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Abstract: We continue our investigations of burn-off chip-firing games
from [Discrete Math. Theor. Comput. Sci. 15 (2013), 121–132], [Australas.
J. Combin. 68 (2017), 330–345], and [On lengths of burn-off chip-firing
games, 2016, submitted]. The middle article introduced randomness by
choosing successive seeds uniformly from the vertex set of a simple graph.
The length ` of a game is the number of vertices that fire (by sending
a chip to each neighbour and annihilating one chip) as an excited chip
configuration settles to a relaxed state. This article determines explicitly
the game-length distribution (p`)

n
`=0 in a long course of burn-off games on

a complete graph Kn. Thus we recover the corresponding enumeration
results obtained by Cori, Dartois, and Rossin [Avalanche polynomials of
some families of graphs, Mathematics and computer science III, Trends
Math., 81–94, Birkhäuser, 2004]. We give two proofs of our main theorem:
one working from first principles; the other invoking a result from the third
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listed article. Additionally, we include a combinatorial verification that (p`)
defines a probability distribution; this depends on a century-old identity
known to Dziobek [Eine Formel der Substitutionstheorie, Sitzungsber. Berl.
Math. Ges. 16 (1917), 64–67].

Keywords: chip-firing, burn-off game, complete graph, relaxed legal config-
uration, game-length probability, limiting distribution, Markov chain

1 Introduction

This article continues our investigations in [28, 29, 37] of a variant of chip-
firing games—burn-off games—in which each iteration simulates the loss of
energy from a complex system. Postponing a few definitions until §1.1, we
begin by recalling the Markov chain (Xk)k≥0 from [37]. The state space
of (Xk) is the set R of relaxed legal configurations on a connected graph
G = (V,E). A transition from a given configuration in R is determined by
randomly seeding a vertex and relaxing the resulting configuration. (See
before Theorem 2.8 for a more precise definition of (Xk).) We proved in
[37] that (Xk) is irreducible, has a doubly stochastic transition matrix, and
therefore has a uniform stationary distribution. In [29], we exemplified
this result by combining it with theorems counting the pairs (σ, v) ∈ R×V
corresponding to possible game lengths. This shed light on the game-length
distribution in a long burn-off game sequence for a general graph.

In this paper, we narrow our scope to complete graphs Kn and consequently
sharpen the results in [29]. Whereas the expression in Theorem 2.7 below
(from [29]) for the number of pairs (σ, v) resulting in a game of length
` > 0 is generally not closed, in the case of complete graphs, we find it to
be tractable. For integers m ≥ 1 and ` ∈ {0, 1, . . . , n}, let Λm(`) denote
the number of games of length ` occurring during the first m transition
epochs of (Xk) played on Kn. Our main result determines the distribution
of Λm(·)/m over a long course of burn-off games:

1.1 Theorem. With probability one,

lim
m→∞

Λm(`)

m
=





(
n

`

)
``−1(n− `+ 1)n−`−1

n(n+ 1)n−1
for 1 ≤ ` ≤ n,

n− 1

n+ 1
for ` = 0.

(1)
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Of course, we aren’t the first authors to study chip-firing games on complete
graphs; a recent reference is [44]. Nor are we alone in considering (Xk);
see, e.g., [26] for the latest on this Markov chain. If we weren’t the first
to examine (Xk)—starting in the early 2000’s for [36]—then we arrived
at this process independently. And though others have investigated game
length (e.g., [23, 33, 42]), Theorem 1.1 marks the first published version
of the limiting distribution of Λm(·)/m. This is not to say the required
combinatorics is new. Prior to the completion of [36], the enumeration
results needed for Theorem 1.1 also appeared in [14]—part of the abelian
sandpile and parking function literature. Aside from two new proofs, an
advantage of our approach is to focus the results through a probabilistic
lens based on our analysis in [29, 37] of the Markov chain.

