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Abstract: A k-edge-coloring of a graph G is a mapping from E(G) into
{1, 2, . . . , k}. If, in addition, incident edges of G receive distinct colors, then
the coloring is a proper edge-coloring. A subgraph H of an edge-colored
graph G is a rainbow subgraph provided all the edges of H are of distinct
colors.

In this paper, we study the existence of rainbow cycle designs of complete
graphs in which the edge-coloring is either prescribed or arbitrarily given.

1 Introduction and preliminaries

In an edge-colored graph, a subgraph is monochromatic if all its edges
receive the same color and the subgraph is a heterochromatic (or multicol-
ored, rainbow) subgraph provided all its edges receive distinct colors. The
study of finding either monochromatic or heterochromatic subgraphs in an
edge-colored graph has a long history, see [10]. Most of the effort has been
on finding monochromatic subgraphs in edge-colored complete graphs since
the result is closely related to graph decompositions and the existence of
Ramsey numbers.

As to finding rainbow subgraphs, we shall focus on the graphs which are
properly edge-colored, i.e., incident edges receive distinct colors. Both of
them are interesting topics in research. In this paper, we shall study the
existence of rainbow cycles in properly edge-colored complete graphs. The
following results are known.
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Theorem 1.1 ([5]). For each m ≥ 3, there exists a proper (2m − 1)-
edge-coloring such that K2m can be decomposed into m isomorphic rainbow
spanning trees.

Theorem 1.2 ([6]). For each m ≥ 2, there exists a proper (2m+ 1)-edge-
coloring of K2m+1 such that K2m+1 can be decomposed into m rainbow
Hamilton cycles.

An H-design of G is a decomposition of G such that all its members are
isomorphic to H , denoted by H | G. Furthermore, if G is edge-colored and
each member H is a rainbow subgraph, then we have a rainbow H-design
of G, denoted by H |R G. In case that G ∼= Kn, we simply call it a rainbow
H-design of order n.

Therefore, we obtain a rainbow Hamilton cycle design of order 2m + 1.
Motivated by the above results, we are interested in the following problems.

Problem 1. Can we find a χ′(G)-edge-coloring and an H-decomposition
of G such that each member of the decomposition is a rainbow subgraph?

Problem 2. Given a properly edge-coloring of G, can it be decomposed into
subgraphs such that each member is isomorphic to H and also each member
is a rainbow subgraph?

Both of the above problems are easy to solve if the subgraphs do have
certain structure, for example triangles and stars. But, it won’t be that
trivial if we have a larger subgraph to consider. Since our focus is on
complete graph of order n, the H-decomposition obtained in Problem 1
will be referred to as a “weak” rainbow H-design of order n and the one
obtained in Problem 2 is a “strong” rainbow H-design of order n.

In this study, we shall mainly focus on cycle decomposition of Kn. A graph
G is called k-sufficient if the order of G, |G| ≥ k, each vertex is of even
degree and k divides the size of G. The following cycle-decomposition is
well known.

Theorem 1.3 ([1]). Kn (respectively Kn − F ) can be decomposed into k-
cycles if and only if Kn (respectively Kn − F ) is k-sufficient. Here, F is a
1-factor of Kn provided n is even.

119



2 The main results

Throughout of this section, for the prescribed edge-colorings we shall use
the following edge-colorings. Since they are easy to see, we omit their
proofs.

Lemma 2.1. Let V (K2m+1) = {vi|i ∈ Z2m+1}. Let ϕ : E(K2m+1) →
Z2m+1 be defined as follows: ϕ({vi, vj}) ≡ i+ j (mod 2m+1). Then, ϕ is
a proper (2m+ 1)-edge-coloring of K2m+1.

Lemma 2.2. Let Km,m = (A,B) where A = {ai|i ∈ Zm} and B = {bi|i ∈
Zm}. Let π be an edge-coloring of Km,m such that π({ai, bj}) ≡ j − i
(mod m). Then, π is a proper m-edge-coloring of Km,m.

For the decomposition of K2m+1 and Km,m we need the following labelings.
For more information about this idea, the readers may refer to [11, 12].

