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Abstract:  Consider a simple undirected graph G = (V, E). A family
of subtrees, {S,},cv, of a tree H is called an (H,t)-representation of G
provided wv € E if and only if |V(S,) NV (S,)| > t. Let H,, denote the
K 3-subdivision with center node = and three leaves, each of distance m
from x and let H(¢) denote the set of (H,,,t)-representable graphs for some
positive integer m. In this paper we show that any graph G in H(t) is also
in H(t + 1) for all ¢ and use this result to proof H(1) = H(2). We also
characterize the set of all trees in #(1) and hence in H(2)
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1 Introduction

In this paper we consider tree tolerance representations of graphs.

Definition 1. Let G = (V, E) be a simple graph, H a tree and t > 0. Then
G is called (H,t)-representable if there exists a family of subtrees of H,
{Sy }vev, such that

w € E < [V(S,) NV(Sy)| > t.

In this case we call {S,}yev an H tolerance representation of G with tol-
erance t or an (H,t)-representation of G. Also note that the tree H is
referred to as the host tree of the representation.

Definition 2. We will denote by H,, the K 3-subdivision with x the center
node of degree three and three leaves, each of distance m from x. See Figure
1.
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Figure 1: H,,

We denote the three subpaths of H,,, beginning at z = ag = by = ¢, as
follows:

P, =ap,a1,a2,...,0mn;
Pb:b07bl7b27"',bm;

and
P.= €C0,C1,C25 -+, Cm-
Figure 2 illustrates an Hy tolerance representation of Cy with tolerance 3.
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Figure 2: Hj tolerance representation of Cy
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Definition 3. The class of all graphs that are (H,,,t)-representable for
some m is denoted H(t).

A well established theorem due to Buneman, Gavril and Walter shows that
when the tolerance is limited to one, the tree representable graphs are the
chordal graphs. See [1] [2] and [4]. Here we restrict the host tree to H,,
and look at implications of increasing tolerance.

Theorem 1. Let G be a graph in H(t). Then G is in H(t +1).

Proof. Let G = (V, E) be a graph in H(t) for some ¢t > 1 with (Hy,,1)-
representation F = {9, },cv. We use this representation to create an

(Hpa1,t + 1)-representation, F”, for G through the following steps.

step 1: Define the following subgraph of G:
Go =< {v € Vl]a; € V(S,) for some i € {0,1,2,...,m}} >.

Consider v € V(G,) and let ¢ be the maximum value such that a; € V(S,).
Now define S! = S, U{a;+1}. Repeat this process for each v € V(G,). We
claim that {S}},ev(a,) is an (Hy41,t + 1)-representation for the graph
G- Indeed, take ¢ and j to be the maximum values for which a; € V(S,,)
and a; € V(S,). Without loss of generality, assume ¢ > j. If a; € V(S,),
then aj11 € V(S)) and |V(S,)NV(S))| = [V(Su)NV(Sy)| + 1. If a; &
V(Sy), then |[V(S!)NV(S))| < 1 since |V(S,) NV (S,)| = 0. Hence, if
w € E(G,), then a; € V(S,) and |V (S],) NV (S,)| > t+ 1. Furthermore,
if uv & E(G,), then [V(S,) NV (S,)| <t—1and |V(S,)NV(S)| <t

step 2: Define the following subgraphs of G:

Gy=<{veV|S, C P —{z}} >
G.=<{veV|S, CP.—{z}}>

Observe that V(G) = V(G,) UV (G,) UV (G.). Repeat the process done in
step 1 with G, for each G} and G, to obtain an (H,,11,t+1)-representation,
{8, }vev(ay,) for Gy and an (H,,41,t + 1)-representation, {S; },ev(a.) for
G.. Denote the resulting set of subtrees F' = {S] },ev.

24



We know that F” satisfies the edge and non-edge conditions necessary for an
(Hpm41,t+1)-representation for G within each of the subgraphs G, Gy, and
G.. Now we address these conditions for edge and non-edge pairs of vertices
of G that are not contained in the same subgraph. For any u € V(G}) and
v € V(G.) we have V(S,) NV (S)) = V(S,) NV(S,) = 0. Therefore,
the non-edge condition |V (S,) NV (S))| <t is satisfied for u € V(G}) and
v € V(G,). It remains to look at the edges and non-edges between G, and
Gy or G, and G.. Take u € V(G,) and v € V(G}) such that uv ¢ E.
We know |V (S,)NV(S,)] < t—1. Adding a pendant node from P, to
S, and a pendant node from P, to .S, can only increase the intersection
by at most one, since S, C P, — {z}. Therefore, |V (S,)NV(S))| < t.
Hence, the non-edge condition between G, and Gy, is satisfied. We can use
a similar argument to show that the non-edge condition between G, and
G, is satisfied as well. Finally, we address the edges between G, and G}, or
G, and G, which will require modification of F’.

step 3: In this last step we look at the edges between G, and Gy, and
observe that an analogous process may be used for the edges between G,
and G.. Take u € V(G,) and v € V(G}) such that wv € E. We know
|[V(Sy) NV (Sy)| > t. This implies that S, contains at least ¢ nodes from
P, and that x = by € V(S,). Let ¢ and j be the maximum values such
that b, € V(S,,) and b; € V(S,). If i > j, then |V(S,)NV(S,)| > t+1
since b; € V(S;,) and S;, = S, U {b;}. Now suppose ¢ < j. In this case,
biv1 € V(S,)/V(S.,). Replace S!, with S/ = S/ U{b;+1} and we have
[V(SHnNnV(sS)| >t+1.

