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1 Introduction

Terraces for groups were introduced by Bailey [10] as a tool to construct
quasi-complete latin squares, although here we restrict our attention to
cyclic groups where they were implicitly used earlier by Williams [18].
Terraces have since been used in many other combinatorial constructions,
see [14].

There has also been interest in elegant properties that terraces might have in
their own right. This includes the notion of being a power-sequence terrace,
an idea developed in a series of papers by the first and third authors [3, 4, 5,
6, 7, 8, 9]. This is the main topic that we explore in this paper. In addition
we look at a particular type that arose in the study of power-sequence
terraces—matryoshka, or Russian doll, terraces—and give a combinatorial
construction that demonstrates their existence in a much wider class of
cyclic groups than previously known.

The necessary definitions are given in the next section.

Authors’ Note: The third author, Donald Preece, died in January 2014
after a most productive life in mathematics and other endeavours; see [11]
for an extended obituary. At a memorial day∗ held at Queen Mary, Univer-
sity of London in September 2015 there were conversations about some of
Donald’s unpublished results and fragments of papers. One such has been
completed [17].

Shortly afterwards, the second author re-discovered a draft Donald had
written on the topic of power-sequence terraces for Zn where n is a product
of three distinct primes with various restrictions. The following two sections
and much of Section 4 is essentially that draft with only the alterations
required to make the paper as a whole coherent.

2 Basic definitions

Let a = (a1, a2, . . . , an) be an arrangement of the elements of Zn, and then
let b = (b1, b2, . . . , bn−1) be the ordered sequence given by bi = ai+1 − ai
(i = 1, 2, . . . , n − 1). On a definition given by Bailey [10, p. 325], the

∗http://www.maths.qmul.ac.uk/~pjc/dapday.html
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arrangement a is a terrace for Zn (or, in short, a Zn terrace), if the sequences
b and −b between them contain exactly two occurrences of each element
from Zn \ {0}. The sequence b is the 2-sequencing associated with a. A
terrace for Zp is narcissistic [4, 5] if bi = bn−i (i = 1, 2, . . . , n− 1).

For convenience, when we assign a numerical value to the difference between
any two successive elements ai and ai+1 we take that value to be the integer
δ which is congruent, modulo n, to either bi or −bi and which satisfies
δ ∈ (0, (n− 1)/2).

Anderson and Preece [3, 4, 5, 6, 7, 8, 9] gave constructions for “power-
sequence terraces” for Zn where n is odd. A terrace is called power-sequence
if it can be partitioned into segments one of which contains merely the
zero element of Zn, whereas each other segment is either (a) a sequence of
successive powers of an element of Zn, or (b) such a sequence multiplied
through by a constant. Many of the sequences x0, x1, . . . , xs−1 are full-
cycle sequences such that xs = x0, but half cycles containing s elements
are often used when xs = −x0. Within a single terrace there may be full-
cycle sequences of different lengths, and half-cycle sequences of different
lengths.

Some narcissistic power-sequence terraces for Zn with n = pqt were given
in [5]. The constructions in that paper are based on primitive λ-roots of n,
i.e. on a unit x from Zn such that the order of x is a large as is theoretically
possible. The present paper carries the work of [5] forward to Zn where
n = pqr, p = 3 and

lcm (p− 1, q − 1, r − 1) = (p− 1)(q − 1)(r − 1)/ξ(n)

with ξ(n) = 4.

Again our constructions are based on primitive λ-roots of n, which here
have order (p− 1)(q − 1)(r − 1)/ξ(n). As in previous papers we use strong
primitive λ-roots, which are those primitive λ-roots x for which x − 1 is
also a unit and −1 is not a power of x. However, we omit details of this, as
we choose now to place our emphasis on the strategy used to find terraces,
not on a formal presentation of the underlying mathematics.
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3 Construction procedures

How then are power-sequence terraces for Zpqr to be constructed? We
restrict ourselves here to narcissistic terraces with 0 in the middle; such
terraces are centred. For these we effectively have only half -terraces to
construct, the second half of each terrace being merely the reverse of the
negative of the first half.