Definition 2.3. Let f be a labeling of a graphH of size k defined on Z2k+1,
i.e., f : V (H) → Z2k+1. Let e = {x, y} be an edge of H . Then, min{(2k +
1)−|f(x)−f(y)|, |f(x)−f(y)|} is known as the (circular) difference of e. f is
a ρ-labeling of H if all edges of H receive distinct differences. Furthermore,
f is a bipartite p-labeling provided that f is a ρ-labeling and there exists a
λ such that for each edge e, exactly one of the two vertices of e receives a
label at most λ.

For example, if we use (0, 4, 2, 3) to denote the labeling of (v0, v1, v2, v3),
then we have a bipartite ρ-labeling defined on Z9.

It is well-known that if H is of size k and H has a ρ-labeling defined on
Z2k+1, then H | K2k+1. The construction is known as the cyclic decom-
position. If, furthermore, H has a bipartite ρ-labeling defined on Z2k+1,
then H | K2tk+1 for all t ∈ N. For convenience, we list the above results as
lemmas.

Lemma 2.4 ([12]). If |E(H)| = k and H has a ρ-labeling defined on Z2k+1,
then K2k+1 can be decomposed cyclically into copies of H. Moreover, if ρ
is a bipartite labeling, then K2tk+1 can be decomposed cyclically into copies
of H.

In order to obtain rainbow designs of complete graphs, we need following.
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Definition 2.5. Let f be a labeling of H defined on Z2k+1. Let e = {x, y}
be an edge of H . Then f(x) + f(y) (mod 2k + 1) is called the weight of
e. If the weights of all edges in H are distinct, then f is called a rainbow
labeling of H .

The reason that this labeling is called “rainbow” is due to the edge-coloring
we use for K2k+1 in Lemma 2.1.

Theorem 2.6. For each l = 4t, t ∈ N, Cl has a rainbow bipartite ρ-labeling
defined on Z2l+1.

Proof. The proof follows by giving the labelings.

Case 1. t = 2k, k ∈ N.

For convenience, let Cl = (a0, b0, a1, b1, . . . , a2t−1, b2t−1) = (a0, b0, a1, b1,
. . . , a4k−1, b4k−1). Let f be the labeling defined as follows:

f(ai) = i, 0 ≤ i ≤ 4k − 1;

f(bi) =





8t− 3i− 3 0 ≤ i ≤ k − 2;

8t− 3i− 4 k − 1 ≤ i ≤ 3k − 2;

8t− 3i− 5 3k − 1 ≤ i ≤ 4k − 2;

8t i = 4k − 1.

Now, it is a routine matter to check that f is indeed a rainbow bipartite
ρ-labeling defined on Z2l+1.

Case 2. t = 2k + 1, k ∈ N ∪ {0}.

Again we can find the labeling of Cl = (a0, b0, a1, b1, . . . , a4k+1, b4k+1) di-
rectly. Let f be the labeling defined as follows:

f(ai) = i, 0 ≤ i ≤ 4k + 1;

f(bi) =





8t− 3i− 3 0 ≤ i ≤ k − 1;

8t− 3i− 4 k ≤ i ≤ 3k;

8t− 3i− 5 3k + 1 ≤ i ≤ 4k;

8t i = 4k + 1.

For convenience of checking, we present two examples for reference.
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Example 1. t = 6 (k = 3)

The labeling of C24 is (0, 45, 1, 42, 2, 38, 3, 35, 4, 32, 5, 29, 6, 26, 7, 23, 8, 19, 9,
16, 10, 13, 11, 48). Therefore, the differences are: 〈4, 5, 8, 9, 13, 14, 17, 18, 21,
22, 24, 23, 20, 19, 16, 15, 11, 10, 7, 6, 3, 2, 12, 1〉 and the weights (mod 49) are:
〈45, 46, 43, 44, 40, 41, 38, 39, 36, 37, 34, 35, 32, 33, 30, 31, 27, 28, 25, 26, 23, 24,
10, 48〉.