Brief background on chip firing

In solving some geometry/linear algebra problems, Spencer [41] introduced
his so-called ‘balancing game’: start with a pile of N chips at the centre of a
long path; in the first step, move bN/2c chips to the right and bN/2c chips
to the left (leaving one in place if N is odd). In the second step, the game
continues with the two new piles, and so on. Subsequently, Anderson et
al. [1] considered a variant of the balancing game, after which Björner et al.
studied a natural generalization to graphs [7] and then to digraphs [6]. For
graphs, their ‘chip-firing game’ is almost the same as burn-off chip firing
(cf. §1.1 below), except the threshold for a vertex v to fire is deg(v) (cf.
deg(v) + 1) and firing v eliminates no chips (cf. one chip).

In several guises, chip firing has been studied deeply, by various approaches,
and touches on numerous concepts: e.g., legal game sequences [6, 7], the
chromatic polynomial [5], the Tutte polynomial [4, 35], the critical group [3],
and G-parking functions [2]. The chip-firing game is essentially a disguised
‘abelian sandpile model’, introduced earlier by Dhar [16]; see also [18].
For other results related to algebraic aspects and properties, see, e.g., [12,
34]. Chip firing on graphs evidently concerns—and indeed unites—many
concepts in graph theory and algebra.

Motivation for burn-off chip firing

In a (standard) chip-firing game, the total number of chips residing on
the host graph remains constant throughout the game’s execution. So one
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might guess that a game initialized with sufficiently many chips will con-
tinue indefinitely, i.e., have infinite game length. This intuition is correct,
but the question of when a game is finite has a more subtle answer, found
by Björner et al. [7] (see §1.1 below for terminology). In the statement of
their theorem, G is a connected graph of order n, size m (= |E(G)|), and
N denotes the total number of chips in a configuration on G.

1.2 Theorem ([7]).
(a) If N > 2m− n, then all chip-firing games on G have infinite length;
(b) if m ≤ N ≤ 2m − n, then there exists an initial configuration on G
leading to a game of finite length and also one leading to a game of infinite
length;
(c) if N < m, then all chip-firing games on G have finite length.

In a paper predating even [7], Tardos [42] showed that for games of finite
length, the length is bounded by a polynomial in n (namely O(n4)). See
the paragraph preceding Lemma 2.2 below for more references to length
investigations in the chip-firing literature.

One motivation for introducing burn-off chip-firing games in [36] was to
force all games to have finite length; see [28] for other motivations and [3]
for an earlier-defined game equivalent to burn-off games. Finiteness follows
because in these games, the total number of chips decreases by one during
each firing event. This opens the door for studying the probability distri-
bution of game length during a long course of suitably randomized burn-off
games. And indeed, such a study for complete graphs is the purpose of the
present paper.

Outline

We hazard no further literature review and instead point the reader to the
surveys [24, 34], to the book [22], to the thorough yet concise piece [31],
and to our earlier papers [28, 29, 37]. The rest of this article is organized
as follows. First (in §1.1), we review the basic chip-firing notions, including
the undefined terms already encountered. Section 2 records several earlier
supporting results. Section 3 presents two propositions counting germane
subsets of ‘relaxed legal configurations’ on complete graphs. These are
needed for our main proof of Theorem 1.1 in Section 4. We end that section
with three short passages: one offering an alternate proof of the main case in
(1); one specifying the connection between our results and those in [14]; and
one confirming combinatorially that (1) defines a probability distribution.
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We close with the brief Section 5, which contrasts our main result with
extant conclusions within the self-organized criticality literature typically
accompanying chip-firing studies.

Notation and terminology

All graphs in this paper are finite, simple, undirected, and usually complete.
We use ‘general graph’ when we wish to emphasize that a graph may not
be complete (or even connected, for that matter). The order of a graph
G = (V,E) is denoted by n (:= |V |) and the number of its spanning trees
by τ = τ(G). See [9] for omitted graph theory items and [21] for probability
background. Finite Markov chains are also introduced in [40] and [43]. A
reference addressing chip firing specifically is [22].

