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Abstract:

We define a 3-GDD(n, 2, k, λ1, λ2) by extending the definitions of a group
divisible design and a t-design and give some necessary conditions for its
existence. We prove that these necessary conditions are sufficient for the
existence of a 3-GDD(n, 2, 4, λ1, λ2) except possibly when n ≡ 1, 3 (mod 6),
n 6= 3, 7, 13 and λ1 > λ2. It is known that a partition of all 3-subsets of a
7-set into 5 Steiner triple systems (a large set for 7) does not exist, but we
show that the collection of all 3-sets of a 7-set along with a Steiner triple
system on the 7-set can be partitioned into 6 Steiner triple systems. Such
a partition is then used to prove the existence of all possible 3-GDDs for
n = 7.
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1 Preliminaries

We begin with some well known definitions and results from Graph Theory
and Design Theory.

1.1 1- and 2- factorizations of a complete graph

Definition 1.1. A complete graph Kn is a graph on n vertices where each
distinct pair of vertices is connected by an edge.

Definition 1.2. A 1-factor of a graph G is a set of pairwise disjoint edges
which partition the vertex set of G.

Definition 1.3. A 1-factorization of a graph G is a partition of the edge
set of G into 1-factors.

Definition 1.4. A 2-factor of a graph is a set of edges in which each vertex
appears exactly twice.

Definition 1.5. A 2-factorization of the complete graph Kn is a set of
2-factors that partitions the edges of the complete graph.

It is well known that a complete graph Kn on an even number of vertices
n has a 1-factorization with (n − 1) 1-factors. Also, when n is odd, it is

known that there exists a 2-factorization of a complete graph Kn with (n−1)
2

2-factors [4].

1.2 BIBDs and α-RBIBDs

Definition 1.6. A Balanced Incomplete Block Design, BIBD(v, b, r, k, λ),
is a collection of b k-subsets (called blocks) of a v-set V, such that each
element appears in exactly r blocks, every pair of distinct elements of V
occurs in λ blocks and k < v. A BIBD(v, b, r, k, λ) is also written as a
BIBD(v, k, λ).

Definition 1.7. Suppose (X,A) is a BIBD(v, k, λ). A parallel class in
(X,A) is a subset of disjoint blocks from A whose union is X. A parti-
tion of A into r parallel classes is called a resolution, and (X,A) is said to
be a resolvable BIBD, RBIBD, if A has at least one resolution.
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A BIBD is called α-resolvable BIBD if its blocks can be partitioned into
classes in which each point occurs α times.

There are well known existence results for BIBDs with block size 3, viz.,

(1) a BIBD(v, 3, 1) exists for v ≡ 1, 3 (mod 6) and has v(v−1)
6 blocks, (2) a

BIBD(v, 3, 2) exists for v ≡ 0, 1 (mod 3), (3) a BIBD(v, 3, 3) exists for all
v ≡ 1 (mod 2), and (4) a BIBD(v, 3, 6) exists for all v ≥ 3 as well as the
following results, e.g. see [4], [5], and [6].

Theorem 1.1. The necessary conditions for the existence of an α-resolvable
BIBD(v, 3, λ) are sufficient except for v = 6, α = 1, and λ ≡ 2 (mod 4).

Hence,

(i) A 3-resolvable BIBD(v, 3, 6) exists for all v ≥ 3, with (v − 1) classes.

(ii) A resolvable BIBD(v, 3, 1) exists for v ≡ 3 (mod 6).

(ii) A resolvable BIBD(v, 3, 2) exists for v ≡ 0 (mod 3) except for v = 6.

1.3 t-designs and GDDs

Definition 1.8. A t-(v, k, λ) design, or a t-design is a pair (X,B) where
X is a v-set of points and B is a collection of k-subsets (blocks) of X with
the property that every t-subset of X is contained in exactly λ blocks. The
parameter λ is called the index of the design.

A quadruple (λ; t, k, v) is admissible if each λs =
λ(v−st−s)
(k−st−s)

for 0 ≤ s ≤ t is an

integer. An admissible quadruple (λ; t, k, v) is denoted by t-(v, k, λ). An
admissible t-(v, k, λ) is realizable if a t-(v, k, λ) design exists. Admissible
but not realizable parameter quadruples for t = 3 and v ≤ 30 are 3-(11, 5, 2),
3-(16, 6, 2), 3-(22, 10, 6) and 3-(26, 10, 3) ([3], Page 84).