Now we confirm that we did not disrupt any existing non-edge conditions.
Take w € V such that w is not adjacent to u. It suffices to show that
[V(S) NV (S,)| <t

Case 1. w e G,

In this case |V(S!)NV(S.,)| = |V(S,) NV (S,)| <t

Case 2. w e Gy

In this case V(S!,) NV(S.,) = V(S,) N V(Sy). Hence, adding b1 to
S!, can only increase |V (S.)NV(S,,)| by at most one. Thus, we have
V(S NV(S)I < IV(S) NVISL)I+1 = [V(Su) NV(S)|+1 < t—141 =
t.

Case 3. w e G,
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Since uwv € E, u € V(G,) and v € V(Gy), we know that S, and S, share
at least ¢ nodes from P, — {z}. Hence, i > t—1. If b; € S,,, then we would
have |V (S,) NV (Sy)| > t, which is impossible as uw ¢ E. Hence, b; € Sy,
which implies that b;11 € Sy, and |V (SI)NV(S.)| =|V(S.,) NV (S.,)| <t

We use an analogous process to accommodate the edges between GG, and
G., adding nodes from P, where necessary. Now let S/ = S/ for those S,
from F' that were not modified in step 3 and let F” = {S/'},cv -

In order to show F” is an (H,41,t + 1)-representation for G, it remains
to verify that uv ¢ E(G,) implies that |V (S/)NV(S))| < t+ 1. First,
observe that uv ¢ E(G,) implies that uv ¢ E. If 5!/ was obtained from S,
by adding a vertex from P, and S/ was obtained from S/ by adding a vertex
from P, then |V(S!)NV(S))| = |V(S,)NV(S])| < t+ 1. Consider the
situation where both S and S/ were obtained by adding a vertex from P,
to S;, and SJ, respectively. In this situation, S, and S, must both contain
x and at least ¢ nodes from P,. However, this implies [V (S,) NV (S,)| > ¢,
which is impossible, since uv ¢ E. We can make an analogous argument
for the situation where both S!/ and S! were obtained by adding a vertex
from P,.

The arguments above, show that F” is an (H,,4+1,t + 1)-representation for
G. Therefore, G € H(t + 1) as was to be shown. O

We use Theorem 1 to show a graph G is in H(1) if and only if G is in H(2).
Theorem 2. H(1) = H(2)

Proof. H(1) C H(2) follows from Theorem 1. It remains to show H(2) C
H(1). Consider a graph G = (V, E) in H(2) with (H,,,t)-representation
{Sy}vev. Recall x = ag = by = ¢g. If degs, (x) =1 or x ¢ S, then proceed
as follows: For S, € P, let S/ = S, — a; where i is the smallest number
such that a; € S,. For S, € P, let S}, = S, — b; where j is the smallest
number such that b; € S,. For S, € P, let S}, = S, — ¢} where k is the
smallest number such that ¢, € S,. If degg, () > 1 let S = S,. Now
we show {S,}, is an (H,,, 1)-representation for G. Let uv € E. Then
|[V(Sy) NV (Sy)| > 2 which implies that [V (S])NV(S])| > 1. Consider
wv & E. Then |V(S,)NV(S,)| < 2. Also S, or S, must contain  with
degree 1 or not contain z at all. Otherwise, degg, () > 2 and degg, (z) > 2
which implies |V (S,,) NV (S,)| > 2. Without loss of generality assume that
degs,(r) = 1or z & S,. If degs,(x) = 1 then z is the one vertex that
Sy and S, share and |[V(S],)NV(S,)| = 0 since x ¢ S,,. If x ¢ S, then
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S, and S, must share a node from P, — z, P, — x or P. — x. Without
loss of generality assume a; is the one vertex in S, N S,. We can also
assume that j is the smallest number such that a; € S, and hence a; is
the largest number such that a; € S,. So j+ 1 is the smallest number such
that aj41 € S, and j is the largest number such that a; € S). Therefore
[V(S.) NV (S,)| =0. O

Now we characterize trees in H (1) and H(2) beginning with some prelimi-
naries.

Definition 4. An asterotidal triple in a graph G is a set of 8 distinct
vertices {x1, T2, x3} of G such that for each choice of distinct i,j,k €
{1,2,3}, there is an x;xj-path that xy is not on or adjacent to.

Definition 5. G is called n-asteroidal if n is the largest integer for which
there exists a set S of n points of G with the property that any three members
of S form an asteroidal triple.