1.1 Burn-off chip firing

Beginning with a (chip) configuration on G—i.e., a function σ : V → N—a
burn-off (chip-firing) game plays as follows. For a vertex v, if σ(v) exceeds
degG(v), then v can fire, meaning it sends one chip to each neighbour and
eliminates one chip from further play. Formally, when v fires, σ morphs to
a successor configuration σ′ such that

σ′(u) =





σ(v)− degG(v)− 1 if u = v,
σ(u) + 1 if uv ∈ E(G),
σ(u) otherwise.

(2)

A relaxed configuration is one for which no vertex can fire. To start a
burn-off game, we add a chip to a selected vertex v (called a seed) in a
relaxed configuration σ; this is called seeding σ at v. Writing 1v for the
configuration with a total of one chip, on v only, we capture ‘seeding σ at
v’ algebraically by passing from σ to σ + 1v. Just prior to seeding, if v
happened to be critical, meaning σ(v) = degG (v), then from σ+1v, we fire
v, which may trigger a neighbour u of v to become supercritical, meaning
its new chip count exceeds degG (u). If so, we fire u, which may cause
another vertex to become supercritical. The game continues this cascade
until reaching a relaxed configuration, called a relaxation of σ + 1v. The
game length equals the number of vertex firings, possibly zero, in passing
from the initial relaxed configuration to the final one.

‘Legal’ configurations are those typically encountered in a long game se-
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quence; to define these formally, as we did in our earlier papers [28, 29, 37],
we begin by calling a configuration supercritical if every vertex is supercrit-
ical. Now consider what happens when a burn-off game is played in reverse.
Looking at (2), we see that to start in a configuration σ′ and reverse-fire a
vertex v (each of whose neighbours u necessarily satisfies σ′(u) ≥ 1) means
to modify σ′ to a configuration σ such that

σ(u) =





σ′(v) + degG(v) + 1 if u = v,
σ′(u)− 1 if uv ∈ E(G),
σ′(u) otherwise.

A configuration σ is legal if there exists a reverse-firing sequence starting
with σ and ending with a supercritical configuration. Throughout this
paper, we use R = R(G) to denote the set of relaxed legal configurations on
G, which is usually a complete graph. We write r(G) := |R(G)| and, for a
subgraph H of G, denote by r(H) the number of relaxed legal configurations
on H.

2 Precursive results

In the Introduction, we glossed over the well-definedness of the length of
a burn-off game. The following early chip-firing result settles this question
and shows that the relaxation of a configuration is uniquely determined.

2.1 Lemma ([16, 19]). If σ0, σ1, . . . , σ` is a sequence of configurations on
a general graph, each a successor of the one before and σ′0, σ

′
1, . . . , σ

′
k is

another such sequence such that σ′0 = σ0 and both of σ`, σ
′
k are relaxed,

then k = `, each vertex fires the same number of times in both sequences,
and σ′` = σ`.

Thus, in a burn-off game, the vertices can be fired in any order without
affecting the length or final configuration of the game. Lemma 2.1 has
appeared elsewhere, including [7] and [24], the latter containing a succinct
proof.

As noted in the Introduction (under Motivation), burn-off games always
have finite length. Within the general chip-firing literature, finding non-
trivial bounds for the game length has been addressed, e.g., in [23], [33],
and [42]. We shall need the following elementary result from [36]; see [37]
for a published proof.
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2.2 Lemma ([36]). During a burn-off game that starts with a relaxed legal
configuration on a general graph, no vertex fires more than once.

The next tool characterizes the relaxed legal configurations on complete
graphs. It was proved originally in [36], followed by a published version in
[28].

2.3 Lemma ([36]). A relaxed configuration σ : V → N on Kn is legal if and
only if it is possible to relabel V as w1, . . . , wn so that σ(wi) ≥ i−1 for 1 ≤
i ≤ n.