Definition 1.9. A Steiner Quadruple System (SQS) is an ordered pair
(V,B) where V is a finite set of v symbols and B is a collection of 4-subsets
of V called blocks (quadruples) with the property that every 3-subset of V
is a subset of exactly one quadruple B.

A SQS is just a particular example of a t-design. The following 3-designs
with block size 4 exist ([3], pp 82-83):
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1. 3-(n, 4, 1) for n ≡ 2, 4 (mod 6),

2. 3-(n, 4, 2) for n ≡ 2, 4, 5 (mod 6),

3. 3-(n, 4, 3) for even n ≥ 4, and

4. 3-(2n + 1, 4, 6t) for any n ≥ 2 and 1 ≤ t ≤ 2n−1−1
3 .

Definition 1.10. A group divisible design GDD(n,m, k, λ1, λ2) is a col-
lection of k-subsets, called blocks, of an nm-set X, where the elements of
X are partitioned into m subsets (called groups) of size n each; pairs of
distinct elements within the same group are called first associates of each
other and appear together in λ1 blocks while any two elements not in the
same group are called second associates and appear together in λ2 blocks.

1.4 A new concept : 3-GDDs

It is possible to generalize the concepts of GDDs and t-designs in many ways
but for GDDs with two groups and block size k, the concepts generalize in
a natural and beautiful way:

Definition 1.11. A 3-GDD(n, 2, k, λ1, λ2) is a set X of 2n elements par-
titioned into two parts of size n called groups together with a collection of
k-subsets of X called blocks, such that

(i) every 3-subset of each group occur in λ1 blocks, and

(ii) every 3-subset where two elements are from one group and one ele-
ment from the other group occurs in λ2 blocks.

Example 1.1. A 3-GDD(3, 2, 4, 3, 1): Let X = {1, 2, 3, a, b, c}, G1 =
{1, 2, 3} and G2 = {a, b, c}. Then B = {{1, 2, 3, a}, {1, 2, 3, b}, {1, 2, 3, c},
{a, b, c, 1}, {a, b, c, 2}, {a, b, c, 3}} gives the required blocks of the GDD.

The following Lemmas are very useful.

Lemma 1.2. If a 3-(2n, 4, λ2), (i.e., a 3-GDD(n, 2, 4, λ2, λ2)) and a 3-
(n, 4, λ1 − λ2) exists, then a 3-GDD(n, 2, 4, λ1, λ2) exists.

Proof. Let G1 and G2 be two disjoint sets of cardinality n. The blocks of
three designs: (i) a 3-(n, 4, λ1−λ2) on G1 (ii) a 3-(n, 4, λ1−λ2) on G2, and
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(iii) a 3-(2n, 4, λ2) on G1 ∪G2, taken together give a 3-GDD(n, 2, 4, λ1, λ2)
with groups G1 and G2.

Lemma 1.3. If a 3-(n, 4, 2) exists, then a 3-GDD(n, 2, 4, λ1, λ2) for all even
λ1 and even λ2 exists.

Proof. Let λ1 = 2t, and λ2 = 2s for positive integers s and t. Let G1

and G2 be two disjoint sets of cardinality n. The blocks of t copies of a
3-(n, 4, 2) on G1 as well as on G2 together with the blocks of s copies of
a 3-GDD(n, 2, 4, 0, 2) with groups G1 and G2, (see Theorem 3.1), give the
required 3-GDDs.

Remark 1.

(i) When λ1 = λ2, a 3-GDD(n, 2, k, λ1, λ2) is a 3-(2n, k, λ1).

(ii) Every 3-GDD is also a 2-GDD as shown in the next section.

(iii) As a 3-GDD (n, 2, 3, λ1, λ2) is obtained by a collection of λi copies of
all subsets of size 3 of Gi, i = 1, 2 and λ2 copies of all other 3-subsets
of G1 ∪G2, one can assume that for non-trivial 3-GDDs, k ≥ 4.

In the next section we obtain some necessary conditions for the existence
of a 3-GDD(n, 2, k, λ1, λ2). Towards this aim, assuming a 3-GDD exists,
we count the number of blocks containing a given element x (called the
replication number r for x), the number of blocks, r1, containing a first
associate pair, r2, the number of blocks containing a second associate pair
and the required number of blocks, say b, for the 3-GDD.