Consider first the narcissistic terrace

3 9 1 2 4 8 5 0 10 7 11 13 14 6 12 (1)

for Zpq with p = 3 and q = 5. The elements following the zero are merely
the negatives of those before, in reverse order. So we need consider only
the sequence formed by the first 8 elements, none of which is the negative
of any other. These elements are

31 32 | 20 21 22 23 | 51 | 0 (mod 15)

where the fences | divide the sequence into 4 segments, and the successive
differences between adjoining elements are 6, 7, 1, 2, 4, 3, 5, i.e. each
of 1, 2, . . . , 7 exactly once, as required for a terrace for Z15. The first two
elements of the terrace comprise the members of half of the cycle 3 · 30 3 ·
31 3 · 32 3 · 33 (mod 15) or 31 32 33 34 (mod 15) where 33 = −31

and 34 = −32; the next four elements are the members of the entire cycle
20 21 22 23 (mod 15); and the next solitary element represents (trivially)
half of the cycle 51 52 where 52 = −51. Breaking off the cycle 31 32 33 34

half-way through, after 32, means that we lose the difference 33 − 32 =
12−9 = 3, which must be provided elsewhere in the half-terrace; it appears
at the second fence as 23− 51. Breaking the cycle of successive powers of 2
between 23 and 24 (= 20) means that we lose the difference 23−20 = 7; the
loss is compensated for by 20−32 at the first fence. Finally, breaking off the
cycle 51 52 after 51 means that we lose the difference 52− 51 = 10− 5 = 5;
this is made good as 51−0 at the third fence. The art of constructing power-
sequence terraces for Zn where n is composite is thus the art of stitching
segments together so that the differences at the seams/fences compensate
for the differences lost by the breaking of complete cycles or by taking
half-cycles.

Constructional and checking errors are easily made if we forget to distin-
guish between complete cycles and half-cycles, so for security we place a
colon at the start and end of a half-cycle segment. Our Z15 terrace (1) can
thus be written

: 3 9 : | 1 2 4 8 | : 5 : | 0 | negatives .
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For longer terraces we may wish, for conciseness, to give only the first
element of a segment, and an indication of how subsequent elements in
that segment are to be obtained from the first. We use

x→ to indicate that
each successive element in a segment is obtained from the previous one by
multiplication by x; similarly

x← indicates successive multiplications by x
when we work from right to left. Thus our Z15 terrace can be written

: 3
2← : | 1

2→ | : 5 : | 0 | negatives .

To represent the type of construction used here, we let (p) denote a segment
containing multiples of p, and (u) denote a segment containing units of Zpq.
Likewise |p denotes a fence where the difference is a multiple of p, and so
on. Accordingly, with p = 3 and q = 5, the construction-type of our Z15

terrace is
(p) |u (u) |p (q) |q 0 | negatives .

We readily see that a sub-sequence such as (p) |p (q) would be impossi-
ble.

Moving on now to terraces for Zpqr where p, q and r are distinct odd primes,
we use (p) to denote a segment whose elements are multiples of p but not
of either q or r, also (pq) to denote a segment whose elements are multiples
of both p and q but not of r, and so on. As we here restrict ourselves to
situations where p = 3 and

lcm (p− 1, q − 1, r − 1) = (p− 1)(q − 1)(r − 1)/4 ,

our Zpqr terraces can be constructed with just 4 segments for the units, the
length of each of these segments being (p− 1)(q − 1)(r − 1)/4. We restrict
ourselves to narcissistic terraces with 0 in the middle and two segments of
units to the left of 0; we use (u) and (v) to denote these two segments. On
the left of 0 our terraces also have just one segment for each of (p), (q), (r),
(pq), (pr) and (qr), so each of the terraces has 17 segments in total. No
segment is allowed to have a repeated value amongst its differences. We
must also ensure that the difference between any two adjacent elements
in (u) or (v) is itself a unit, that the difference between any two adjacent
elements in (p) is itself a multiple of p but not of q or r, and so on. The
differences for (u) must be distinct from those for (v). We use |u where the
fence difference is the difference missing from the segment (u), and so on.

If a segment of units has
x→ or

x← , then x is a primitive λ-root of n.

For n = pqr = 105, 165 or 231, with p = 3, a possible construction-type for
a narcissistic Zn terrace is

(u) |u (p) |v (v) |pr (q) |p (r) |qr (pr) |r (qr) |q (pq) |pq 0 | negatives .
(2)
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(The reader should check that no subsequence is included here that is prima
facie impossible.) Still with p = 3, this type can be achieved with either
q > r or r > q.

For n = 105, perhaps the easiest way to start an attempt to obtain a Zn
terrace of type (2) is to prepare a worksheet as in Table 1. This gives details

of the possibilities for segments that use
2→, and mentions other possibilities

that may need to be written out more fully if ever
2→ or

2← fails.