The following four results from [28, 36] and [29, 36] enumerate configu-
rations σ subject to various constraints. The first of these focusses on
legal (but not necessarily relaxed) configurations on Kn. For n ≥ 0 and
m ≥ max{0, n − 1}, let Ln,m denote the number of such configurations
satisfying σ(v) ≤ m for each v ∈ V (Kn).

2.4 Proposition ([28, 36]). If n ≥ 0 and m ≥ max{0, n−1}, then Ln,m =
(m− n+ 2)(m+ 2)n−1.

We stress that the main cases in Proposition 2.4 have n ≥ 1 and m ≥ n−1;
the (boundary) cases with n = 0 and m ≥ 0, which correspond to L0,m = 1,
don’t contradict the result but satisfy it merely by convention.

Because r(Kn) = Ln,n−1, we obtain

2.5 Corollary ([28, 36]). The number of relaxed legal configurations on
Kn is (n+ 1)n−1.

The preceding observation originally led us to the connection between
burn-off games on complete graphs and the enumeration of spanning trees
therein; see [28].

Two of the main results from [29] apply to general graphs G, but here, we
shall apply them only to complete graphs. Together they count the pairs
(σ, v) ∈ R(G)× V (G) such that seeding σ at v results in a game of length
` ≥ 0. In the first of these, the cone G∗ means the graph obtained from G
by adding a new vertex x adjacent to every vertex of G, and tv denotes the
number of spanning trees of G∗ − xv.

84



2.6 Theorem ([29, 36]). The number of pairs (σ, v) resulting in a game of
length zero is

∑
v∈V tv.

In Section 4, when invoking Theorem 2.6, we again use ‘x’ for the universal
vertex introduced in defining G∗.

When ` > 0, our count involves the set Tv,` of subtrees of G of order ` and
including v; it also employs the counting function r defined at the end of
§1.1.

2.7 Theorem ([29, 36]). The number of pairs (σ, v) resulting in a game of
length ` > 0 is ∑

v∈V

∑

T∈Tv,`

r(G− T ).

Finally, we return to the Markov chain (Xk) introduced in Section 1. To
be more precise about its transitions, given Xk ∈ R, the next state is
determined by choosing v ∈ V uniformly at random and taking Xk+1 to be
the relaxation of Xk + 1v. For integers m ≥ 1 and states σ, we denote by
Nm(σ) the number of visits of (Xk) to σ during the firstm transition epochs.
The uniformity of (Xk)’s stationary distribution yields the following result:

2.8 Theorem ([37]). For general graphs G,

Pr

{
lim
m→∞

Nm(σ)

m
=

1

|R|

}
= 1 for all σ ∈ R (irrespective of the initial state).

So with high probability, the long-term proportion of time that (Xk) spends
in any given state is equally spread across the states. We shall need only
the specialization of Theorem 2.8 to complete graphs:

2.9 Corollary. For complete graphs Kn,

Pr

{
lim
m→∞

Nm(σ)

m
=

1

(n+ 1)n−1

}
= 1 for all σ ∈ R(Kn).

3 Enumeration in R

Our proof of Theorem 1.1 relies on a couple of results counting certain
subsets of R = R(Kn). The definitions in this paragraph concern complete
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graphs and apply to any fixed σ ∈ R. Notice that a critical vertex will fire
with the addition of a single chip. Call a non-critical vertex w unstable if,
for some critical vertex v, when v is seeded, the resulting firing sequence
includes the firing of w. Call a vertex a dud if it won’t fire during any
burn-off game initiated on σ. Either a vertex will fire when seeded (so
is critical) or will not (so is unstable or a dud). But an unstable vertex
will (eventually) fire when a critical one is seeded, whereas a dud will not.
Since each vertex must be one of these three types, V is partitioned into
the subsets of critical vertices, unstable vertices, and duds.

