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Abstract

We present a decomposition of the 5-(12, 6, 2) design obtained
from two identical copies of an S(5, 6, 12) into twelve 3-(12, 6, 2) de-
signs.

1 Introduction

Let B = {B1, B2, ..., Bb} be a finite family of k-subsets (called blocks) of
a point set X = X(v) = {1, 2, ..., v}. Then (X,B) is a t-(v, k, λ) design if
every t-subset of X is contained in exactly λ blocks of B. A design without
repeated blocks is called simple. Frequently, the point set X is implicit and
we think of the design as just being the collection B of blocks. The set of
all k-subsets of X will be denoted by X(k).

Let SX denote the symmetric group on the symbols of X. For γ ∈ SX ,
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x ∈ X, B ∈ X(k) and B ⊆ 2X , we denote by γ(x), γ(B) and γ(B) the
images under γ of x, B and B, respectively.

Let (X,B) be a t-(v, k, λ) design. Then, an element γ ∈ SX is said to be
an automorphism of the design if and only if γ(B) = B, that is, if and only
if γ(B) ∈ B for each B ∈ B. The collection of all automorphisms of (X,B)
forms a subgroup of SX called the full automorphism group of the design,
and is denoted by Aut(B). This group acts as a permutation group on the
points and separately on the blocks of B. Any subgroup H of Aut(B) is
simply called an automorphism group of the design.

A t-(v, k, 1) design is called a Steiner system and the notation S(t, k, v) is
used in this case. An S(3, 4, v) Steiner System (X,B) is called a Steiner
Quadruple System and is denoted by SQS(v)(X,B). An SQS(v)(X,B) is
said to be (t, λ)-resolvable if its block-set B can be partitioned into r parts
π1, π2, ..., πr, r ≥ 2, such that (X,πi) is a t-(v, 4, λ) design for all i. Clearly,
t = 1 or 2. A (t, λ)-resolvable SQS(v) is denoted by RSQS(t, λ, v). The
definition of a (t, λ)-resolvable SQS naturally extends to the definition of
a (t, λ)-resolvable t′-(v, k, λ′) design; here each part πi must be a t-(v, k, λ)
design with t < t′. The collection π1, π2, ..., πr is the (t, λ)-resolution.

2 Known Results

Resolutions of designs have been extensively studied in the case of a resolv-
able design, which is basically a resolution of a design into 1-designs [1], and
in the case of large sets, which are resolutions of the trivial design X(k) [9].
Resolutions have applications in constructing other designs, coverings and
packings. There are not many results on resolution of non-trivial t′-designs
into t-designs with t ≥ 2. In fact, most of the known results are on re-
solving S(3, 4, v) into 2-(v, 4, λ) designs. We are also aware of a couple of
(2, λ)-resolution of 3-designs originating from codes and of two cases of a
(3, λ)-resolution of a 5-design, one of which originates from a code as well.

Zaitsev et al. [13] proved the existence of an RSQS(2, 1, 4n):

Theorem 2.1 There exists a 3-(4n, 4, 1) design that can be decomposed
into 4n−2

2 disjoint 2-(4n, 4, 1) designs for all n ≥ 2.

The following recursive construction is due to Tierlinck [12].
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Theorem 2.2 If k − 1 is a prime power, k ≡ 8 (mod 12), and an
RSQS(2, 1, 2k) exists, then an RSQS(2, 1, 2(k−1)n+2) exists for all n ≥ 1.

The last result can be combined with Theorem 2.1 to produce other infinite
classes of RSQS(2, 1, v)’s. The smallest value of v, v 6= 4n for which a (2, 1)-
resolvable SQS(v) can be obtained by Theorem 2.2 is v = 100. Hartman [8]
has found several (2, 3)-resolvable SQS:

Theorem 2.3 An RSQS(2, 3, v) exists for v ∈ {20, 32, 44, 68, 80, 104, 128}.