2 Necessary conditions

Suppose a 3-GDD(n, 2, k, λ1, λ2) exists with groups G1 and G2. Without
loss of generality, let x ∈ G1 and let r be the replication number for x.
There are

(
n−1
2

)
3-subsets containing x, where all elements are from the

same group G1. Also there are (n− 1)n 3-subsets where x occurs with an

element from G1 and one from G2 and there are
(
n
2

)
= n(n−1)

2 3-subsets
containing x where the other two elements are from G2. Then as
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(k−1)(k−2)r
2 = (n−1)(n−2)

2 λ1 + (n(n− 1) + n(n−1)
2 )λ2,

r = (n−1)(n−2)λ1+3n(n−1)λ2

(k−2)(k−1) .

Hence a necessary condition for the existence of 3-GDD(n, 2, 4, λ1, λ2) is
that

(n− 1)(n− 2)λ1 ≡ 0 (mod 6). (1)

As an application of this condition, a 3-GDD(n, 2, 4, λ1, λ2) for n ≡ 0
(mod 3) and λ1 ≡ 1, 2 (mod 3) does not exist.

If a block of size k contains a pair {x, y}, then the block has (k−2) 3-subsets
containing x and y. On the other hand, let r1 denote the number of times
a first associate pair, say {x, y}, occurs in a 3-GDD(n, 2, k, λ1, λ2). Then
as there are n− 2 3-subsets of the group containing x, y and a 3rd element
from the same group and there are n 3-subsets containing x, y and a 3rd

element from a different group, we have

λ1(n− 2) + λ2(n) = (k − 2)r1.

Hence for even k,
(λ1 + λ2)n ≡ 0 (mod 2). (2)

Therefore we obtain a necessary condition:

Lemma 2.1. A necessary condition for the existence of a 3-GDD(n, 2, k,
λ1, λ2) for odd n and k even is that λ1 and λ2 must be of the same parity.

Now, let r2 denote the replication number of pairs {a, x} where a and x are
second associates. As there are no first associate triples containing {a, x},
there are exactly 2(n − 1) triples which contain {a, x} and each of these
triples occurs λ2 times. Therefore (k − 2)r2 = 2(n− 1)λ2 and

r2 =
2(n− 1)λ2
k − 2

(3)

Hence, the expression for r2, unlike r1, does not give any divisibility re-
strictions for k = 4.
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Now we obtain the number of blocks needed for a 3-GDD(n, 2, k, λ1, λ2)
if it exists. There are 2

(
n
3

)
3-subsets which occur in λ1 blocks and 2n

(
n
2

)

3-subsets where 2 elements are from one group and one element from the
other group and each block has

(
k
3

)
3-subsets, hence we have

(
k
3

)
b = λ12

(
n
3

)
+ λ2n

2(n− 1)

Hence, for k = 4,

b = λ1n(n−1)(n−2)+3λ2n
2(n−1)

12 .

From the requirement that b is an integer, we have

λ1n(n− 1)(n− 2) + 3λ2n
2(n− 1) ≡ 0 (mod 12). (4)

However,1 Equation 4 does not give any further restrictions on n. Firstly, 6
is a factor of both terms in Equation 4. Secondly, if n is even, 4 is a factor
of both terms. Thirdly, if n is odd, then since λ1 and λ2 are of the same
parity (Lemma 2.1), both terms are even and are congruent to λ1(n − 1)
modulo 4, hence their sum is 0 (mod 4).

Based on the divisibility requirements from the expressions for r (Equation
1), and r1 (Equation 2), we have following necessary conditions on n for
the existence of a 3-GDD(n, 2, 4, λ1, λ2). The values of λ1 and λ2 are given
modulo 6:

λ1/λ2 0 1 2 3 4 5
0 all n n even all n n even all n n even
1 2, 4

(mod 6)
1, 2, 4, 5
(mod 6)

2, 4
(mod 6)

1, 2, 4, 5
(mod 6)

2, 4
(mod 6)

1, 2, 4, 5
(mod 6)

2 1, 2, 4, 5
(mod 6)

2, 4
(mod 6)

1, 2, 4, 5
(mod 6)

2, 4
(mod 6)

1, 2, 4, 5
(mod 6)

2, 4
(mod 6)

3 n even all n n even all n n even all n
4 1, 2, 4, 5

(mod 6)
2, 4
(mod 6)

1, 2, 4, 5
(mod 6)

2, 4
(mod 6)

1, 2, 4, 5
(mod 6)

2, 4
(mod 6)