Example 2. t = 9, t = 2k + 1. (k = 4)

The labeling of C36 is (0, 69, 1, 66, 2, 63, 3, 60, 4, 56, 5, 53, 6, 50, 7, 47, 8, 44,
9, 41, 10, 38, 11, 35, 12, 32, 13, 28, 14, 25, 15, 22, 16, 19, 17, 72). Therefore, the
differences are: 〈4, 5, 8, 9, 12, 13, 16, 17, 21, 22, 25, 26, 29, 30, 33, 34, 36, 35, 32,
31, 28, 27, 24, 23, 20, 19, 15, 14, 11, 10, 7, 6, 3, 2, 18, 1〉 and the weights are: 〈69,
67, 68, 65, 66, 63, 64, 60, 61, 58, 59, 56, 57, 54, 55, 52, 53, 50, 51, 48, 49, 46, 47, 44,
45, 41, 42, 39, 40, 37, 38, 35, 36, 18, 72〉.

Corollary 2.7. For each l = 4t, k ∈ N, there exists a weak rainbow l-cycle
design of order 2lk + 1.

Proof. By adapting the coloring defined in Lemma 2.1 and the bipartite
ρ-labeling of Cl (l = 4t) defined on Z2l+1 (Theorem 2.6), we conclude the
proof.

As a matter of fact, if l = 2s, s ≥ 2, then an l-cycle design of order n exists
if and only if n ≡ 1 (mod 2l). Therefore, we also have the following

Corollary 2.8. For l = 2s, s ≥ 2, a weak rainbow l-cycle design of order
n exists if and only if n ≡ 1 (mod 2l).

For the case that the cycle length is odd, we also obtain a rainbow ρ-labeling
for l ≡ 3 (mod 4).

Theorem 2.9. There exists a rainbow ρ-labeling for l ≡ 3 (mod 4) defined
on Z2l+1.

Proof. We present its labeling directly.
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Let l = 4t+ 3 and the labeling f be defined on Z2l+1 as follows,

f(ai) = i, 0 ≤ i ≤ 2t+ 1;

f(bi) =





8t− 3i+ 4, 0 ≤ i ≤
⌈
t−3
2

⌉
;

8t− 3i+ 3,
⌈
t−1
2

⌉
≤ i ≤

⌈
3t−1
2

⌉
;

8t− 3i+ 2,
⌈
3t+1
2

⌉
≤ i ≤ 2t.

Then, it is a routine mater to check that f is a rainbow ρ-labeling defined
on Z2l+1.

Example 3. l = 4t+ 3 and t = 6.

The labeling of C27 is (0, 52, 1, 49, 2, 46, 3, 42, 4, 39, 5, 36, 6, 33, 7, 30, 8, 27, 9,
24, 10, 20, 11, 17, 12, 14, 13). Therefore, the differences are: 〈3, 4, 7, 8, 11, 12,
16, 17, 20, 21, 24, 25, 27, 26, 23, 22, 19, 18, 15, 14, 10, 9, 6, 5, 2, 1, 13〉 and the
weights (mod 55) are 〈52, 53, 50, 51, 48, 49, 45, 46, 43, 44, 41, 42, 39, 40, 37, 38,
35, 36, 33, 34, 30, 31, 28, 29, 26, 27, 13〉.

Since a cyclic shift will not change the order of differences and also keep
the weights distinct, we have the following corollary.

Corollary 2.10. There exists a weak a rainbow l-cycle design of order
2l+ 1 for each l ≡ 3 (mod 4).

We remark here that for cycle length l ≡ 1 or 2 (mod 4), there are weak
rainbow cycle designs for small orders. But, no systematic decomposition
is obtained at this moment.

3 Decomposing K2m,2m

If l ≡ 0 (mod 4) and Kkl,kl is edge-colored using the coloring given in
Lemma 2.2, then Kkl,kl can be decomposed cyclically into rainbow l-cycles.

Theorem 3.1. If l ≡ 0 (mod 4), then Cl |R Kkl,kl for each k ≥ 1.

Proof. It suffices to find a cycle Cl in Kl,l such that all the l edges are of
l distinct differences and thus distinct colors. For convenience, let l =
4t, V (Kl,l) = A ∪ B where A = {ai|i ∈ Zl} and B = {bi|i ∈ Zl}.
Therefore, the bipartite difference of ai and bj is i − j (mod l). Since
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the pattern of the cycle can be seen easily, we list the cycle directly:
Z1 : (a0, bl, a1, bl−1, . . . , at−1, b3t, at+1, b3t−1, at+1, b3t−2, . . . , a2t, b2t). So,
the differences are: 〈l, l − 1, l − 2, . . . , 2t + 1, 2t − 1, 2t − 2, . . . , 1, 0, 2t〉 as
desired.

