Hamiltonian x1−u
path in Fk. Since Q cannot begin with x1, u, exactly one of x1x2 and x1y1
is an edge of Q.

? First, suppose that x1x2 is an edge of Q and x1y1 is not an edge
of Q. Since y1 has degree 2 in Q, it follows that Q ends at (y2, y1, u).
Furthermore, x2y2 /∈ E(Q) and so x2x3, y2y3 ∈ E(Q). This forces
that Q is the following path

Q = (x1, x2, . . . , xk, yk, yk−1, . . . , y2, y1, u).

Since {c(xtxt+1), c(xt−2xt−1)} = {1, 2}, there is no color for xt−1xt
and so Q is not proper.

? Next, suppose that x1y1 is an edge of Q and x1x2 is not an edge of Q.
Since each of x2 and y1 has degree 2 in Q and y1u /∈ E(Q), it follows
that

Q = (x1, y1, y2, x2, x3, y3, . . . , yt−1, yt, xt, xt+1, . . . , yk, xk, u).

Since {c(yt−1yt), c(xtxt+1)} = {1, 2}, there there is no color for c(xtyt)
and so Q is not proper.

It has been shown in [3] that if G is a 2-connected graph, then the proper
connection number of G is at most 3. Since every Hamiltonian-connected
graph G of order at least 4 is 2-connected (in fact, 3-connected), pc(G) ≤ 3.
We have seen no Hamiltonian-connected graph G where hpc(G) > 3, which
leads to the following cojecture.
Conjecture 3.5. If G is a Hamiltonian-connected graph, then hpc(G) ≤ 3.
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