5 2, 4
(mod 6)

1, 2, 4, 5
(mod 6)

2, 4
(mod 6)

1, 2, 4, 5
(mod 6)

2, 4
(mod 6)

1, 2, 4, 5
(mod 6)

Table 1

1We thank an unknown mathematician for providing the following nicer argument.
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Remark 2. We may have a collection of b blocks satisfying the values of
r1 and r2 but still does not give a 3-GDD(n, 2, 4, λ1, λ2). For example, a
3-GDD(7, 2, 4, 3, 1), must have b = 126, r1 = 11, and r2 = 6. Now we
will construct a collection of 126 blocks, with r1 = 11, and r2 = 6 where
each 3-subset of a group occurs λ1 = 3 times but still, the collection is not
the required 3-GDD: First recall that a large set of STS(v) exists if and
only if v ≡ 1, 3 (mod 6) and v 6= 7 ([2], Page 65). But we can partition
the set of all 3-subsets of G1, which is a BIBD(7, 3, 5), into five 3-resolvable
classes ([1], Page 130). Now we construct blocks of size 4 from ith resolvable
class by taking the union of each block of the resolvable class with the ith

element of G2, for i = 1, 2, 3, 4 and 5 for some arbitrary ordering of the
elements of G2. We further construct blocks by taking union of the blocks
of a BIBD(7, 3, 1) on G1 with the 6th element of G2 and union of each
block of a BIBD (7, 3, 1) on G1 with the 7th element of G2. Similarly, we
construct blocks by reversing the roles of G1 and G2. The collection of
blocks so constructed along with 2 copies of a BIBD(7, 4, 2) obtained by
complementing each triple of BIBD(7, 3, 1) on each of the groups G1 and
G2 have the required values r1, r2 and b of a 3-GDD(7, 2, 4, 3, 1). But λ2
is not 1 as not all of the 3-resolvable classes are BIBDs. Note that each
copy of a BIBD(7, 3, 1) and the BIBD(7, 4, 2) obtained by complementing
the triples of the BIBD(7, 3, 1) on Gi contains each 3-subset of Gi once for
i = 1, 2. Hence every first associate triple occurs exactly three times, but
still we do not have a 3-GDD as λ2 6= 1.

3 A fundamental construction

Theorem 3.1. A 3-GDD(n, 2, 4, 0, 1) exists for even n and a
3-GDD(n, 2, 4, 0, 2) exists for all positive integers n.

Proof. Let G1 and G2 be two sets of the same cardinality n. A Kn on Gi
means the vertices of the complete graph Kn are labeled with the elements
of Gi, i = 1, 2. Let n be even, say n = 2t. Then the complete graph Kn on
G1 (respectively Kn on G2) has a 1-factorization, say {E1, E2, , · · · , En−1}
(respectively {F1, F2, · · · , Fn−1}).

For l = 1, · · · , n− 1, if El = {e1, e2, · · · , et} and Fl = {f1, f2, · · · , ft}, then
form blocks ei∪fj of size 4, for 1 ≤ i, j ≤ t. It is easy to see that we have a
3-GDD(n, 2, 4, 0, 1) as follows: First no block contains three elements from
the same group and hence λ1 = 0. Secondly, every pair {x, y} of elements
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of a group is in exactly one 1-factor as an edge, say e. Suppose e is in
a 1-factor El. Now the blocks which contain pair {x, y} (i.e., edge e) are
precisely e ∪ fi, i = 1, 2, · · · , t. Hence a triple of elements {x, y, z} where z
is an element from G2 occurs in exactly one block. By symmetry, a triple
containing two elements from G2 and a third element from G1, also occurs
in exactly one block. Hence λ2 = 1.

Similarly, from any 2-factorizations of a Kn on G1 and a Kn on G2, we get
a 3-GDD(n, 2, 4, 0, 2).

Remark 3. The above 3-GDD for even n is also a 2-GDD(n, 2, 4; n2 , n−1)
with groups G1 and G2. Similarly the 3-GDD(n, 2, 4, 0, 2) for odd n is a
2-GDD(n, 2, 4;n, 2(n− 1)).