The worksheet indicates that an easy start can be made by writing down
the sequence

. . . 67 |(42)
40︷ ︸︸ ︷

25 50 100 95 85 65 |(12)
28︷ ︸︸ ︷

77 91 98 49 |(35)

:

42︷ ︸︸ ︷
84 63 : |(28) :

35︷︸︸︷
35 : |(40)

15︷ ︸︸ ︷
75 45 90 |(15) 0

where the bracketed number at the foot of each fence is the difference at the
fence, and the number above each segment is the difference lost by breaking
the corresponding cycle or half-cycle. Here, the upper and lower numbers
are the same, save that the extra fence difference 12 indicates the need for
the segment (p), not yet included, to have 12 as its missing difference, This
can be achieved in different ways, including taking the segment as

3 · 260 3 · 255 3 · 250 . . . 3 · 25 = 3 69 12 . . . 96 .

A narcissistic terrace can then be completed as

1
2← | 3 23→ | 29

2→ | 25
2→ | 77

2← | : 84
2→ : | : 35 : | 75

2→ | 0 |negatives,
(3)

which is

1 53 79 92 46 23 64 32 16 8 4 2 | 3 69 12 66 48 54 87 6 33 24 27 96 |

29 58 11 22 44 88 71 37 74 43 86 67 | 25 50 100 95 85 65 | 77 91 98 49 |
: 84 63 : | : 35 : | 75 45 90 | 0 | negatives .

This is of the type (2) above, with p = 3, q = 5, r = 7.

When we find a terrace by such a trial-and-error approach, it will not
necessarily have 1 at the start of the first segment of units. However, if
that segment starts with the element c, the whole terrace can then be
multiplied through by c−1 to put it into the standardised form used in the
rest of this paper.
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Table 1: Worksheet for n = 105 = 3× 5× 7

Cycles for the units:
(i) 1 2 4 8 16 32 64 23 46 92 79 53
(ii) 11 22 44 88 71 37 74 43 86 67 29 58
and their negatives

Or use the cycle 20 25 210 . . . 255 and its cosets.
Or use the cycle 170 171 172 . . . 1711

or 170 175 1710 . . . 1755 and its cosets.

Cycles for the multiples of 15
15 30 60 and its negative.
(Or use half of 30 90 60 75 15 45 )

Cycle for the multiples of 21
21 42 84 63 (use half)

Cycle for the multiples of 35
35 70 (use half)

Cycles for the remaining multiples of 3
3 6 12 24 48 96 87 69 33 66 27 54
and its negative

Or use 3 · 20 3 · 25 3 · 210 . . . 3 · 255
or 3 · 30 3 · 31 3 · 32 . . . 3 · 311
or 3 · 30 3 · 35 3 · 310 . . . 3 · 355

Cycles for the remaining multiples of 5
5 10 20 40 80 55 and its negative, viz.

100 95 85 65 25 50

Cycles for the remaining multiples of 7
7 14 28 56 and its negative. viz.

98 91 77 49
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Table 2: Construction-types of terraces for Z105, Z165 and Z231 (p = 3)

A: (u) |pq (v) |v (pq) |q (q) |u (p) |p (pr) |r (r) |pr (qr) |qr 0 | negatives
,

B: (u) |u (p) |v (v) |pr (q) |p (r) |qr (pr) |r (qr) |q (pq) |pq 0 | negatives
,

C: (q) |pr (u) |u (p) |v (v) |p (r) |qr (pr) |r (qr) |q (pq) |pq 0 | negatives
,

D: (qr) |r (pr) |qr (r) |p (u) |u (p) |v (v) |pr (q) |q (pq) |pq 0 | negatives
,

E: (u) |u (pr) |v (v) |qr (p) |p (pq) |q (q) |pq (qr) |pr (r) |r 0 | negatives
,

F: (q) |pq (qr) |pr (r) |r (pr) |q (u) |u (pq) |v (v) |qr (p) |p 0 | negatives
,

For n = pqr = 105, 165 and 231, we have obtained narcissistic Zn terraces
for each of the construction-types given in Table 2, where type B is the
type (2) given above.

Specimen terraces are obtainable from Tables 3, 4 and 5 where the first
type B entry for n = 105 yields the terrace (3) derived above.

Throughout the examples of types B–F in these tables, a segment 1
x←

is followed, two segments later, by a segment d
x→ for some unit d. The

restriction that the two segments of units should have the same multiplier
working in opposite directions is however unnecessary. The reader may wish
to gain practice by finding similar terraces where this restriction does not
hold. Readers may also care to make their own searches for terraces that
are of types B–F save that (u) |u . . . |v (v) is replaced by (u) |v . . . |u (v) .