Definition 6. A graph G has property W if for any pair of asteroidal
triples {u1,us,us} and {vi,ve,v3} of G, every path from u; to uj, 1 <i<
7 <3, is adjacent to every path from v to vy, 1 <k <m < 3.

The following result by Walter was stated in [5] and shown in [4].

Theorem 3. A connected chordal graph G is representable on K 3 if and
only if G is at most 3-asteroidal and G satisfies property W.

Note that representability on K 3 is equivalent to being in #(1).

Lemma 1. Let T be a tree and {ui,us,us} be an asteroidal triple of T.
Then the uyus-path, usus-path, and uius-path all share exactly one common
vertex.

Proof: Consider an asteroidal triple, {uj,u2,u3} in T. Observe that the
path from wug to the ujus-path does not contain uq or us. Indeed, as if so
then either the usus-path would contain u; or the u;usz-path would contain
ug, which is impossible as {u1,us,us} is an asteroidal triple. Denote the
path from w3 to the ujus-path as P and the vertex where P and the ujus-
path intersect as w. Observe that w is common to the ujus-path, the
uguz-path, and the wjusz-path as desired. We know these paths cannot
share more than one vertex as then 7" would contain a cycle. O
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Definition 7. A tree T has the aster overlap property if for every pair of
asteroidal triples {uy,us, uz} and {vy,va,v3} in T if the following conditions
hold.

(i) The u;u;-paths and v;vj-paths for i,j € {1,2,3} all share exactly one
common vertezx, say w.

(i) If u; is distinct from v; for j = 1,2, or 3, then either u; is on the
wvg-path or vy is on the wu;-path for some k € {1,2,3}.

Theorem 4. A tree T has the aster overlap property iff T is at most 3-
asteroidal and T satisfies property W.

Proof: Let T be a tree with the aster overlap property. Then it is easy to
see that T has property W. Now suppose for the sake of contradiction that
T is N-asteroidal for N > 4. Then T has a 4-asteroidal set {u1, ug, us, us}.
Hence {u1,us,us} and {us, us,us} are two asteroidal triples in 7. By the
aster overlap property we know that the following paths all share exactly
one common vertex: ujug-path, usug-path, ujus-path, usus-path, usuy-
path. Let us denote this common vertex as w. Furthermore, without
loss of generality we can assume that w4 is on the wuq-path, since uy is
distinct from wy,us and us. Now {uj,us,us} is also an asteroidal triple
in T. However, there is no path from u; to us that does not contain uy.
Contradiction.

Let T be a tree that is at most 3-asteroidal and has property W. Consider
a pair of asteroidal triples {u1,uz2,us} and {v1, v, v3} in 7. From Lemma
1 we know that the ujus-path, usuz-path, and ujus-path all share exactly
one common vertex, say u. We also know that the vive-path, vovs-path,
and vjvs-path all share exactly one common vertex, say v. To show the
first part of the aster overlap property, we will show that v = v. For the
sake of contradiction suppose that u # v.

Claim 1 The only path from any u;u;-path, for 1 < i < j < 3, to any
vpUm-path, for 1 < k < m < 3 is the uv-path.

Proof of claim 1: Let us suppose the contrary. Without loss of generality
suppose there is a path from the u;us-path to the vvo-path that is distinct
from the uv-path. Let us denote this path the xy-path. Then u, z,y, v, u is

a cycle in T', which is impossible. O

Now we know that vq, v9, or v3 must be distinct from w1, us and uz. Without
loss of generality suppose v; is distinct from w; for i € {1,2,3}.

Claim 2 {uq,us,us,v1} forms a 4-asteroidal set in T'.
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Proof of claim 2: We already know that {u;,us,us} forms an asteroidal
triple in T'. So it remains to show that {u;,u;, v, } forms an asteroidal triple
for any 4,5 € {1,2,3} and ¢ # j. From Claim 1 we know v; is not adjacent
to the ujus-path, as this path contains u. Also, the u;u-path, uv-path and
vv1-path combined, form a path from u; to v; that is not adjacent to u;.
We can similarly justify that u; is not adjacent to the wjvi-path. Hence
our claim is shown. O

Claim 2 contradicts our assumption that T is at most 3-asteroidal. Hence
u = v. Let us denote this vertex w. It remains to show that, if u; is
distinct from v; for j € {1,2,3}, then either u, is on the wuvg-path or vy
is on the wu;-path for some k € {1,2,3}. We do so by supposing the
contrary. Without loss of generality suppose that u; is distinct from v;
for j € {1,2,3}, u; is not on the wug-path and vy is not on the wu;-
path for k& € {1,2,3}. We know d(w,u1) > 2, as if not then u; would be
adjacent to the usus-path. Hence {v1,v9,v3,u;} forms a 4-asteroidal set.
Contradiction. a

Theorem 5. A tree T is in H(1) iff T has the aster overlap property.

Theorem 5 follows directly from Theorem 3 and Theorem 4.

Theorem 6. A tree T is in H(2) iff T has the aster overlap property.

Theorem 6 follows directly from Theorem 5 and Theorem 2.
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