Example 3.1. A 3-GDD(4, 2, 4, 0, 1) with X = {1, 2, 3, 4, a, b, c, d}, G1 =
{a, b, c, d}, G2 = {1, 2, 3, 4}. Blocks are written as columns:

1 1 1 1 1 1 2 2 2 2 3 3
2 2 3 3 4 4 3 3 4 4 4 4
a c a b a b a b a b a c
b d d c c d c d d c b d

As a consequence of Theorem 3.1 and known 3-designs, we have:

Theorem 3.2. For n ≡ 1, 3 (mod 6), the necessary conditions as described
in Table 2 are sufficient for the existence of a 3-GDD(n, 2, 4, λ1, λ2) when
λ1 ≤ λ2.

Proof. When n ≡ 1, 3 (mod 6), λ1 and λ2 have the same parity, i.e., λ2 −
λ1 ≡ 0 (mod 2). Also for n ≡ 3 (mod 6), λ1 ≡ 0 (mod 3). Hence the
blocks of a 3-(2n, 4, λ1) on G1∪G2 and λ2−λ1

2 copies of a 3-GDD(n, 2, 4, 0, 2)
together give the blocks of a 3-GDD(n, 2, 4, λ1, λ2)

Similarly the following Theorem 3.3, specially when λ1 ≡ 0 (mod 3), is
very useful. Recall, a 3-(n, 4, 3) and a 3-GDD(n, 2, 4, 0, 1) exists for all even
n ≥ 4.

Theorem 3.3. A 3-GDD(n, 2, 4, 3t, λ) exists for any t ≥ 1 and λ ≥ 1. In
general, if a 3-(n, 4, λ) and a 3-GDD(n, 2, 4, λ1, λ2) exist then a

3-GDD(n, 2, 4, λ1 + tλ, λ2)

exists for all positive integers t.
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Corollary 3.4. The necessary conditions are sufficient for the existence of
a 3-GDD(n, 2, 4, 3t, λ2) for any even n and hence the necessary conditions
are sufficient for the existence of a 3-GDD(n, 2, 4, λ1, λ2) for n ≡ 0 (mod 6).

We have not proved that the necessary conditions are sufficient for the
existence of 3-GDDs with block size 4, n ≡ 1, 3 (mod 6) and λ1 > λ2, but
Theorem 3.3 and the following two results demonstrate how infinite families
can be obtained for these cases. The first result, Lemma 3.5 is especially
useful for n ≡ 1 (mod 6).

Lemma 3.5. If a 3-(n, 4, 4) exists, then a 3-GDD(n, 2, 4, λ1, λ2) exists for
(i) λ1 ≡ 0 (mod 4) and even λ2 and (ii) for λ1 ≡ 2 (mod 4) and even
λ2 ≥ 2.

Proof. A 3-GDD(n, 2, 4, 4t, 2s) is obtained by t copies of a 3-(n, 4, 4) and
s copies of a 3-GDD(n, 2, 4, 0, 2) for any n for which a 3-(n, 4, 4) exists.
Then we use a 3-GDD(n, 2, 4, 4t, 2(s−1)) and two copies of a 3-(2n, 4, 1) to
construct all 3-GDD(n, 2, 4, 4t+ 2, 2s) for s ≥ 1. We note that specifically
when n ≡ 1, 2, 4, 5 (mod 6), 2n ≡ 2 (mod 6) or 2n ≡ 4 (mod 6). Hence a
3-(2n, 4, 1) exists.

Note that the set of all 4-subsets of an n-set is a 3-(n, 4, n− 3). Also, there
exists a 3-GDD(n, 2, 4, 0, 2) for all n. Hence as an application of Theorem
3.3 we have

Theorem 3.6. A 3-GDD(n, 2, 4, λ1 = (n − 3)t, λ2 = 2a) exists for all
positive integers a and t. In particular, a 3-GDD(6s + 1, 2, 4, λ1 = 6(3s −
1)a, λ2 = 6t) exists for all positive integers a, s and t. Similarly a 3-
GDD(6s+ 3, 2, 4, λ1 = 6sa, λ2 = 6t) exists for all positive integers a, s and
t.

In the next section, we prove a complete existence result for n ≡ 2, 4, 5
(mod 6).

4 n ≡ 2, 4, 5 (mod 6)

For n ≡ 2, 4, 5 (mod 6), a 3-GDD(n, 2, 4, 0, 2) and a 3-(2n, 4, 1) (i.e., a 3-
GDD(n, 2, 4, 1, 1)) exists. Hence a 3-GDD(n, 2, 4, λ, µ = λ + 2s) for any
non-negative integers λ and s exists.
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4.1 Even λ1 and λ2

Let λ2 = 2t. Then for any λ1 = 2s, we have two cases, viz, λ1 ≤ λ2 and
λ1 > λ2.

