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Abstract: In this expository paper, we mainly study orthogonal arrays
(OAs) of strength two having a row that is repeated m times. It turns out
that the Plackett-Burman bound ([15]) can be strengthened by a factor of
m for orthogonal arrays of strength two that contain a row that is repeated
m times. This is a consequence of a more general result due to Mukerjee,
Qian and Wu [13] that applies to orthogonal arrays of arbitrary strength t.

We examine several proofs of the Plackett-Burman bound and discuss which
of these proofs can be strengthened to yield the aforementioned bound for
OAs of strength two with repeated rows. We also briefly discuss related
bounds for t-designs, and OAs of strength t, when t > 2.

1 Introduction

Balanced incomplete block designs (BIBDs) with repeated blocks have been
studied for many years. A classical result due to Mann [11] in 1969 says that
a BIBD having a block of multiplicity m satisfies the inequality b ≥ mv,
where b is the number of blocks and v is the number of points. This is of
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course a generalization of Fisher’s inequality, which states that b ≥ v in
any BIBD.

In this expository paper, we mainly study the corresponding problem for
orthogonal arrays (OAs) of strength two. Here, the analog of Fisher’s in-
equality is the Plackett-Burman bound [15], and it turns out that this bound
can be strengthened by a factor of m for orthogonal arrays of strength two
that contain a row that is repeated m times. This is in fact a consequence
of a more general result due to Mukerjee, Qian and Wu [13] that applies to
orthogonal arrays of arbitrary strength t (see Theorem 4.2).

Aside from being an interesting theoretical question, there is also some
practical motivation for studying this problem. In a recent paper, Culus
and Toulouse [5] discuss an application where it is beneficial to construct
orthogonal arrays with an m-times repeated row, where m is as large as
possible.

The rest of this paper is organized as follows. In Section 2, we present
a standard proof of the Plackett-Burman bound and show how it can be
easily modified to yield the desired inequality for OAs having repeated
rows (this is Theorem 2.2). In Section 3, we examine several other proofs
of the Plackett-Burman bound and discuss which of these proofs can be
strengthened to yield the aforementioned bound for OAs of strength two
with repeated rows. In Section 4, we discuss related bounds for OAs of
strength t, when t > 2. Finally, in Section 5, we consider related bounds
for balanced incomplete block designs (BIBDs) and t-designs.

This paper is exclusively concerned with proving bounds. A follow-up paper
[2] investigates constructions for orthogonal arrays of strength two, having
an m-times repeated row, that meet the bound proven in Theorem 2.2 with
equality.

2 Orthogonal arrays of strength 2

Let k ≥ 2, n ≥ 2 and λ ≥ 1 be integers. An orthogonal array OAλ(k, n) is
a λn2 by k array, A, with entries from a set X of cardinality n such that,
within any two columns of A, every ordered pair of symbols from X occurs
in exactly λ rows of A. We often denote the number of rows, λn2, by N .
For much information on orthogonal arrays, see [9].
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We first give a standard combinatorial proof of the classical Plackett-Burman
bound from 1946. This proof is similar to the original proof of Fisher’s in-
equality [7]. The proof technique is sometimes called the “variance method”.

Theorem 2.1 (Plackett-Burman bound ([15])). Let k ≥ 2, n ≥ 2 and
λ ≥ 1 be integers. If there is an OAλ(k, n), then

λ ≥ k(n− 1) + 1

n2
.

Proof. Relabel the symbols in each column of the OA so the last row of A
is 1 1 · · · 1. For 1 ≤ i ≤ N − 1, let ai denote the number of “1”s in row i
of A. Then

N−1∑

i=1

ai = k(λn− 1),

N−1∑

i=1

ai(ai − 1) = k(k − 1)(λ− 1), and

N−1∑

i=1

ai
2 = k(k(λ− 1) + λ(n− 1)).

Define

a =
k(λn− 1)

N − 1
.

Then

0 ≤
N−1∑

i=1

(ai − a)2

=

N−1∑

i=1

ai
2 − 2a

N−1∑

i=1

ai + a2(N − 1)

= k(k(λ− 1) + λ(n− 1))− k2(λn− 1)2

λn2 − 1
.