Given a configuration σ, let c denote the number of critical vertices and u
the number of unstable vertices. Notice that there are only two possible
game lengths that can result when a vertex is seeded: either the vertex will
not fire, resulting in a game of length zero; or the vertex will fire, resulting
in a game of length c+u (by Lemmas 2.1 and 2.2). For this reason, we will
profit from counting the configurations that have c critical vertices and u
unstable ones, for fixed nonnegative integers c and u. We handle the case
c = 1 separately after considering the case c ≥ 2.

3.1 Proposition. If c, u, and d are integers such that 2 ≤ c ≤ n, 0 ≤ u ≤
n− c, and d = n− (c+ u), then the number of relaxed legal configurations
on Kn with c critical vertices, u unstable vertices, and d duds is

(
n

d

)
(d+ 1)d−1

(
n− d
u

)
(c− 1)(n− d− 1)u−1. (3)

Proof. Let Q be the set of configurations satisfying the hypotheses. We
shall determine the size of Q by first examining the chip placements on the
duds and deriving the intermediate count

|Q| =
(
n

d

)
Ld,d−1

(
n− d
u

)
Lu,n−d−3. (4)

If a critical vertex of σ ∈ Q is seeded, then all c + u critical and unstable
vertices will fire, contributing c+u chips to each dud. Therefore, each dud
contains at most n − (c + u) − 1 = d − 1 chips, for otherwise the added
chips will cause it to fire. Since there are

(
n
d

)
ways to choose which of the

n vertices will be duds and Ld,d−1 ways to place chips on these duds, the
first two factors in (4) account for the chip placement on the duds.

Now we account for the number of ways to place chips on the u unstable
vertices of σ. Since vertices containing n − 1 chips are critical, unstable
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vertices contain at most n−2 chips. The greatest number of chips that can
be added during a game to an unstable vertex is c+ (u− 1), which implies
that the smallest number of chips that an unstable vertex can contain at
the outset is n − (c + (u − 1)) = d + 1. Thus, unstable vertices contain
between d+ 1 and n− 2 chips.

Within the set of u unstable vertices, there is (at least) one that contains
the fewest chips, and it may contain anywhere from d + 1 to n − 2 chips.
If two unstable vertices v and w both contain d + 1 chips, then there are
at most c + (u − 2) other vertices that can fire and add chips to v and w.
These additional chips will increase the number of chips on v and w to at
most

(d+ 1) + c+ (u− 2) = c+ d+ u− 1 = n− 1,

which is not enough for either of them to fire. Thus, both v and w are
duds, a contradiction. Therefore, if the unstable vertex containing the
fewest chips contains d + 1 chips, then the unstable vertex containing the
next-to-fewest chips must contain between d+ 2 and n− 2 chips.

By a similar argument, we see that the vertex containing the kth fewest
chips (for 1 ≤ k ≤ u) among the unstable vertices must contain at least
d + k and at most n − 2 chips. (Note that d + u ≤ n − 2 because we are
considering the case when c ≥ 2.)

Consider the vector (x1, x2, . . . , xu), where xk is the number of chips on
the unstable vertex containing the kth fewest chips. We have just seen that
d+k ≤ xk ≤ n−2. Subtracting d+1 yields k−1 ≤ xk−(d+1) ≤ n−d−3,
for 1 ≤ k ≤ u. Since xk ≥ d+ 1, we see that counting the number of ways
to distribute chips onto the unstable vertices is equivalent to counting the
number of relaxed legal configurations on Ku where each vertex can have
at most n− d− 3 chips (cf. Lemma 2.3). Thus, we have Lu,n−d−3 ways to

distribute these chips. Since there are
(
n−d
u

)
ways to choose which of the

n− d non-duds will be unstable and Lu,n−d−3 ways to place chips on these
unstable vertices, the last two factors in (4) account for the chip placement
on the unstable vertices.

Once we have placed chips on all the duds and unstable vertices, it remains
only to place chips on the critical vertices. Since all of these must contain
n−1 chips, and we have no remaining choice as to which vertices are critical
(with the unstable vertices and duds already decided), the placement of
these final chips is uniquely determined; thus, we’ve established (4). Now
Proposition 2.4 reduces the right side of (4) to (3).
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Because (3) vanishes when c = 1, it doesn’t apply in this case, but we can
handle it with a simpler argument.