Now, for the Cl-decomposition of Kkl,kl, we define Zj for 2 ≤ j ≤ k. Since
Z1 is obtained in a bipartite graph, Zj can be defined as follows: (1) Fixed
aj for j ∈ Zl and (2) add (j − 1)l to the indices of bi’s. Hence, in Zj , the
differences are: 〈jl, jl−1, . . . , 1, 0, 2t+(j−1)l〉. This implies that Kkl,kl can
be decomposed in l-cycles cyclically. Furthermore, each cycle is a rainbow
cycle.

For the case l ≡ 2 (mod 4), we have a weaker results.

Theorem 3.2. If l ≡ 2 (mod 4), then Cl |R Kkl,kl for each even integer
k.

Proof. Let l = 4t + 2. It suffices to find two base cycles C and D for the
decomposition of K2l,2l into l-cycles. Note that the differences we reserve
for them are {0, 1, 2, . . . , l− 2, l} for C and {l− 1, l+1, l+2, . . . , 2l− 1} for
D. Now, by using the notation in Theorem 3.1, let

C = (a0, al, a2, bl−1, a3, bl−2, . . . , a l
2+1, b l

2+1)

and

D = (a0, b2l−1, a1, b2t−2, . . . , at, b2l−t−1, at+2, b2l−t−2,

. . . , a l
2−1, b2l−2t, a2t+1, b2l−2t−2)

= (a0, b8t+3, a1, b8t+2, . . . , at, b7t+3, at+2, b7t+2, . . . , a2t, b6t+4, a2t+1, b6t+2).

Since all the differences in C and D are all distinct, the proof follows by a
similar argument as that in Theorem 3.1.

By using Theorem 3.2, and the fact that

C6 |R K13 (base cycle: (0, 5, 6, 8, 11, 4))

and

C10 |R K21 (base cycle: (0, 11, 20, 7, 6, 3, 1, 15, 9, 5)),

we are able to obtain the following results:
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Proposition 3.3. C6 |R K12t+1 for each t ∈ N.

Proof. Let V (K12t+1) = {∞}∪{(i, j)|i ∈ Zt and j ∈ Z12}. Since both K13

and K12,12 can be decomposed into 6-cycles, C6 | K12t+1. For convenience,
we shall use the base cycles used in C6 |R K13 and C6 |R K12,12 respectively.
Now, all we need is an edge-coloring of K12t+1 which uses 12t+ 1 colors.

Case 1. t is even.

Color each complete graph induced by {∞}∪{(i, j)|j ∈ Z12} for i ∈ Zt with
colors {0, 1, 2, . . . , 12} using Lemma 2.1. Let π be a (t− 1)-edge-coloring of
Kt where V (Kt) = Zt. Let the set of colors be {1, 2, . . . , t− 1}.

b

b b b b b b b b b b b b

b b b b b b b b b b b b

b b b b b b b b b b b b

b b b b b b b b b b b b

b

b

b

(0,0) (0,1) (0,2) (0,11)

∞

Figure 1: Basic construction K12,12

Now, color the complete bipartite graph induced by {(i1, j)|j ∈ Z12} ∪
{(i2, j)|j ∈ Z12} with π({i1, i2}) · 12 + j, j ∈ Z12. (Using Lemma 2.2)

Since all the 6-cycles obtained in either K13 or K12,12 are rainbow 6-cycles,
the proof follows.

Case 2. t is odd.

We adjust the edge-coloring accordingly. First, we find a t-edge-coloring
of Kt with V (Kt) = {vi|i ∈ Zt}, called π. Let the set of colors used be
{0, 1, . . . , t− 1}. Clearly, for each color s ∈ Zt, s is missing at exactly one
vertex vs. Now, we reserve the set colors {0}∪{s·12+j+1 | j ∈ Z12} for the
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complete graph K13 induced by {∞}∪{(s, j)|j ∈ Z12} (using Lemma 2.1).
Furthermore, we use {s · 12+ j+1|j ∈ Z12} to color the complete bipartite
graph K12,12 induced by {(i1, j)|j ∈ Z12} ∪ {(i2, j)|j ∈ Z12} (using Lemma
2.2) where π({vi1 , vi2}) = s. Based on this edge-coloring, all 6-cycles in
the decomposition are rainbow 6-cycles, this concludes the proof of this
case.