Therefore,

k(λn− 1)2 ≤ (λn2 − 1)(k(λ− 1) + λ(n− 1)).

This simplifies to yield

k ≤ λn2 − 1

n− 1
.
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Equivalently,

λ ≥ k(n− 1) + 1

n2
.

Using the identical proof technique, we also have the following theorem.

Theorem 2.2. Let k ≥ 2, n ≥ 2 and λ ≥ 1 be integers. If there is an
OAλ(k, n) containing a row that is repeated m times, then

λ ≥ m(k(n− 1) + 1)

n2
.

Proof. Reorder the rows so the last m rows are identical. Then relabel
the symbols in each column so the last m rows of A are 1 1 · · · 1. For
1 ≤ i ≤ N −m, let ai denote the number of “1”s in row i of A. Then

N−m∑

i=1

ai = k(λn−m),

N−m∑

i=1

ai(ai − 1) = k(k − 1)(λ−m), and

N−m∑

i=1

ai
2 = k(k(λ−m) + λ(n− 1)).

Define

a =
k(λn−m)

N −m .

Then

0 ≤
N−m∑

i=1

(ai − a)2

=

N−m∑

i=1

ai
2 − 2a

N−m∑

i=1

ai + a2(N −m)

= k(k(λ−m) + λ(n− 1))− k2(λn−m)2

λn2 −m .

Therefore,

k(λn−m)2 ≤ (λn2 −m)(k(λ−m) + λ(n− 1)).
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This simplifies to yield

k ≤ λn2 −m
m(n− 1)

.

Equivalently,

λ ≥ m(k(n− 1) + 1)

n2
.

The following corollary is immediate.

Corollary 2.3. Let k ≥ 2, n ≥ 2 and λ ≥ 1 be integers. If there is an
OAλ(k, n) containing a row that is repeated m times, then

m ≤ λn2

k(n− 1) + 1
.

Remark 1. The total number of rows in the orthogonal array is N = λn2.
Thus the inequality from Corollary 2.3 can also be written as

m ≤ N

k(n− 1) + 1
.

Example 1. Suppose we take n = 2, k = 4 and λ = 2 in Corollary 2.3.
Then

m ≤ 8

4(2− 1) + 1
=

8

5
.

Since m is an integer, an OA2(4, 2) cannot have any repeated rows.

If we take n = 2, k = 4 and λ = 3 in Corollary 2.3, then we see that

m ≤ 12

4(2− 1) + 1
=

12

5
.

Since m is an integer, an OA3(4, 2) cannot contain a row that is repeated
three times.

Example 2. An OA3(5, 3) is presented in [5, Table 2]. This orthogonal
array contains a row that is repeated twice. If we take n = 3, k = 5 and
λ = 3 in Corollary 2.3, we see that

m ≤ 27

5(3− 1) + 1
=

27

11
.

Therefore, an OA3(5, 3) cannot contain a row that is repeated three times.
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We close this section by observing that the case of equality in the bound
proven in Theorem 2.2 can easily be characterized.

Corollary 2.4. Let k ≥ 2, n ≥ 2 and λ ≥ 1 be integers. Suppose there is
an OAλ(k, n), say A, containing a row 1 1 · · · 1 that is repeated m times,
where m = λn2/(k(n− 1) + 1). Then every other row of A contains exactly

a =
k(λn−m)

λn2 −m (1)

occurrences of the symbol 1.

Proof. In the proof of Theorem 2.2, in order to obtain equality in the re-
sulting bound, we must have

N−m∑

i=1

(ai − a)2 = 0,

so a = ai for all i.

3 Some other proofs

In this section, we consider other proofs of the Plackett-Burman bound and
investigate whether they can be modified to prove Theorem 2.2.

3.1 Constant weight codes

It is not hard to see that the Plackett-Burman bound and Theorem 2.2 can
be both derived as an immediate corollary of a 1962 bound of Johnson [10,
Theorem 3] for constant-weight binary codes. Johnson defines R(`, r, µ) to
be the maximum number of 0 − 1 vectors of length ` and weight w such
that the inner product of any two of the vectors is at most µ. Then he
proves the following bound.

