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Abstract: A palindromic labeling on a graph G is a bijection f : V (G)→
{1, ..., |V (G)|} such that if uv ∈ E(G), then there exists xy ∈ E(G) such
that f(x) = |V (G)| + 1 − f(u) and f(y) = |V (G)| + 1 − f(v). A graph
that admits a palindromic labeling is a palindromic graph. In this paper,
we determine simple necessary and sufficient conditions for several well-
known families of graphs to be palindromic. In addition, we give methods
of constructing palindromic graphs. In our main result, we show that all
palindromic trees are generated by these constructions. We also provide re-
sults on when the join and Cartesian product of graphs can be palindromic.

1 Introduction and preliminary results

In a recent paper [2], Buratti calls for papers on palindromes. Palindromes
are words (sequences, numbers, sentences, etc.) that are the same regardless
of whether they are read forwards or backwards. In other words, suppose
that a1...an is a word in the alphabet A. This word is a palindrome if
for all i = 1, ..., n, ai = an−i+1. Examples of English palindromes can be
found at http://www.palindromelist.net/. In addition, Martin Gardner
discusses several interesting properties of mathematical palindromes in [4].

We are inspired by the above discussion to consider palindromes on graphs.
Let G = (V,E) be a graph. A palindromic labeling is a bijection f : V (G)→
{1, ..., |V (G)|} such that if uv ∈ E(G), then there exists xy ∈ E(G) such
that f(x) = |V (G)|+ 1− f(u) and f(y) = |V (G)|+ 1− f(v). An example
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Figure 1: A palindromic labeling on a graph

of a palindromic labeling on a graph is given in Figure 1. A graph that
admits a palindromic labeling is a palindromic graph. If f is a palindromic
labeling of G and v ∈ V (G), then v′ ∈ V (G) corresponds to v under f
if f(v′) = |V (G)| + 1 − f(v). Likewise, if uv ∈ E(G), then u′v′ ∈ E(G)
corresponds to uv if f(u′) = |V (G)|+1−f(u) and f(v′) = |V (G)|+1−f(v).
Note that a vertex, or an edge, can correspond to itself. All other graph
theoretical notation and terminology will be consistent with West [9]. For
an extensive survey of other types of graph labelings, the interested reader
is referred to [3].

As we will see in our first theorem, there is a connection between a palin-
dromic labeling on a graph and the automorphisms on its vertices. An
automorphism on a graph G is a bijection φ : V (G) → V (G) such that if
uv ∈ E(G), then φ(u)φ(v) ∈ E(G). The set of all automorphisms on a
graph G is the automorphism group of G. This is denoted Aut(G). Note
that graph automorphisms induce an equivalence relation on the vertices
of a graph G. Namely, u ∈ V (G) relates to v ∈ V (G) if there an automor-
phism φ ∈ Aut(G) such that φ(u) = v. Like all equivalence relations, this
partitions the vertices into classes, called automorphism classes. For more
information on the automorphism group of a graph, see [5, 8].

Theorem 1.1. A graph G is palindromic if and only if there exists an
automorphism φ on the vertices of G such that φ is an involution having at
most one fixed point.

Proof. Suppose that G is a palindromic graph on n vertices. Let f be a
palindromic labeling of G. Define φ : V (G) → V (G) as φ(v) = v′, where
f(v′) = n + 1 − f(v). Since f is a bijection, φ is likewise a bijection. If
uv ∈ E(G), then u′v′ satisfies f(u′) = n+1−f(u) and f(v′) = n+1−f(v).
Therefore, φ(u)φ(v) ∈ E(G). Thus, φ is a graph automorphism. Since
f(v′) = n + 1 − f(v) it follows that φ(v) = v′ and φ(v′) = v. Thus, φ is
an involution. Suppose that there are distinct vertices u and v such that
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φ(u) = u and φ(v) = v. Thus, f(u) = n+1−f(u) and f(v) = n+1−f(v).
This implies that f(u) = f(v) = n+1

2 , contrary to f being a bijection. Ergo,
φ leaves at most one vertex fixed.