Any readers who have deduced the simple reason for the two entries “im-
possible” for type E in Tables 4 and 5 should be able to construct some of
their own terraces for Zpqr. The “impossible” entries for type A arise from
circumstances where the sequence comprising the first three segments of a
terrace cannot be constructed.
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Table 3: First 52 entries of some narcissistic Z105 terraces (types A–F as in
Table 2)
Z105; (p, q, r) = (3, 5, 7)

A. 1
32→ | 68

32→ | 15
2→ | 5 2→ | 33

32← |: 84
2← : | 28

2→ |: 35 : |
B. 1

2← | 3 23→ | 29
2→ | 25

2→ | 77
2← |: 84

2→ : |: 35 : | 75
2→ |

C. 95
2← | 1 17← | 33

17← | 44
17→ | 49

2← |: 63
2→ : |: 70 : | 60

2→ |
D. : 70 : |: 63

2← : | 14
2→ | 1 47← | 93

2→ | 76
47→ | 95

2← | 75
2→ |

E. 1
32← |: 63

2→ : | 29
32→ | 72

32→ |: 90
3→ : | 50

2→ |: 70 : | 91
2→ |

F. 85
2← |: 35 : | 56

2← |: 63
2→ : | 1 23← | 45

2→ | 43
23→ | 81

2→ |
Z105; (p, q, r) = (3, 7, 5)

A. 1
23→ | 11

23→ |: 63
2→ : | 14

2→ | 81
23← |: 75

3→ : | 65
2→ |: 70 : |

B. 1
2← | 3 32→ | 11

2→ | 28
2→ | 80

2← |: 90
5→ : |: 70 : |: 84

2→ : |
C. 98

2← | 1 2← | 3 2← | 74
2→ | 40

2← |: 45
3← : |: 35 : |: 42

2→ : |
D. : 35 : |: 90

3→ : | 5 2→ | 1 2← | 3 2→ | 71
2→ | 28

2← |: 84
2→ : |

E. 1
23← | 45

2← | 67
23→ | 9 23→ |: 42

2← : | 14
2→ |: 70 : | 10

2→ |
F. 91

2← |: 35 : | 80
2← |: 30

5→ : | 1 32← |: 63
2← : | 86

32→ | 18
2→ |

Table 4: First 82 entries of some narcissistic Z165 terraces (types A–F as in
Table 2)
Z165; (p, q, r) = (3, 5, 11)

A. 1
62→ | 53

62→ | 135
5← | 100

5→ | 27
13→ |: 66

2← : | 77
2→ |: 55 : |

B. 1
62← | 123

13→ | 119
62→ | 160

5→ | 77
2← |: 99

2→ : |: 110 : |: 15
2→ : |

C. 80
14→ | 1 2← | 3 8→ | 14

2→ | 154
2← |: 33

2→ : |: 55 : |: 75
2→ : |

D. : 110 : |: 99
2→ : | 143

2→ | 1 2← | 3 18→ | 104
2→ | 85

5← |: 105
2→ : |

E. 1
17← |: 33

2→ : | 89
17→ | 57

18← | 15
4→ | 65

14← |: 55 : | 121
2→ |

F. 25
5← |: 110 : | 11

2← |: 33 : | 1 8← |: 15
2← : | 28

8→ | 141
2→ |

Z165; (p, q, r) = (3, 11, 5)

A. impossible

B. 1
62← | 123

13← | 146
62→ | 88

2→ | 35
5← | 120

3← |: 55 : |: 99
2→ : |

C. 77
2→ | 1 2← | 3 13→ | 89

2→ | 10
5← | 105

4→ |: 110 : |: 66
2→ : |

D. : 110 : | 135
3→ | 155

5→ | 1 2← | 3 17→ | 26
2→ | 88

2← |: 99
2→ : |

E. impossible

F. 44
2← |: 55 : | 145

14→ | 135
3→ | 1 17← |: 33

2← : | 146
17→ | 138

2→ |
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Table 5: First 115 entries of some narcissistic Z231 terraces (types A–F as
in Table 2)
Z231; (p, q, r) = (3, 7, 11)