Theorem 3.1. [10, Theorem 3] If w2 > `µ, then

R(`, w, µ) ≤ `(w − µ)

w2 − `µ .
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We describe how to derive Theorem 2.2 as a corollary of Theorem 3.1.
Suppose that A is an OAλ(k, n) in which the last m rows are 1 1 · · · 1.
Delete these m rows and replace every symbol other than 1 by 0. Consider
the resulting set of k column vectors of length λn2−m. Each of these vectors
has weight λn−m and the inner product of any two of these vectors is equal
to λ−m. From Theorem 3.1, we see that

k ≤ (λn2 −m)λ(n− 1)

(λn−m)2 − (λn2 −m)(λ−m)
=
λn2 −m
m(n− 1)

.

The above derivation might appear to be simpler than the one we gave in
the proof of Theorem 2.2. But this is illusory, as the proof of Theorem
3.1 relies on the computation of a quadratic sum analogous to the one
considered in the proof of Theorem 2.2.

3.2 Transversal designs

Another way to prove the Plackett-Burman bound involves constructing
the incidence matrix, M , of the associated transversal design. (For the
definition of a transversal design, and a description of how to transform an
orthogonal array into a transversal design, see [19, §6.6].) The incidence
matrix M has kn columns (corresponding to the kn points in the transversal
design) and k+λn2 rows (where the first λn2 rows correspond to the rows of
the OA, and the last k rows are associated with the groups of the transversal
design).

It is fairly straightforward to show that the rows of M span a real kn-
dimensional vector space, whence k+λn2 ≥ kn. Then we can observe that
one of the rows of M is spanned by the remaining rows, so the inequality
can be strengthened to k+λn2−1 ≥ kn, which is just the Plackett-Burman
bound.

Here are the details required to fill in the proof. Let the transversal design
be (X,G,B) where

X = {1, . . . , n} × {1, . . . , k},
G = {G1, . . . , Gk},
Gj = {1, . . . , n} × {j}, for 1 ≤ j ≤ k, and

B = {B1, . . . , BN},where N = λn2.
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Members of X are termed points, members of G are called groups and
members of B are referred to as blocks.

The incidence matrix M is defined as follows. A row of M is indexed
by a block or a group and a column of M is indexed by a point x. The
corresponding entry of M is “1” if x is a member of the given block or
group, and “0” otherwise.

Each row of the incidence matrix M is a 0 − 1 vector of length kn. We
thus obtain k+N vectors, which we will denote by Bi (1 ≤ i ≤ N) and Gj

(1 ≤ j ≤ k). For any point x ∈ X, let x denote the standard basis vector
that has a “1” in the co-ordinate corresponding to x. The all-ones vector
will be denoted by u.

We list a few obvious equations:

N∑

i=1

Bi = λnu. (2)

k∑

j=1

Gj = u. (3)

For any x ∈ Gj , it holds that

λGj +
∑

{i:x∈Bi}
Bi = λu + (λn)x. (4)

From (2) and (4), it is easy to see that

x ∈ Span(B1, . . . ,BN,G1, . . . ,Gk)

for any x ∈ X. Then, using (2) and (3), it follows that

Gk ∈ Span(B1, . . . ,BN,G1, . . . ,Gk−1).

Therefore,
x ∈ Span(B1, . . . ,BN,G1, . . . ,Gk−1)

for any x ∈ X. This immediately implies k+N−1 ≥ kn, and the Plackett-
Burman bound is proven.

Remark 2. The above proof is obviously motivated by a similar proof
of Fisher’s inequality, which can be found, for example, in [19, Theorem
1.33]. This basic method, as far as I can determine, was first used by
Ray-Chaudhuri and Wilson in the proof of [17, Theorem 1].
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Remark 3. Interestingly, there does not seem to an obvious way to modify
this proof to yield Theorem 2.2. Cleary, if the OA contains m identical rows,
then the associated incidence matrix contains m identical rows. Suppose we
delete m − 1 of the m identical rows in M , producing a matrix M ′. The
span of the rows of M ′ is identical to the span of the rows of M , from which
it immediately follows that k + N − m ≥ kn. But this is a much weaker
inequality than the one proven in Theorem 2.2.