We are only aware of two cases of a (2, 2)-resolvable 3-designs, which are not
SQS. Assmus and Salwach [3] showed that the weight 6 codewords of the ex-
tended binary (16, 11) Hamming code can be partitioned into 28 2-(16, 6, 2)
designs. They did not mention the codewords of weight 6 form a 3-(16, 6, 16)
design, but this is well-known, so the (2, 2)-resolution of the 3-design fol-
lows. Another result of similar nature is implicitly present in [11]: The
3-(16, 6, 4) design obtained from the weight 6 codewords in the extended
Preparata code is (2, 2)-resolvable. An algorithmic solution was given in [7],
which shows the designs of the resolution can be extracted greedily, one by
one, from the 3-(16, 6, 4) design. We give a short alternative description
here: Start with the 2-(16, 6, 2) design

1 2 3 4 5 10 2 5 6 7 13 16
1 2 11 12 15 16 2 8 9 10 13 15
1 3 7 8 11 13 3 4 13 14 15 16
1 4 6 9 12 13 3 5 6 8 12 15
1 5 8 9 14 16 3 7 9 10 12 16
1 6 7 10 14 15 4 5 7 9 11 15
2 3 6 9 11 14 4 6 8 10 11 16
2 4 7 8 12 14 5 10 11 12 13 14

(one of the three non-isomorphic biplanes of order 4). If D0 is the above
design and f is the permutation (1 9 13 5 14 8 3 16 12 10 2 15 11 6)(4 7),
then the desired resolution is given by D0, D1, . . . , D6, where Di = f i(D0),
i = 1, 2, ..., 6. The union of the designs D0, D1, . . . , D6 is a 3-(16, 6, 4) de-
sign D with maximum intersection number 3. Another construction of D
is based on the fact that one of the other two biplanes of order 4 (non-
isomorphic to the one given above) contains “genetic” information about
D [7].
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Finally, we are aware of two results on a (3, λ)-resolution of a 5-design. The
first one is not explicitly mentioned, but easily follows from the work pre-
sented in [4]; it is the resolution of a 5-(48, 12, 8) into two 3-(48, 12, 110) de-
signs. The second is the decomposition of an S(5, 6, 84) into 18 3-(84, 6, 60)
designs, and its double – the decomposition of two disjoint copies of an
S(5, 6, 84) into 36 3-(84, 6, 60) designs [6].

In this article we show that the 5-(12, 6, 2) design obtained from two iden-
tical copies of an S(5, 6, 12) is (3, 2)-resolvable.

3 Some useful results and constructions

We list some results that will be used in the proof of our main result. The
following extension theorem is due to Alltop [2].

Theorem 3.1 Let X = X(2k + 1) and D = (x,B) be a t-(2k + 1, k, λ)
design with t even. Then

{B′ : B′ = X\B, B ∈ B} ∪ {B′′ : B′′ = B ∪ {2k + 2}, B ∈ B}

is a (t+ 1)-(2k + 2, k + 1, λ) design on the point set X(2k + 2).

Let HD denote a 3-(12, 6, 2) design (known as Hadamard design, as it can
be constructed from a Hadamard matrix of order 12). This design is unique
and so is the Steiner System S(5, 6, 12) [5]; both are well-known and well-
studied structures. We list three properties of these two designs needed for
proving our result in the next theorem. More properties and proofs can be
found in [5].

Theorem 3.2 ([5])

1. Both the S(5, 6, 12) and the HD are self-complementary, that is, when-
ever B is a block of the design, X(12) \B is also a block.

2. The maximum intersection of blocks of HD is 3. More precisely, for
every block B of the HD, there is exactly one block of the HD disjoint
from B and 20 other blocks each having intersection 3 with B.

3. There are exactly 12 HDs residing in an S(5, 6, 12).
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We start by giving a simple description of the Steiner System S(5, 6, 12),
which, to our knowledge, has not been published before. There are other
constructions known, including one from Hadamard matrix of order 12, and
from an HD; apparently, these are all interrelated. A standard construc-
tion of an HD is to start with the symmetric 2-(11, 5, 2) design given by
developing the base block 1 2 3 7 10 with the automorphism (1 2 ... 11)
and then extend it to an HD on X(12) via the Alltop’s construction given
in Theorem 3.1. We denote this particular design by D∗. The S(5, 6, 12)
can then be obtained by the following.

Theorem 3.3 Let D = (X,B), X = X(12), be a 3-(12, 6, 2) design and let

BD = {A ∈ X(6) : |A ∩B| 6= 5 ∀B ∈ B}.