A. 1
170→ | 32

170→ | 126
4→ | 133

5→ | 171
46→ | 198

3→ : | 187
2→ |: 77 : |

B. 1
2← | 3 46→ | 221

2→ | 28
14← | 143

2← |: 132
3← : |: 154 : |: 21

2→ : |
C. 119

5← | 1 2← | 3 30→ | 113
2→ | 121

2← |: 165
3← : |: 77 : |: 63

2→ : |
D. : 77 : |: 165

3→ : | 176
2→ | 1 2← | 3 18→ | 137

2→ | 217
5← |: 105

2→ : |
E. 1

149← |: 66
5→ : | 127

149→ | 144
72→ | 168

4← | 161
5← |: 154 : | 55

2→ |
F. 203

26→ |: 154 : | 220
2← |: 198

3← : | 1 74← |: 147
2← : | 61

74→ | 108
2→ |

Z231; (p, q, r) = (3, 11, 7)

A. impossible

B. 1
2← | 3 3← | 160

2→ | 143
2← | 49

5→ | 210
3→ |: 154 : | 66

2→ |
C. 44

2→ | 1 47← | 93
3← | 218

47→ | 112
26→ | 105

3← |: 154 : | 132
2→ |

D. : 154 : | 84
4→ | 98

20→ | 1 26← | 51
51→ | 76

26→ | 11
2← | 33

2→ |
E. impossible

F. 209
2← |: 154 : | 91

26→ | 147
4→ | 1 149← |: 66

3→ : | 193
149→ | 177

2→ |

4 Matryoshka terraces

When we examine the 17 segments of a terrace of type A (see again Table 2),
we find that the 7 segments in the middle (i.e. the zero segment, the 3
segments on its left, and the 3 segments on its right) cover all multiples
of r in Zn. Furthermore, if we divide all the elements in these 7 segments
by r we obtain a terrace for Zpq. In this sense, we have a terrace for Zpq
nested in a terrace for Zpqr. In the same sense, a terrace for Zp is nested
in the terrace for Zpq and thus in the terrace for Zpqr. Thus the terraces
of type A are matryoshka (Russian doll) terraces as defined in [5, §6]. The
idea behind the terminology of matryoshka goes a long way back in the
theory of designs: in 1847 Kirkman [12] showed how to construct a Steiner
triple system of order 2n+ 1 containing a Steiner triple system of order n,
whenever such a system of order n exists.

In the obvious notation used in [5], the terraces of type A are

(pqr ⊃ pq ⊃ p) matryoshka terraces.

Similarly, the terraces of types B, C, and D are

(pqr ⊃ r) matryoshka terraces.
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Table 6: Numbers of starting segments for type A matryoshka terraces

n factors number constraint
105 3 · 5 · 7 8, 325 a = 1
165 3 · 5 · 11 201, 600 a = 1
231 3 · 7 · 11 100, 107 a = 1, α = β
285 3 · 5 · 19 188, 100 a = 1, α = β
345 3 · 5 · 23 5, 085 a = 1, α = β, γ = δ

There also exist (pqr ⊃ pq ⊃ p) matryoshka terraces in which the units seg-
ments are not at the ends. Enthusiastic readers may wish to find examples
of these.

All these matryoshka terraces, as well as those previously appearing in the
literature have the successive internal terraces exactly at their centre. We
call such matryoshka terraces perfect. In the next section we construct both
perfect and imperfect matryoshka terraces.

Returning to type A perfect matryoshka terraces, observe that once we
have specified the first five segments the problem reduces to looking for
matryoshka terraces for Zpq of which many are available, for example in [5].
Those first five segments are defined by ten numbers:

a
α→ | b β→ | c γ→ | d δ→ | e ε→ .

Without loss of generality, we can assume that a = 1.

A computer search reveals that there are usually many valid ways to build
these first five segments for admissable values of n up to 450. Table 6 records
the result of the search, where the constraint column indicates conditions
imposed beyond the arithmetic ones that are required by the matryoshka
terrace definition and Type A structure. Table 7 gives an example for each
order. There are no type A examples for n ∈ {357, 429}.

5 A combinatorial construction

Our combinatorial method for constructing matryoshka terraces is similar
in style to one introduced by Bailey [10] to find terraces for abelian groups
of odd order that has already seen variations that construct terraces for
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Table 7: Examples of starting segments for type A matryoshka terraces

n factors segments

105 3 · 5 · 7 1
17→ | 23

17→ | 60
4→ | 10

2→ | 72
23→

165 3 · 5 · 11 1
17→ | 23

17→ | 135
9→ | 20

14→ | 123
13→

231 3 · 7 · 11 1
86→ | 32

86→ | 189
3→ | 7

14→ | 87
46→

285 3 · 5 · 19 1
17→ | 53

17→ | 255
4→ | 10

47→ | 102
78→

345 3 · 5 · 23 1
17→ | 98

17→ | 15
3→ | 10

62→ | 102
48→

non-abelian groups [1] and for narcissistic terraces [16]. In each of these
applications, it was essential to be able to find “starter-translate” terraces
in order to use the method. The variation we present here requires a slightly
different property.