Conversely, suppose that φ is an automorphism on the vertices of G such
that φ is an involution having at most one fixed point. Consider

{u1, u′1}, {u2, u′2}, . . . , {uk, u′k},

where φ(ui) = u′i and k =
⌈
n
2

⌉
. By definition of φ, this is a partition of

V (G). Further, at most one of these parts, say {uk}, consists of a single
vertex. For i = 1, ..., k, define f(ui) = i and f(u′i) = n + 1 − i. Note that
if {uk, u′k} consists of a single vertex, then f(uk) = n+1

2 by construction.
Clearly, f is a bijection mapping V (G) to {1, ..., n}. If uv ∈ E(G), then
φ(u)φ(v) ∈ E(G) satisfies f(φ(u)) = n+1−f(u) and f(φ(v)) = n+1−f(v).
Thus, f is a palindromic labeling on G.

Using automorphism classes, we now give another necessary condition for
a graph to be palindromic.

Theorem 1.2. Let G be a palindromic graph on n vertices. (i) If n is even,
then every automorphism class has an even number of vertices. (ii) If n is
odd, then exactly one automorphism class has an odd number of vertices.

Proof. Let G be a palindromic graph on n vertices. Suppose to the contrary
that X and Y are distinct automorphism classes of G such that |X| and
|Y | are both odd. Let f be any palindromic labeling of G. As in the proof
of Theorem 1.1, if x ∈ X, then there exists x′ ∈ X such that f(x′) =
n + 1 − f(x). Since f is a bijection, these labels must be distinct. Since
|X| is odd, then one of the vertices of X must be labeled f(x) = n+1

2 . If
n is even, then this is a contradiction. Thus, (i) holds. Using a similar
argument, if n is odd it follows that one of the vertices in Y must also be
labeled f(y) = n+1

2 . However, this is contrary to f being a bijection. Thus,
(ii) holds.

The necessary condition given in Theorem 1.2 is not sufficient. To see this,
consider the Petersen graph illustrated in Figure 2. The automorphism
group is generated by

(v3, v7)(v4, v10)(v8, v9) and (v1, v2, v3, v4, v5)(v6, v7, v8, v9, v10).

Thus, the graph has a single automorphism class containing all ten vertices.
Using a computer algebra system, we find that none of the 120 elements of
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Figure 2: The Petersen Graph

the automorphism group satisfy Theorem 1.1. Hence, the Petersen graph
is not palindromic.

A necessary condition for two vertices to be in the same automorphism class
is that they have the same degree (see for example [5, 8]). Hence, the next
corollary follows immediately. However, as shown above, the Petersen graph
is an example where the condition given in Corollary 1.3 is not sufficient.
We will later provide an infinite class of examples where this condition is
not sufficient.

Corollary 1.3. Let G be a palindromic graph on n vertices. Let dk be the
number of vertices in G of degree k. If n is even, then dk must be even for
all k. If n is odd, then exactly one dk is odd.

One consequence of a palindromic labeling is that it accentuates the inherit
symmetry of the graph. This is in stark contrast to the distinguishing
numbers introduced by Albertson and Collins in which the goal is to break
the symmetries of the graph [1].

We note that a palindromic labeling is only unique when the graph is trivial.
With this in mind, we give a lower bound on the number of palindromic
labelings on palindromic graph in the next result.

Theorem 1.4. If G is a palindromic graph on n vertices, then there are at

least
⌊n

2

⌋
!2bn/2c palindromic labelings on G.
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Proof. Let G be a palindromic graph on n vertices. Let f be a palindromic
labeling on G. As in the proof of Theorem 1.1, this induces a partition
of the vertices of G into {u1, u′1},...,{uk, u′k}, where k =

⌈
n
2

⌉
and f(u′i) =

n + 1 − f(u). Without loss of generality, we will assume that if n is odd,
then uk = u′k and f(uk) = n+1

2 .

We claim that if the labels on two of the pairs {ui, u′i} and {uj , u′j} are
swapped, then the resulting labeling is still palindromic. Define g : V (G)→
{1, ..., n} as follows: g(ui) = f(uj), g(uj) = f(uj), g(u′i) = f(u′j), g(u′j) =
f(u′j), and g(v) = f(v) for all other v ∈ V (G). Since f is a bijection, g is
also a bijection. Suppose that uiw ∈ E(G). Under f , this corresponds to
the edge u′iw

′. If suffices to show that correspondence holds under g. Note
that g(u′i) = f(u′j) = n+1−f(uj) = n+1−g(ui). If w = u′i, then the same
argument holds. If w = uj , then g(w′) = g(u′j) = f(u′i) = n+ 1− f(ui) =
n + 1 − g(uj). A similar argument holds if w = u′j . If w /∈ {u′i, uj , u′j},
then g(w′) = f(w′) = n+ 1− f(w) = n+ 1− g(w′). In any case, the new
labeling remains palindromic. Analogously, if we swap the labels on ui and
u′i, then the resulting labeling is palindromic.