3.3 Evaluating a determinant

We consider a slightly modified incidence matrix:

1. Transpose the N + k by nk matrix M defined in Section 3.2.

2. Adjoin an additional row to the resulting matrix, which contains 0’s
in the first N columns (which are labelled by blocks) and 1’s in the
last k columns (which are labelled by groups).

3. Multiply all elements in the last k columns by
√
λ. Call the resulting

nk + 1 by N + k matrix M̃ .

The following result can be easily verified.

Lemma 3.2. The matrix M̃ , as defined above, satisfies the matrix equation

M̃M̃T = λJ + diag(λn, . . . , λn, (k − 1)λ),

where J is the all-ones matrix and diag() is a matrix with the specified
entries on the diagonal and 0’s elsewhere.

The Plackett-Burman bound follows by proving that det(M̃M̃T ) > 0.
(There are various ways to do this, but we do not go into the details here.)
Then, because M̃M̃T is an nk + 1 by nk + 1 matrix, we have

nk + 1 = rank(M̃M̃T ) ≤ rank(M̃) ≤ min{nk + 1, N + k} ≤ N + k.

Remark 4. This proof is again a modification of a familiar proof of Fisher’s
inequality, namely, the proof given by Bose [1]. It might in fact be possible
to extend this proof to derive Theorem 2.2, by employing Connor’s inequal-
ities [4].
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3.4 Orthogonal vectors

The last proof of the Plackett-Burman bound that we present is a spe-
cialization of a standard proof of the Rao bound for orthogonal arrays of
arbitrary strength t. Assume that A is an OAλ(k, n) defined on the symbol
set Zn. Let the columns of A be denoted C1, . . . , Ck. Let C0 be the column
vector of “0”s. For 1 ≤ m ≤ n− 1, construct mCj from Cj by multiplying
every entry by m (modulo n). Let ω = e2πi/n (a complex nth root of 1)
and define φ : Zn → C by the rule φ(s) = ωs.

Now consider the set of 1 + k(n− 1) vectors

D = {φ(C0)} ∪ {φ(mCj) : 1 ≤ m ≤ n− 1, 1 ≤ j ≤ k}.

It can be shown easily that 〈C,D〉 = 0 for all C,D ∈ D, C 6= D, where
〈·, ·〉 denotes the hermitian inner product of two (complex-valued) vectors.
(This uses the fact that the sum of the complex nth roots of 1 equals 0.)

Since D consists of mutually orthogonal vectors, they are linearly indepen-
dent. Hence, we have a set of 1 + k(n− 1) linearly independent vectors in
CN , and it follows that 1 + k(n− 1) ≤ N(= λn2).

Remark 5. There does not seem to be any obvious way to modify this
proof to obtain Theorem 2.2. But it is possible to obtain by this method the
weaker bound stated in Remark 3. Suppose that the last m rows of A are all
0’s. Then, in any vector in D, the last m coordinates are identical. Suppose
that we delete the last m− 1 co-ordinates of each of these vectors, and then
multiply the last (remaining) co-ordinate by

√
m. This will have the effect

of preserving the condition 〈C,D〉 = 0 for all the shortened vectors. We end
up with 1 + k(n − 1) linearly independent vectors in CN−m+1. Therefore,
1 + k(n− 1) ≤ N −m+ 1 and hence k +N −m ≥ kn.

4 OAs of strength t > 2

We now consider a generalization. Let t ≥ 2 be a parameter called the
strength, and as before let k ≥ 2, n ≥ 2 and λ ≥ 1 be integers. An
orthogonal array OAλ(t, k, n) is a λnt by k array, A, with entries from a set
X of cardinality n such that, within any t columns of A, every t-tuple of
symbols from X occurs in exactly λ rows of A.

Observe that an OAλ(2, k, n) is the same thing as an OAλ(k, n). One main
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bound for OAλ(2, k, n) is the Rao bound from 1947.

Theorem 4.1 (Rao bound ([16])). Let k ≥ 2, t ≥ 2, n ≥ 2 and λ ≥ 1 be
integers. If there is an OAλ(t, k, n), then

λnt ≥
{

1 +
∑t/2
i=1

(
k
i

)
(n− 1)i if t is even

1 +
∑(t−1)/2
i=1

(
k
i

)
(n− 1)i +

(
k−1

(t−1)/2
)
(n− 1)(t+1)/2 if t is odd.