Let a = (a1, a2, . . . , as) be a terrace for Zs, where s is odd, with 2-
sequencing b = (b1, b2, . . . , bs−1). Then a is starter-translate if for each x ∈
Zs \ {0} we have exactly one occurrence from the set {x,−x} among the
2-sequencing elements

b1, b3, b5, . . . , bs−2.

That is, each element, up to sign, appears once in the odd positions and
hence also once in the even positions.

Here is our variation, which has two cases depending on the parity of s−1
2 .

Let a be a terrace with the notation of the previous paragraph. If s ≡ 1
(mod 4) then a is starter-translate with a jump or, more briefly, a jump-
starter terrace if for each x ∈ Zs \ {0} we have exactly one occurrence from
the set {x,−x} among the 2-sequencing elements

b1, b3, b5, . . . , b(s−3)/2, b(s+3)/2, b(s+7)/2, . . . , bs−1.

If s ≡ 3 (mod 4) then a is a jumpstarter terrace if for each x ∈ Zs \ {0} we
have exactly one occurrence from the set {x,−x} among the 2-sequencing
elements

b1, b3, b5, . . . , b(s−1)/2, b(s+5)/2, b(s+9)/2, . . . , bs−1.

Roughly, in both cases each element, up to sign, appears once among the
odd positions in the first half of the 2-sequencing and once among the even
positions in the second half. Hence they also each occur once among the
even positions in the first half and odd positions in the second half.

109



Example 5.1 The Owens terrace, as described in [3], is a jumpstarter
terrace for Zs. When s ≡ 1 (mod 4) it is given by

(0, 1, s− 2, 3, s− 4, . . . , (s− 3)/2, (s+ 1)/2;

(s+ 3)/2, (s− 1)/2, (s+ 7)/2, (s− 5)/2, . . . , s− 1, 2)

where the semi-colon indicates a switch in the pattern. The corresponding
2-sequencing is

(1,−3, 5,−7, . . . ,−4, 2; 1;−2, 4,−6, 8, . . . ,−5, 3).

When s ≡ 3 (mod 4) It is given by

(0, 1, s− 2, 3, s− 4, . . . , (s+ 3)/2, (s− 1)/2;

(s+ 1)/2, (s+ 5)/2, (s− 3)/2, (s+ 7)/2, . . . , s− 1, 2)

with 2-sequencing

(1,−3, 5,−7, . . . , 4,−2; 1; 2,−4, 6,−8, . . . ,−5, 3).

For instance, the Owens terrace for Z13 is

(0, 1, 11, 3, 9, 5, 7, 8, 6, 10, 4, 12, 2)

with 2-sequencing
(1, 10, 5, 6, 9, 2, 1, 11, 4, 7, 8, 3).

The Owens terrace for Z15 is

(0, 1, 13, 3, 11, 5, 9, 7, 8, 10, 6, 12, 4, 14, 2)

with 2-sequencing

(1, 12, 5, 8, 9, 4, 13, 1, 2, 11, 6, 7, 10, 3).

Although jumpstarter terraces are new, in the case s ≡ 1 (mod 4) they
generalise an existing terrace property introduced in [2] and named in [3].
A terrace for Zs, where s is odd, is echoing if its 2-sequencing is of the form

(b1, b2, . . . , b(s−1)/2,±b1,±b2, . . . ,±b(s−1)/2).

When s ≡ 1 (mod 4) an echoing terrace for Zs is a jumpstarter terrace.
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At which orders s the cyclic group Zs admits an echoing terrace is an open
question. When s is a prime that has 2 as a primitive root we have the
following echoing power-sequence terrace [3, 15]:

(0, (s+ 1)/2, (s+ 1)/4, . . . , 4, 2, 1).

A power-sequence construction is also known for s ≡ 5 (mod 8) when s−2
is a prime with 2 as a primitive root [8].

We can now give the main constructions. Unlike those in earlier sections
and the broader literature, the matryoshka terraces it produces are not
narcissistic and not always perfect. For clarity, we give a simpler direct
product construction first and then generalise this in Theorem 5.4.

Theorem 5.2 Let s and t be odd with gcd(s, t) = 1. Given a jumpstarter
terrace a for Zs and a terrace c for Zt we can construct a (st ⊃ t) ma-
tryoshka terrace for Zst with c as the inner terrace. If s ≡ 1 (mod 4) then
the constructed matryoshka terrace is perfect.