4.1.1 λ1 ≤ λ2

The blocks of λ1 = 2s copies of a 3-GDD(n, 2, 4, 1, 1) along with the blocks
of (t− s) copies of a 3-GDD(n, 2, 4, 0, 2) give the required 3-GDD.

4.1.2 λ1 > λ2

For n ≡ 2, 4, 5 (mod 6), a 3-(n, 4, 2) exists. Hence (s−t) copies of 3-(n, 4, 2)
on G1 and G2 and 2t copies of a 3-GDD(n, 2, 4, 1, 1) give the required 3-
GDD(n, 2, 4, 2s, 2t).

4.2 Odd λ1 and λ2

The following Lemma 4.1, which is useful for n ≡ 1 (mod 6) as well, com-
pletes this case.

Lemma 4.1. A 3-GDD(n, 2, 4, λ′1, λ
′
2) exists for all even λ′1, λ′2 if and only

if a 3-GDD(n, 2, 4, λ1, λ2) exists for all odd λ1 and λ2.

Proof. We use a 3-GDD(n, 2, 4, λ1−1, λ2−1), and a 3-(2n, 4, 1). For exam-
ple, to construct a 3-GDD(n, 2, 4; 2t, 2s), given that a 3-GDD(n, 2, 4; 2t −
1, 2s − 1) exists, we use the blocks of the 3-GDD(n, 2, 4; 2t − 1, 2s − 1)
together with the blocks of 3-(2n, 4, 1).

Remark 4. To apply Lemma 4.1 to prove that the necessary conditions
are sufficient for the existence of a 3-GDD(n, 2, 4, λ1, 1) for some n ≡ 1
(mod 6), we need a 3-(n, 4, 2). For example, to make a 3-GDD(n, 2, 4; 3, 1)
we need a 3-GDD(n, 2, 4, 1, 1) which exists along with a 3-GDD(n, 2, 4; 2, 0).
However, a 3-(n, 4, 2) required for the existence of 3-GDD(n, 2, 4; 2, 0) may
not be known or may not exist.
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4.3 λ1 and λ2 of opposite parity

In this case, n has to be even and for the purpose of this section, n ≡ 2, 4
(mod 6). Therefore a 3-GDD(n, 2, 4, 0, 1), a 3-(n, 4, 1) and a 3-(2n, 4, 1)
exist. Hence we use λ1 copies of a 3-(n, 4, 1) on G1 and G2 along with λ2
copies of a 3-GDD(n, 2, 4, 0, 1) on groups G1 and G2 to obtain the following
result.

Theorem 4.2. For n ≡ 2, 4, 5 (mod 6), the necessary conditions are suffi-
cient for the existence of a 3-GDD(n, 2, 4, λ1, λ2).

We note that Theorem 4.2 and Corollary 3.4 give the following result:

Theorem 4.3. Necessary conditions are sufficient for the existence of a
3-GDD(n, 2, 4, λ1, λ2) for n ≡ 0, 2, 4, 5 (mod 6).

5 Small values of n: n = 7, 13, 19

First we recall that if λ1 = 0, then we have r1 = (λ1+λ2)n−2λ1

2 = λ2n
2 . If

n is even, the smallest λ2 = 1 and if n is odd λ2 must be even and the
smallest λ2 = 2. Hence Theorem 3.1 implies that the necessary conditions
are sufficient for the existence of a 3-GDD(n, 2, 4, 0, λ2).

Next, we note that in view of Lemma 1.3 and Lemma 3.5, to obtain complete
results on the existence of 3-GDDs for small values of n with n ≡ 1, 3
(mod 6), one needs to construct 3-GDDs with λ2 = 0 as well as λ2 = 1.
Though 3-GDDs with λ2 = 0 can be obtained easily as a GDD(n, 2, k, λ1, 0)
is nothing but the union of the collection of the blocks of 3-designs on n
elements of Gi, i = 1, 2 with block size k. Hence necessary and sufficient
conditions for the existence of a 3-GDD(n, 2, k, λ1, 0) are the same as the
conditions for a 3-(n, k, λ1), including the case for k = 4. Therefore in what
follows, we are interested in constructing 3-GDDs with λ2 = 1.