3.2 Proposition. The number of relaxed legal configurations on Kn with
one critical vertex is nn−1.

Proof. A relaxed legal configuration with just one critical vertex cannot
have any unstable vertices because, when the critical vertex fires, it gives
just one chip to each other vertex, which is not sufficient to fire any of the
non-critical ones. Thus, in the proof of Proposition 3.1, once we count the
number of ways to distribute the chips on the duds, the remaining choice
for the critical vertex is determined. We find that the number of relaxed
legal configurations on Kn with c = 1 critical vertex and d = n− 1 duds is

(
n

d

)
Ld,d−1 =

(
n

n− 1

)
Ln−1,n−2 = nn−1.

4 Proof of Theorem 1.1

To understand the limiting behaviour of Λm(`)/m, we consider the random
variable Λ, defined as the length of a burn-off game on Kn when the seed
v is chosen uniformly from V = V (Kn) and, independently, the starting
configuration σ is chosen uniformly from R = R(Kn).

We distinguish three cases: ` = 0; ` = 1; and 2 ≤ ` ≤ n.

Case ` = 0

First we apply Theorem 2.6 to find the number Z of pairs (σ, v) leading
to Λ = 0; for each v ∈ V , we need to evaluate tv = τ(K∗n − xv). As
K∗n = Kn+1, a reduced Laplacian of K∗n − xv (eliminating the row/column
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of v) is the n× n matrix

A =




n −1 −1 −1 −1
−1 n −1 · · · −1 −1
−1 −1 n −1 −1

...
. . .

...
−1 −1 −1 n −1
−1 −1 −1 · · · −1 n− 1



.

The Matrix-Tree Theorem—which specializes to give tv = det(A) (see, e.g.,
[9])—and a bit of algebra show that

tv = (n− 1)(n+ 1)n−2,

and Theorem 2.6 yields

Z =
∑

v∈V
tv = n(n− 1)(n+ 1)n−2. (5)

Conditioning on (σ, v) ∈ R× V , we find that

Pr{Λ = 0} =
∑

(σ,v)∈R×V
Pr{Λ = 0 | (σ, v)}Pr{(σ, v)}. (6)

In (5), we have the number of factors Pr{Λ = 0 | (σ, v)} in (6) taking
the value 1 (with the rest being 0). From the definition of Λ, the factors
Pr{(σ, v)} obey the uniform distribution on R×V . Thus, (6) simplifies to

Pr{Λ = 0} =
n(n− 1)(n+ 1)n−2

n(n+ 1)n−1
=
n− 1

n+ 1
. (7)

Corollary 2.9 shows that (Xk) with high probability in the limit visits the
states σ ∈ R uniformly. In the event of this uniform visitation, the relation
(7) specifies the probability of a length-zero game. Therefore, when ` = 0,
Theorem 1.1 follows.

Case ` = 1

Here we condition on σ ∈ R to find that

Pr{Λ = 1} =
∑

σ∈R
Pr{Λ = 1 | σ}Pr{σ}. (8)
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Proposition 3.2 shows that the number of nonzero factors Pr{Λ = 1 | σ}
in (8) is nn−1; with our seed choices being uniform, each of these factors
is 1/n because Λ = 1 exactly when the seed coincides with the critical
vertex. Again, the definition of Λ gives the uniform distribution on R for
the factors Pr{σ}, which leads to

Pr{Λ = 1} =
nn−2

(n+ 1)n−1
. (9)

Similarly to the first case, Corollary 2.9 together with (9) leads to Theo-
rem 1.1 when ` = 1. Notice that (9) agrees with (1) in this case.