Proposition 3.4. C10 |R K20t+1 for each t ∈ N.

Proof. It follows by the same argument.

In fact, this idea can be applied to find Cl |R K2lt+1 as long as we know
that both Cl |R K2l+1 and Cl |R K2l,2l.

By way of the same technique, we are able to find some weak rainbow cycle
designs of K2m − F where F is a 1-factor of K2m. The following cycle
decomposition is known.

Theorem 3.5 ([1]). For all k ≥ 3, Ck | K2m − F if and only if K2m − F
is k-sufficient.

Proposition 3.6. A weak rainbow l-cycle design of K2l+2 − F exists pro-
vided l ≡ 0 or 3 (mod 4).

Proof. First, we give an edge-coloring of K2l+2 − F which uses 2l colors.
Let V (K2l+2) = Z2l+2. By letting {2l + 1, i} be colored i and retain the
edge-coloring defined forK2l+1 in Lemma 2.1, we have (2l+1)-edge-coloring
of K2l+2. Subsequently, we can delete the edges colored 2l+ 1 to obtain a
2l-edge-coloring of K2l+2 − F .

Now, in fact, we can use similar base cycles in Theorem 2.6 and 2.9 to
construct weak rainbow l-cycle designs of K2l+2 − F for respective cases
l ≡ 0 or 3 (mod 4).

For l ≡ 0 (mod 4), we use l = 24 as an example to explain the similarity
between them. In C24 |R K49, the labeling of C24 is

(0, 46, 1, 43, 2, 39, 3, 36, 4, 33, 5, 29, 6, 26, 7, 23, 8, 19, 9, 16, 10, 13, 11, 49)

and the labeling of C24 in C24 |R (K50 − F ) is

(0, 45, 1, 42, 2, 38, 3, 35, 4, 32, 5, 29, 6, 26, 7, 23, 8, 19, 9, 16, 10, 13, 11, 48).
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The difference between them will be the labeling of bi’s. In order to have
the same difference, for 0 ≤ i ≤ k, and i = 2k, where l = 4k + 2, the new
label is f(bi) + 1. So, in fact the labeling of C24 in the decomposition of
K50 − F is also a bipartite ρ-labeling.

On the other hand, for l ≡ 3 (mod 4), we can obtain a new labeling (ρ-
labeling) for Cl in K2l+2 − F similarly. This concludes the proof.

We remark here that if rainbow path-decompositions are being considered,
then a rainbow bipartite ρ-labeling can be obtained by a similar manner.
There are also special cases which can be done. For example, if n is an odd
integer and k + 1 is a factor of n, then a weak rainbow ρk+1-design exists.
This is a direct consequence of the existence of a rainbow Hamilton cycle
design of order n (Theorem 1.2).

4 Strong rainbow cycle designs

In what follows, we consider the case when the edge-coloring is arbitrarily
given. In an early work, Fu et al. [7] proved that if K2m is (2m− 1)-edge-

colored, then we can find at least ⌊ (2m+9)1/2

3 ⌋ rainbow spanning trees (not
necessarily be isomorphic). For isomorphic rainbow spanning trees, we can
find three so far, [8]. So, it is interesting to know how many rainbow k-
cycles, k ≤ 2m + 1, can we find in a (2m + 1)-edge-colored K2m+1 or a
2m-edge-colored K2m,2m for each m ∈ N.

Theorem 4.1. For each m ≥ 3, there exists a strong rainbow 4-cycle design
of K2m,2m.

Proof. Let ϕ be an arbitrarily given edge-coloring of K2m,2m = (A,B)
where A = {ai|i ∈ Z2m} and B = {bi|i ∈ Z2m}. Now, we consider the
subgraph G induced by {a0, a1} ∪B. Clearly, if we can decompose G into
rainbow 4-cycles, then the proof follows by taking two other vertices of A
in turn and apply the same decomposition.