We will use the above partition to obtain our bound. This can be done
as follows: If n is odd, then uk must be assigned n+1

2 . For all other pairs
{ui, ui}, assign distinct elements of {{`, n + 1 − `} : 1 ≤ ` ≤

⌊
n
2

⌋
}. There

are
⌊
n
2

⌋
! ways to do this. For each such assignment, choose whether ui or

u′i is assigned `. The other vertex will be assigned n + 1 − `. There are

2bn/2c ways to do this. Thus, there are at least
⌊n

2

⌋
!2bn/2c palindromic

labelings on G.

One of our main results in Section 3 classifies palindromic trees. To aid in
this proof, we provide an even simpler necessary condition for trees.

Corollary 1.5. If T is a palindromic tree with even diameter, then T has
an odd number of vertices. If T is a palindromic tree with odd diameter,
then T has an even number of vertices.

Proof. Let T be a palindromic tree. If T has even diameter, then its center
is a single vertex (see for example [9]). This vertex must be in an automor-
phism class by itself. By Theorem 1.2, each of the remaining automorphism
classes must have an even number of vertices. Thus, |V (T )| must be odd.

If T has odd diameter, then its center consists of two adjacent vertices, say
x and y (see for example [9]). Suppose to the contrary that |V (T )| is odd.
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By Theorem 1.2, there is an automorphism class C with an odd number of
vertices. Let z ∈ C. Without loss of generality, suppose that the distance
from z to x is strictly less than the distance from z to y. As in the proof
of Theorem 1.1, there exists a graph automorphism φ such that φ(x) = y.
However, this same automorphism would map z to a vertex z′ which is
closer to y than to x. Hence, z 6= z′. Since z was chosen arbitrarily from
C, this induces a partition of C into {z1, z′1},...,{zk, z′k}, where φ(zi) = z′i
and zi 6= z′i. This contradicts C having an odd number of vertices. Thus,
T must have an even number of vertices.

Note that the automorphism groups of a graph G and its complement G are
the same (see for example [5, 8]). Hence the next result follows immediately.

Proposition 1.6. A graph G is palindromic if and only if its complement
G is palindromic.

2 Specific families of graphs

In this section, we give simple necessary and sufficient conditions for several
families of graphs to be palindromic. For each of the palindromic graphs in
this section, we provide an explicit palindromic labeling. Let Pn, Cn, and
Kn denote the path, cycle, and complete graph on n vertices, respectively.
In all cases, suppose that the vertices are labeled v0, v1,...,vn−1 in the
obvious way.

Theorem 2.1. The path Pn, cycle Cn, and complete graph Kn are palin-
dromic for all n.

Proof. We begin by giving the required palindromic labeling on the path.
Label f(vi) = i + 1 for i = 0, 1, ..., n − 1. In each case, vi and vn−i−1
are in the same automorphism class and are labeled f(vi) = i + 1 and
f(vn−i−1) = n− i = n+ 1− f(vi). Hence, this labeling is palindromic.

To obtain the cycle from the path, we add the edge v0vn−1. Since this
edge corresponds to itself under f , the graph remains palindromic. The
complete graph is trivially palindromic.

The complete bipartite graph Kn,m is the graph with vertex set x1, ..., xn,
y1, ..., ym such that xiyj ∈ E(Kn,m) for all i = 1, ..., n and j = 1, ...,m. In
particular, when n = 1, this graph is called the star.
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Theorem 2.2. The complete bipartite graph Kn,m is palindromic if and
only if n = m or at least one of n or m is even.

Proof. Suppose that n 6= m and n and m are both odd. In this case, Kn,m

has n vertices of degree m and m vertices of degree n. Since n and m are
both odd and n 6= m, Kn,m cannot be palindromic by Corollary 1.3.

It suffices to give the required palindromic labeling in the remaining cases.
Suppose that n = m. The required labeling is f(xi) = i and f(yi) =
2n+1− i for all i. For all i, xi corresponds to yi under this labeling. Hence
f is palindromic.

Suppose that m is even, say m = 2t. Label f(xi) = t + i for i = 1, ..., n.
For j = 1, .., t, label f(yj) = j and f(ym−j+1) = n+m+ 1− j. Under this
labeling, xi corresponds to xn−i+1 and yj corresponds to yn+m+1−j . Thus,
f is palindromic.