Case 2 ≤ ` ≤ n

Here things are more complicated. Start at (8), with ‘`’ in place of ‘1’:

Pr{Λ = `} =
∑

σ∈R
Pr{Λ = ` | σ}Pr{σ}. (10)

As in the case ` = 1, the factors Pr{σ} are all 1/(n+ 1)n−1, so it remains
to determine the sum

S :=
∑

σ∈R
Pr{Λ = ` | σ}.

With reference to Proposition 3.1, let c, d, and u denote, resp., the critical,
dud, and unstable vertex counts of a given configuration σ ∈ R. Those σ
contributing nonzero terms to S are the ones with c between 2 and ` because
we’re considering the case ` ≥ 2, while c > ` leads to games of length either
zero or exceeding `. When indeed 2 ≤ c ≤ `, the corresponding probability
in S is c/n (as one of the c critical vertices must be chosen in order to have
a nontrivial game) for a game of length

` = c+ u (11)

(cf. Lemmas 2.1 and 2.2). These remarks and Proposition 3.1 show that

S =
∑̀

c=2

(
n

d

)
(d+ 1)d−1

(
n− d
u

)
(c− 1)(n− d− 1)u−1

( c
n

)
. (12)

The constraints on c, d, u, and ` in Proposition 3.1 and (11) allow the
elimination of d and u from (12), after which we simplify further using the
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Binomial Theorem:

S =
∑̀

c=2

(
n

n− `

)
(n− `+ 1)n−`−1

(
`

`− c

)
(c− 1)(`− 1)`−c−1

( c
n

)

=

(
n

`

)
(n− `+ 1)n−`−1

n

∑̀

c=2

(
`

c

)
c(c− 1)(`− 1)`−c−1

=

(
n

`

)
(n− `+ 1)n−`−1

n
`(1 + (`− 1))`−2

=

(
n

`

)
``−1(n− `+ 1)n−`−1

n
.

This expression for S, our earlier remarks, and (10) together show that

Pr{Λ = `} =

(
n

`

)
``−1(n− `+ 1)n−`−1

n(n+ 1)n−1
. (13)

Now Corollary 2.9 and (13) yield Theorem 1.1 when 2 ≤ ` ≤ n, and this
final case of the proof is complete.

We should point out that—though the second and third cases in the preced-
ing proof eventually coalesce in (1)—we needed to address them separately
because (3) vanishes when c = 1, so we couldn’t roll the ` = 1 case into the
more delicate final one.

4.1 Alternate proof when 1 ≤ ` ≤ n

In [29], we included an example employing Theorem 2.7. As a further
showcase for this result, we apply it in a second approach to the main cases
within the proof of Theorem 1.1.

Fix a positive integer ` at most n. For each vertex v of Kn, we enumerate
the subtrees of order ` including v. There are

(
n−1
`−1
)

ways to choose the `−1
vertices u 6= v for these subtrees; each choice results in a clique K` of Kn,
for which there are ``−2 spanning trees (by Cayley’s Formula [11]). Now
we delete each such subtree T in turn, counting the number r(Kn − T ) of
relaxed legal configurations on the resulting graph. When T is deleted from
Kn, the graph Kn−` results. By Corollary 2.5, r(Kn − T ) = r(Kn−`) =
(n− `+ 1)n−`−1. Thus, Theorem 2.7 yields the expression

n

(
n− 1

`− 1

)
``−2(n− `+ 1)n−`−1 (14)
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for the number of pairs (σ, v) ∈ R×V resulting in a game of length ` ≥ 1 on
Kn. Resurrecting Λ from the first proof (so using the uniform distribution
on R× V ), we find that

Pr{Λ = `} =
n
(
n−1
`−1
)
``−2(n− `+ 1)n−`−1

n(n+ 1)n−1
=

(
n

`

)
``−1(n− `+ 1)n−`−1

n(n+ 1)n−1
,

which is (13), now for ` 6= 0. Invoking Corollary 2.9 completes the proof as
before.