The Plackett-Burman bound (Theorem 2.1) is just the special case of the
Rao bound with t = 2.

We are of course interested in the situation where the orthogonal array con-
tains a row that is repeated m times. We might expect that the Rao bound
could be improved by a multiplicative factor of m in this case. Indeed, a
more general result of Mukerjee, Qian and Wu [13] yields the desired in-
equality. The paper [13] defines a nested orthogonal array, which refers to
an OAλ(t, k, n) that contains a subset of rows that is an OAλ′(t, k, n′). If
n′ = 1 and λ′ = m, then we just have an m-times repeated row in the
OAλ(t, k, n). A necessary condition for the existence of nested orthogonal
arrays is proven in [13, Theorem 1]. Specializing this result to orthogonal
arrays that contain an m-times repeated row, we obtain the following:

Theorem 4.2 (Mukerjee-Qian-Wu bound ([13])). Let k ≥ 2, t ≥ 2, n ≥ 2
and λ ≥ 1 be integers. If there is an OAλ(t, k, n) containing a row that is
repeated m times, then

λnt ≥




m
(

1 +
∑t/2
i=1

(
k
i

)
(n− 1)i

)
if t is even

m
(

1 +
∑(t−1)/2
i=1

(
k
i

)
(n− 1)i +

(
k−1

(t−1)/2
)
(n− 1)(t+1)/2

)
if t is odd.

The proof of the Rao bound (Theorem 4.1) is not difficult. Unfortunately,
the proof of [13, Theorem 1] is much more complicated. It is remarked in
[13] that there is no obvious way to generalize the standard proof of the
Rao bound to nested orthogonal arrays.

5 BIBDs and t-designs

So far, we have concentrated on bounds for orthogonal arrays. It may be of
interest to look at “analogous” inequalities for BIBDs (i.e., 2-designs) and
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t-designs for general values of t ≥ 2. In our discussion, b will denote the
number of blocks in a t-(v, k, λ)-design.

The following summarizes some of the main known results.

1. Fisher’s inequality for 2-designs (proven in 1940; see [7]) states that
if a 2-(v, k, λ)-design exists with v ≥ k + 1, then b ≥ v. There are
by now many proofs of this inequality, several of which have been
mentioned in Sections 2 and 3.

2. The Ray-Chaudhuri and Wilson inequality [17] asserts that if a t-
(v, k, λ)-design exists with t ≥ 2s and v ≥ k + s, then b ≥

(
v
s

)
. (This

result of course generalizes Fisher’s inequality, and we also remark
that the case t = 4 was first proven by Petrenjuk [14], who conjec-
tured the inequality proven by Ray-Chaudhuri and Wilson.) As we
mentioned earlier, the proof given in [17] uses a technique similar
to the one in Section 3.2. Some other proofs can be found in [21,
Theorem 1], [8, Theorem 1.4.1] and [12, Theorem 3.4].

3. Mann’s inequality [11], which was proven in 1969, states that if a 2-
(v, k, λ)-design with v ≥ k + 1 has a block that is repeated m times,
then b ≥ mv. (The special case m = 1 is just Fisher’s inequality).
Mann’s proof was an application of the variance method. Interest-
ingly, a slightly weaker inequality was proven a few years earlier, using
the same method, by Stanton and Sprott [18].

For another proof of Mann’s inequality, see [20]. It is also well-known
that Mann’s inequality can be derived as a consequence of Connor’s
inequalities [4], which were proven in 1952; see, for example, Brouwer
[3, p. 700].

4. Finally, Wilson ([21, Corollary 3] and [22, Corollary 4]) proved that if
there exists a t-(v, k, λ)-design with t ≥ 2s and v ≥ k + s, which has
a block that is repeated m times, then b ≥ m

(
v
s

)
. Wilson’s proofs use

methods of orthogonal projections. For another proof of this result,
based on the so-called “cone condition”, see [6].

This result of course immediately implies the three previous results.
However, its proofs are substantially more complicated than the proofs
of the three previous results.
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