Proof. Let a = (a1, a2, . . . as) and c = (c1, c2, . . . , ct) and let their 2-
sequencings be b = (b1, b2, . . . bs−1) and d = (d1, d2, . . . , dt−1) respectively.
We construct a terrace with the desired properties for Zs × Zt ∼= Zst.
Figure 1 illustrates the construction when s = 9 and t = 5 and is typical
of the general case for s ≡ 1 (mod 4); Figure 2 does the same for s = 7
and t = 5 and is typical of the general case for s ≡ 3 (mod 4).

We describe the construction for s ≡ 1 (mod 4) first. In the first coordi-
nates of the first 2t elements we alternate between a1 and a2, using them
each t times in total. Similarly, in the first coordinates of the next 2t
elements we alternate between a3 and a4. Repeat until the end of the al-
ternation between a(s−3)/2 and a(s−1)/2. The next t elements have first
coordinate a(s+1)/2. Now resume alternating, with the next 2t elements al-
ternating between a(s+3)/2 and a(s+5)/2 and keep doing so until the last 2t
elements have alternated between as−1 and as.

In the second coordinates we put all of c in order, then all of c in reverse
order and keep alternating between these.

Thinking of this as a path through Zs×Zt we get a picture much like that
in Figure 1. The path visits each vertex once and so uses each element
of Zs × Zt once.
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Figure 1: The construction of Theorem 5.2 when s = 9 and t = 5.
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Figure 2: The construction of Theorem 5.2 when s = 7 and t = 5.
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Now consider the sequence of differences. Differences of the form (0, y)
arise from horizontal lines. These appear the correct number of times as
the central t elements are (a(s+1)/2, c1), (a(s+1)/2, c2), . . . , (a(s+1)/2, ct) and
these are the only ones to give rise to a 0 in the first coordinate of the
differences. This also guarantees the matryoshka property and, after a
translation by (−a(s+1)/2, 0), that the inner terrace is a copy of c.

Elements of the form (x, 0) arise from vertical lines. These appear at and
only at positions t, 2t, . . . , (s− 1)t and these elements are

(b1, 0), (b2, 0), . . . , (bs−1, 0)

respectively. As a is a terrace we have the required number of elements of
the form (x, 0) among the differences.

Elements of the form (x, y) with x 6= 0 6= y arise from diagonal lines. These
diagonal lines come in pairs in an “×” shape in which the two lines are
either both traverseed upwards or both traversed downwards.

Such an × in a cell with top-left corner (ai, cj) and bottom-left corner
(ai+1, ci+1) will give rise to (bi, dj) and (bi,−dj) (when traversed down-
wards) or (−bi, dj) and (−bi,−dj) (when traversed upwards) . When there
is such an ×, we will have exactly one more with (±bi, dj′) and (±bi,−dj′)
where dj′ = ±dj . Again the signs on the bi depend on the the direction the
lines are traversed, but again they are the same as each other. This means
that we have at least enough occurrences of the type (±bi,±dj) whenever
there is an × corresponding to ±bi. Further, the jumpstarter property of a
guarantees that we will not have any such × with the bi′ such that bi′ = ±bi.
Therefore we have each element of the form (x, y) with x 6= 0 6= y an ap-
propriate number of times in the sequence of differences.

The construction and argument for s ≡ 3 (mod 4) are very similar. The
only difference in the construction is that initial alternations between a1
and a2, then a3 and a4 are repeated until the end of the alternation be-
tween a(s−1)/2 and a(s+1)/2. They restart with alternations between a(s+5)/2

and a(s+7)/2. Figure 2 illustrates this case of the construction.

The argument that this gives a matryoshka terrace is the same as before.
However, in this case the matryoshka terrace is not perfect as the copy of c
starts at position t(s+ 1)/2 + 1 of the terrace. 2

In the above proof the condition that gcd(s, t) = 1 is used only to make
the resultant group cyclic: Zs × Zt ∼= Zst. Without this condition the
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construction still gives matryoshka terraces (with the obvious definition)
for non-cyclic groups.

Example 5.3 Take the centred Owens jumpstarter terrace a for Z9 and
let c be the following centred terrace for Z5:

a = (4, 5, 2, 7, 0, 1, 8, 3, 6)

c = (1, 2, 0, 3, 4)

(The terrace c is an example of the first known infinite family of terraces
called the Lucas-Walecki-Williams terraces; see [14], for example, for more
details.) We construct a (45 ⊃ 5) matryoshka terrace for Z45 from these
using Theorem 5.2. (We leave Z45 written as Z9 × Z5 to make it easier to
track the method of construction.)