Then (X,BD) is an S(5, 6, 12).

Proof. There are 22 6-sets of X(6) such that each intersects a block of D
in 6 points (these 6-sets are the blocks of D). Now we count the number of
6-sets each intersecting a block of D in 5 points. No such set can intersect
two or more blocks of D, as the maximum intersection number of two blocks
of D is 3. There are 22 ways to choose a block B of D,

(
6
5

)
= 6 ways to

choose a 5-subset of it, and 6 ways to choose the sixth point outside of B,
for a total of 22(6)(6) = 792 ways to choose a 6-set that intersects a block of
D in 5 points. There are

(
12
6

)
− 22− 792 = 110 6-sets each intersecting any

block of D in at most 4 points. Now, we know D resides in an S(5, 6, 12).
None of the 792 blocks can be a block of such S(5, 6, 12), because if B′ is
such block, then there must be a block B′′ of D, such that |B′ ∩ B′′| = 5,
and that would mean there is a 5-set covered by two different blocks of the
S(5, 6, 12), a contradiction. Hence the 110 blocks plus the blocks of D must
be all the blocks of the S(5, 6, 12) in which D resides, because D has 22
blocks and an S(5, 6, 12) must have 132 blocks.

4 Main Result

Theorem 4.1 The 5-(12, 6, 2) design obtained from two identical copies of
an S(5, 6, 12) is (3, 2)-resolvable.

Proof. Let X = X(12) and D0 be the 3-(12, 6, 2) design D∗. Set D = D0

and let (X(12),BD0
) be the 5-(12, 6, 1) design constructed in Theorem 3.3.
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We need the following two permutations on X(12) to describe the construc-
tion:

f = (5 11 10 9)(6 7 12 8) and g = (1 4 3 2 10 6 9 11 7 5 8).

Let D1 = f(D0), and Di = gi−1(D1), i = 2, ...11. We will show that
D0, D1, . . . , D11 form the desired resolution. Both f and g are automor-
phisms of the 5-(12, 6, 1) design (X(12),BD0). We note that g is also an
automorphism of D0 and an automorphism of the entire set of the 12 de-
signs D0, D1, . . . , D11; it fixes D0 and rotates D1, D2, . . . , D11 cyclically
(g(D11) = D1). To finish the proof, we observe that every two of the 12 de-
signs intersect in exactly 2 complementary blocks. This follows from the fact
that both f and g (and its powers) fix two complementary blocks. In other
words, if p is any of f or gi, i = 1, 2, ..., 10, D is an HD, and D′ = p(D) then
the intersection of D′ and D is two blocks complementary to each other.
The union of the blocks of the 12 designs covers exactly 264 blocks, and all
these blocks are blocks of the S(5, 6, 12). Also, if we start with the blocks
of one of the 12 designs, then add the blocks of a second one and so on,
then the total number of new blocks added is 22 + 20 + ... + 2 + 0 = 132,
because of the mentioned intersection property. Likewise, the total number
of repeated blocks added is 0 + 2 + ... + 20 + 22 = 132, which shows that
the union of all blocks of the 12 HDs is exactly two identical copies of the
S(5, 6, 12) in which the 12 HDs reside.

We can similarly obtain another S(5, 6, 12), disjoint from the one obtained
in Theorem 3.3, by using the same construction but starting from the 2-
(11, 5, 2) design obtained by developing the base block 1 2 3 5 8 with the
automorphism (1 2 ... 11). If we denote this S(5, 6, 12) by S2 and the
one obtained in Theorem 3.3 by S1, then we can double S2 and obtain
similar decomposition into 12 HDs, each two of which intersect in exactly
two complimentary blocks. Clearly, every HD residing in S2 will be disjoint
from every HD residing in S1. It is known that two is the maximum number
of disjoint S(5, 6, 12) [10].

5 Conclusion

We have shown that the 5-(12, 6, 2) design obtained from two identical
copies of an S(5, 6, 12) is (3, 2)-resolvable, and so is the 5-(12, 6, 4) design
obtained by two identical copies of the simple design S1∪S2. Although the
designs we resolve are not simple, the resolutions are into simple designs.
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Up to our knowledge, these are the first known (3, λ)-resolutions with min-
imum lambda.
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