4.2 Connection with sandpile avalanches

As noted in the Introduction, the companion enumeration results to The-
orem 1.1 appeared in the abelian sandpile literature contemporaneously
with our work leading to [36]. We confess to being unaware of them until
submitting this paper’s manuscript for publication, when a referee set us
straight. In this short section, we cement the connection.

First, our determination of Z in (5) is the chip-firing version of [14, Propo-
sition 4.3]. Second, our expression (14) for the number of pairs (σ, v) ∈
R×V (Kn) producing nonzero game lengths is exactly [14, Proposition 4.4]
in chip-firing terms. And we mean “exactly”: the algebraic expressions in
(5) and (14) are virtually identical to their versions in [14], an uncanny coin-
cidence considering the two sets of authors were working without knowledge
of each other.

4.3 Confirmation that (1) defines a probability distri-
bution

In [27], we gave a combinatorial proof that the values in (1) sum to one.
For completeness, we include that proof here.

4.1 Proposition. If n is a positive integer, then

n− 1

n+ 1
+

n∑

`=1

(
n

`

)
``−1(n− `+ 1)n−`−1

n(n+ 1)n−1
= 1. (15)
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Proof. It’s convenient to rewrite (15) in the equivalent form

n∑

`=1

(
n+ 1

`

)
``−2(n+ 1− `)n−1−``(n+ 1− `) = 2n(n+ 1)n−1. (16)

To see that (16) holds, first observe that the right side enumerates the pairs
(T,~e ), where T is a spanning tree of Kn+1 for which one edge e (among its
n) has been distinguished and oriented (in one of two possible directions).
The left side also enumerates these pairs. Given (T,~e ), notice that deleting
the oriented edge ~e from T leaves behind a spanning forest of Kn+1 with
two components L, U (that we may consider ordered from lower to upper).
If |V (L)| = `, for an integer ` with 1 ≤ ` ≤ n, then |V (U)| = n + 1 − `.
Conversely, given such a spanning forest, we can recover (T,~e ) by selecting
a vertex x of L and a vertex y of U and letting ~e = (x, y). On the left
side of (16), the factor

(
n+1
`

)
accounts for the selection of V (L) (hence

for the selection of V (U)). Since L, U are, resp., spanning trees of the
induced (complete) subgraphs Kn+1[V (L)], Kn+1[V (U)], the factors ``−2

and (n+1−`)n−1−` are delivered by Cayley’s Formula. Finally, the factors
`, (n+ 1− `) count the number of ways to select the vertices x ∈ V (L) and
y ∈ V (U) determining ~e.

Remarkably, (16) dates (at least) to 1917 and has appeared in numerous
works, including [8, 10, 13, 15, 20, 32, 38, 39], none of which used our proof
above; see [27] for a survey.

5 Concluding remarks

Absence of a power law

Since their creation (by Dhar [16]), abelian sandpile models (chip-firing
games) have been associated with a physical phenomenon called ‘self-organ-
ized criticality’; see, e.g., [25]. A hallmark of such systems is a power law
relating size and frequency of system events. In our context, this would
translate to a power law relating the game-length ` and the relative fre-
quency Λm(`)/m of games with this length (for large m):

Λm(`)

m

?∝ `−γ (17)

for a constant γ > 0.
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Our main result shows that the question in (17) has a negative answer for
complete graphs. Indeed, for 1 ≤ ` ≤ n, the expression in (1) is invariant
under the transformation ` 7→ (n+1)−`. So for such `, the random variable
Λ defined at the start of Section 4 satisfies

Pr{Λ = `} = Pr{Λ = (n+ 1)− `}. (18)

The symmetry evinced in (18) precludes any power law like (17). This
doesn’t suggest any contradiction between existing results tying sandpile
models with power laws (cf. [25, 30]). Rather, it shows that burn-off
chip-firing games on complete graphs do not fall within the realm of self-
organized critical systems. This should be contrasted with such games (e.g.,
Biggs’ dollar game [3], equivalent to our games) on grid- or lattice-graphs
(cf. [17]).
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