(4, 1), (5, 2), (4, 0), (5, 3), (4, 4), (5, 4), (4, 3), (5, 0), (4, 2), (5, 1),

(2, 1), (7, 2), (2, 0), (7, 3), (2, 4), (7, 4), (2, 3), (7, 0), (2, 2), (7, 1),

(0, 1), (0, 2), (0, 0), (0, 3), (0, 4),

(1, 4), (8, 3), (1, 0), (8, 2), (1, 1), (8, 1), (1, 2), (8, 0), (1, 3), (8, 4),

(3, 4), (6, 3), (3, 0), (6, 2), (3, 1), (6, 1), (3, 2), (6, 0), (3, 3), (6, 4).

We now remove the need for the coprimality condition:

Theorem 5.4 Let s and t be odd. Given a jumpstarter terrace a for Zs
and a terrace c for Zt we can construct a (st ⊃ t) matryoshka terrace
for Zst with c as the inner terrace. If s ≡ 1 (mod 4) then the constructed
matryoshka terrace is perfect.

Proof. The construction is very similar to that of Theorem 5.2. We em-
bed Zt in Zst in the natural way, take c to be the terrace as before, and
choose elements of the cosets in Zst/Zt to be “compatible” with the ter-
race a to make the construction work. This generalises Theorem 5.2 analgo-
usly to the generalisation of Bailey’s direct product construction for starter-
translate terraces of Anderson and Ihrig [1, 10].

Let ā = (ā1, ā2, . . . , ās) be a sequence in Zst with differences (b̄1, b̄2, . . . , b̄s−1)
given by b̄i = āi+1 − āi for each i. Say that ā is compatible with the ter-
race a = (a1, a2, . . . as) in Zst/Zt ∼= Zs if each āi is in the coset ai and
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whenever bi = bj in the differences of a we have b̄i = b̄j and whenever we
have bi = −bj in the differences of a we have b̄i = −b̄j . Given a terrace
for Zs we can always choose a compatible sequence for it in Zst by selecting
each element in turn, observing the conditions as we proceed [1].

Now, performing the construction of Theorem 5.2 on ā and c gives us
exactly the terrace we need. The compatibility condition ensures that the
× pieces give us the required differences for very similar reasons to the
direct product case. 2

Example 5.5 Take a to be the following compatible choice in Z25 of the
Owens terrace for Z5 and c to be the centred LWW terrace as in the previous
example, but now the appropriate subgroup for c is {0, 5, 10, 15, 20, 25}:

a = (2, 23, 0, 4, 6)

c = (5, 10, 0, 15, 20)

Then Theorem 5.4 gives the following perfect (25 ⊃ 5) matryoshka terrace
for Z25:

(7, 8, 2, 13, 22, 18, 17, 23, 12, 3; 5, 10, 0, 15, 20; 24, 21, 4, 16, 9, 11, 14, 6, 19, 1).

We defined jumpstarter terraces with the “jump” as close to the middle
of the terrace as possible in order to place the internal terrace of the ma-
tryoshka terrace as centrally as possible. However, the jump may be placed
anywhere and Theorems 5.2 and 5.4 still go through (with the exception
that the terraces in the 1 mod 4 case will not be perfect). More precisely,
the 2-sequencing (b1, b2, . . . , bs−1) of the terrace for Zs (s odd) must contain
exactly one occurrence from each set {x − x} for x ∈ Zs \ {0} among the
elements

b1, b3, . . . by−2, by; by+3, by+5, . . . , bs−1

for some odd y, where the semi-colon represents the jump. (We thank an
anonymous referee for this observation.)

Theorem 5.4 allows us to construct matryoshka terraces with arbitrary
nesting structures and perfect matryoshka terraces with arbitrary nesting
structures provided that none but possibly the innermost terrace has order
congruent to 3 (mod 4).

Corollary 5.6 Let s1, s2, . . . , sk be odd. There is a

(s1s2 · · · sk ⊃ s2 · · · sk ⊃ · · · ⊃ sk)
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matryoshka terrace for Zs1s2···sk . Further, if s1 ≡ s2 ≡ · · · ≡ sk−1 ≡ 1
(mod 4) then there is a perfect matryoshka terrace for Zs1s2···sk .

Proof. Repeatedly apply Theorem 5.4 using the Owens terrace as the jump-
starter one. 2
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