5.1 n = 7

When λ1 is odd, the smallest λ2 is 1. Even though the main problem is
to construct a 3-GDD(7, 2, 4, 3, 1), we first construct a 3-GDD(7, 2, 4, 7, 1)
to motivate the method of construction for a 3-GDD(7, 2, 4, 3, 1). Let the
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groups be G1 and G2. Observe that a BIBD(7, 3, 1) obtained by generating
difference set {1, 2, 4} on Z7 and the BIBD(7, 4, 2) obtained by taking the
complement of the blocks of the BIBD(7, 3, 1) account for all

(
7
3

)
subsets of

Z7 exactly once. Hence if we label the elements of the BIBD(7, 3, 1) and the
BIBD(7, 4, 2) by elements of G1, all 3-subsets of G1 will occur once. Now
we construct blocks of size 4 for the required GDD by taking the union
of each block of the BIBD(7, 3, 1) on G1 with each of the elements of G2.
Notice that in the process every triple with 2 elements from G1 and one
element from G2 has occurred exactly once. Similarly, we construct more
blocks by using the BIBD(7, 3, 1) and the BIBD(7, 4, 2) labeled with the
elements of G2 and by taking union of the blocks of the BIBD(7, 3, 1) on
G2 with the elements from G1. Note again that every triple with 2 elements
from G2 and one element from G1 has occurred exactly once. These blocks
together with blocks of 7 copies of the BIBD(7, 4, 2) on G1 and 7 copies the
BIBD(7, 4, 2) on G2 give the required 3-GDD(7, 2, 4, 7, 1).

To construct a 3-GDD(7, 2, 4, 3, 1), the construction and Remark 2 suggest
that we should partition 3 copies of a BIBD(7, 3, 1) along with the 3-sets
obtained by the blocks of one copy of the corresponding BIBD(7, 4, 2) into
7 STSs. All triples of the set {1, 2, 3, 4, 5, 6, 7} to be partitioned are given
below in a 7 by 7 matrix. The last three columns of the matrix are iden-
tical containing triples of the standard Steiner triple system generated by
{1, 2, 4}.

A =




356 357 367 567 124 124 124
467 461 471 671 235 235 235
571 572 512 712 346 346 346
612 613 623 123 457 457 457
723 724 734 234 561 561 561
134 135 145 345 672 672 672
245 246 256 456 713 713 713




.

A partition of the above triples into 7 STS(7)’s is given in the rows below:

A71, A12, A23, A44, A35, A56, A67

A11, A22, A33, A54, A45, A66, A77

A21, A32, A43, A64, A55, A76, A17

A31, A42, A53, A74, A65, A16, A27

A41, A52, A63, A14, A75, A26, A37

A51, A62, A73, A24, A15, A36, A47

A61, A72, A13, A34, A25, A46, A57
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Hence, we get 7 triple systems on G1 if we relabel the elements of Z7 by
the elements of G1. Now we take the union of each block of ith triple
system with ith element of G2 and then repeat the same by interchanging
the roles of G1 and G2. These blocks together with the blocks of the
remaining 2 copies of a BIBD(7, 4, 2) on each group, give the required 3-
GDD(7, 2, 4, 3, 1).

A question ”Is it possible to partition the collection of all 3-subsets of the
7-set along with one copy of STS into 6 STSs?” arises naturally. The answer
is yes. Below is a partition of the triples given in the first six columns of A
above. The triples of each STS are given in the rows:

{124 135 167 236 257 437 456},
{124 136 157 237 256 435 467},
{356 457 672 713 461 512 234},
{357 346 561 672 471 123 245},
{367 235 457 561 712 134 246},
{567 235 346 612 724 145 713}.

Remark 5. With this partition it was moot to combine two or more copies
of STS(7) to the set of all triples of the 7-set and partition into STSs. But
the partition given after Matrix A is interesting as it does not have the
second ”added” STS as is. In fact, all 7 STSs include exactly three sets
from the two ”added” STSs. We think that this problem of partitioning
collection of all subsets of a 7-set along with copies of an STS is interesting
in its own right. Hence we discussed it in detail instead of just producing
the blocks of a 3-GDD(7, 2, 4, 3, 1) without the background.

As a 3-GDD(14, 4, 1), a 3-(7, 4, 4) and a 3-GDD(7, 2, 4, 3, 1) exist, Theorem
3.3 implies that a 3-GDD(7, 2, 4, λ1, λ2) exists for all odd values of λ1 and
λ2. Hence, Lemma 4.1 implies that the necessary conditions are sufficient
for the existence of a 3-GDD for n = 7.