For convenience, let ci = ϕ(a0bi), and di = ϕ(a1bi), i ∈ Z2m. Since ϕ is a
proper edge-coloring, for each i ∈ Z2m, ci 6= di. Moreover, ci 6= cj and di 6=
dj , 0 ≤ i 6= j ≤ 2m− 1. Now, we define a graph H where V (H) = {ci|i ∈
Z2m} ∪ {dj |j ∈ Z2m} and E(H) = {{ci, di}|i ∈ Z2m}. Therefore H has
exactly 2m edges. Moreover, ∆(H) ≤ 2 since both {ci|i ∈ Z2m} and {dj |j ∈
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Z2m} are 2m-sets. degH(ci) = 2 (respectively degH(dj) = 2) if and only if
ci = dj′ for some j′ ∈ Z2m (respectively dj = ci′ for some i′ ∈ Z2m). For
example, if (c0, c1, c2, c3, c4, c5) = (1, 2, 3, 4, 5, 6) and (d0, d1, d2, d3, d4, d5) =

(3, 5, 4, 1, 7, 2) then H ∼= b b b b b b b

1 3 4 6 2 5 7 .

Claim. H can be decomposed into m matchings of size 2 if m ≥ 3.

By Vizing’s Theorem [13], χ′(H) ≤ 3 since ∆(H) ≤ 2. This implies that
H has an equitable m-edge-coloring such that each color class is of size 2,
[14]. Thus, we have the claim.

Finally, we observe that a matching of size two induces a rainbow 4-cycle.
Let {i1, j1} and {i2, j2} be the edges in a 2-matching. Therefore, in π,
ci1 → dj1 and ci2 → dj2 . Since for some x and y, ϕ(a0bx) = ci1 , ϕ(a1bx) =
dj1 , ϕ(a0by) = ci2 and ϕ(a1by) = dj2 , these four distinct colors are used
in the cycle (a0, bx, a1, by) which is a rainbow 4-cycle. This completes the
proof.

Corollary 4.2. Let Kn1,n2,...,nk
be a complete t-partite graph with an ar-

bitrary proper edge-coloring. If each ni, i = 1, 2, . . . , t, is even and ni ≥ 6,
then there exists a strong rainbow 4-cycle design of Kn1,n2,...,nt .

In order to determine whether an (8t+1)-edge-colored 4-sufficient complete
graph K8t+1 can be decomposed into rainbow 4-cycles, we need to solve the
following problem first.

Problem. Let K9 be properly edge-colored with at least 9 colors. Can this
graph be decomposed into rainbow 4-cycles?

Clearly, if this problem can be solved, then we can apply the well-known
(8t + 1)-construction and Theorem 4.1 to prove that a strong rainbow 4-
cycle design of Kn exists if and only if n ≡ 1 (mod 8). So far, we are not
able to settle this problem. But, we are able to prove this result except if
n = 9 and 17.

Proposition 4.3. For each t ≥ 3, a strong 4-cycle design of K8t+1 exists.

Proof. Suppose we are given an arbitrary proper edge-coloring of K8t+1.
First, note that K2,2t | K8t+1 since K2,2t has the following bipartite ρ-
labeling ϕ defined on Z8t+1: let K2,2t = 〈{a0, a1}, {b0, b1, . . . , b2t−1}〉,
ϕ(a0) = 0, ϕ(a1) = 2t, and ϕ(bi) = i + 2t, i ∈ Z2t. By adapting the colors
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on each K2,2t, we have an edge-colored K2,2t. Now, the proof follows by
the argument used in Theorem 4.1.

Concluding remark.

It seems quite possible to obtain a weak rainbow l-cycle design of Kn or
Kn − F as long as they are k-sufficient. At least, we have shown some of
the cases are possible:

(1) l = 4t and n = 2lk+1, l ∈ N;

(2) l = 4t+ 3 and n = 2l+ 1;

(3) l = 0 or 3 (mod 4), Cl |R K2l+2 − F .

As to finding a strong rainbow cycle designs, we believe that it is much
harder when the cycle length is getting large.
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