5.2 n = 13

A 3-(13, 3, 2) exists, in fact, there exists a partition of all four subsets of
a 13-set into five 3-(13, 3, 2)’s. ([3], Page 100). Hence Lemma 1.3 im-
plies that the necessary conditions are sufficient for the existence of a 3-
GDD(13, 2, 4, 2t, 2s) for all integers s ≥ 0 and t ≥ 0. Now Lemma 4.1 and
remark after it, imply that the necessary conditions for the existence of a
3-GDD(13, 2, 4, λ1, λ2) are sufficient.
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5.3 n = 19

A trivial 3-(19, 4, 16) can be partitioned into 4 3-(19, 4, 4)′s ([3], Page 100),
so a 3-(19, 4, 4) exists. Hence, we apply Lemma 3.5 and Lemma 4.1 to
prove that a 3-GDD(19, 2, 4, λ1, λ2) exists except possibly when λ2 = 1,
and λ1 = 3 or 7.

6 n = 2t + 1, odd t

When t is odd, 2t + 1 ≡ 3 (mod 6) otherwise 2t + 1 ≡ 5 (mod 6). Hence in
this section we are only interested in odd t. In this case, as n ≡ 3 (mod 6),
from Table 1, λ1 ≡ 0 (mod 3). Also, if λ1 ≡ 0 (mod 6), then λ2 must be
even, and if λ1 ≡ 3 (mod 6), then λ2 must be odd. if λ1 ≡ 0 (mod 6), then
a 3-GDD(n, 2, 4, 6s, 2t) can be obtained by combining s copies of 3-(n, 4, 6),
for n > 3 on each of the groups and t copies a 3-GDD(n, 2, 4, 0, 2).

If λ1 ≡ 3 (mod 6), then λ2 is odd. Note that the construction of a
3-GDD(n,2,4,6a+3,6b+1) is enough, because a 3-GDD(n, 2, 4, 6a+3, 6b+3)
and a GDD(n, 2, 4, 6a+3, 6b+5) can be obtained using a 3-GDD(n, 2, 4, 6a+
3, 6b+1) and a 3-GDD(n, 2, 4, 0, 2). Hence now we construct a 3-GDD(n, 2,
6a+ 3, 6b+ 1).

A 3-GDD(n, 2, 4, 3, 5) can be constructed for any n, using 3-(2n, 4, 3) and a
3-GDD(n, 2, 4, 0, 2). Hence a 3-GDD(n, 2, 4, 3, 2t+1) exists for all t ≥ 2. As
a consequence using a copies of a 3-(n, 4, 6) one obtains a 3-GDD(n, 2, 4, 6a+
3, 6b+1), for all a ≥ 0 and positive integers b ≥ 1. Hence the necessary con-
ditions are sufficient for the existence of a 3-GDD(n = 22s+1+1, 2, 4, λ1, λ2)
except possibly a 3-GDD(n = 22s+1 + 1, 2, 4, 3, 1) for s ≥ 1. We deal with
s = 0, i.e., n = 3, below.

6.1 n = 3

A 3-GDD(3, 2, 4, λ1, 0) does not exist as the group size is smaller than the
block size. When n = 3, to satisfy the condition on λ1 the whole group
has to be a part of λ1 blocks, forcing λ2 ≥ λ1/3. Clearly the minimum λ2
is attained if blocks are formed by λ1/3 copies of G1 ∪ {a} for all a ∈ G2

and λ1/3 copies of G2 ∪ {a} for all a ∈ G1. Using
λ2−λ13

2 copies of a
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3-GDD(3, 2, 4, 0, 2) and a 3-GDD(3, 2, 4, λ1, λ1/3), we conclude that the
necessary conditions are sufficient for the existence of 3-GDD(3, 2, 4, λ1, λ2).
Note that the parity conditions imply that λ2 − λ1

3 is even.

7 Summary

We define a 3-GDD and prove that the necessary conditions given in the
paper are sufficient for the existence of 3-GDDs with block size 4 for all cases
except when n ≡ 1, 3 (mod 6), n 6= 3, 7, 13 and λ1 > λ2. Also we show that
the necessary conditions are sufficient for the existence of a 3-GDD(n =
22s+1 + 1, 2, 4, λ1, λ2) except possibly a 3-GDD(n = 22s+1 + 1, 2, 4, 3, 1)
where s is a positive integer.
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