Theorem 2.2 illustrates that the join of two palindromic graphs need not
be palindromic. As an example, the empty graphs K2t+1 and K2k+1 are
palindromic by Proposition 1.6 and Theorem 2.1. Their join is K2t+1,2k+1.
However, if t ≥ k+1, then this is not palindromic by Theorem 2.2. A more
comprehensive result about whether the join of two graphs is palindromic
is given in Theorem 4.2.

The double star is the tree in which every vertex is adjacent to one of two
adjacent central vertices. The two center vertices are denoted x and y. The
non-center vertices adjacent to x will be denoted x1,...,xn. The non-center
vertices adjacent to y will be denoted y1,...,ym. This graph is denoted Sn,m.

Theorem 2.3. The double star Sn,m is palindromic if and only if n = m.

Proof. Suppose that n 6= m. The automorphism classes of Sn,m are {x},
{y}, {x1, ..., xn}, and {y1, ..., ym}. Since Sn,m has at least two automor-
phism classes with an odd number of vertices, it is not palindromic by
Theorem 1.2.

It suffices to give the required labeling in the case where n = m. Label
f(xi) = i, f(x) = n+ 2, f(y) = n+ 1, and f(yi) = 2n+ 3− i. Under this
labeling, x corresponds to y and xi corresponds to yi for all i. Hence this
labeling is palindromic.
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The complete graph is palindromic by Theorem 2.1. It stands to reason that
if a graph has enough edges, then it will be palindromic. By Proposition
1.6, any graph that has too few edges will likewise be palindromic. We are
motivated by these comments to consider the following problem: For any
n, determine the minimum m such that if G is a non-palindromic graph on

n vertices and k edges, then k must satisfy m ≤ k ≤ n(n−1)
2 −m. We are

particularly interested in the case where G and G are both connected. With
this in mind, we define P ′n to be the tree obtained from Pn by appending
an additional pendant, v′0, to v1.

Proposition 2.4. The graph P ′n is not palindromic for n ≥ 3. Further,
for n ≥ 4 both P ′n and its complement P ′n are connected.

Proof. Note that P ′3 is isomorphic to K1,3. Hence it is not palindromic
by Theorem 2.2. For n ≥ 4, the automorphism classes of P ′n are {v0, v′0},
{v1},...,{vn−1}. Hence, the graph is not palindromic by Theorem 1.2.

Clearly, P ′n is connected for all n. We now show that P ′n is connected for
n ≥ 4. Note that in P ′n, v0 is adjacent to v′0, v2, ..., vn−1. Further, v1 and
vn−1 are adjacent in P ′n. Thus P ′n is also connected for n ≥ 4.

From Proposition 2.4, it follows that for n ≥ 4, if G is a non-palindromic
graph on n vertices and k edges such that both G and G are both connected,

then n − 1 ≤ k ≤ (n−1)(n−2)
2 . Further, these bounds are sharp. Similarly,

suppose that we restrict our attention to graphs with no isolated vertices.
If n is even, then consider the disjoint union of K1,3 and n−4

2 copies of
K2. This graph is not palindromic by Corollary 1.3 and has 1 +n/2 edges.
Likewise, if n is odd, then consider the disjoint union K1,3, P3, and n−7

2
copies of K2. This graph is not palindromic by Corollary 1.3 and has
2+ n−1

2 edges. Finally, suppose that we allow graphs with isolated vertices.
Consider the disjoint union of K1,3 and n− 4 isolated vertices. This graph
is not palindromic by Corollary 1.3. Hence, the bound widens to 3 ≤ k ≤
n(n−1)

2 − 3.

3 Constructing palindromic graphs

In this section, we introduce two methods of constructing palindromic
graphs. Let G be any graph, let S ⊆ V (G), and let p be a non-negative

92



v

w

v

w

x

w′

v′

v

w

x y

w′

v′

Figure 3: The graphs G, Pal1(G, {v, w}, 4), and Pal2(G, {v}, 3)

integer. Define Pal1(G,S, p) to be the graph obtained by taking two iso-
morphic copies of G (labeled G1 and G2), a new vertex x, and p pendant
vertices adjacent to x. For all v ∈ S, we add an edge from x to v and an
edge from x to v′, where v′ ∈ V (G2) corresponds to v ∈ V (G1). Similarly,
we define Pal2(G,S, p) to be the graph obtained by taking two isomorphic
copies G (labeled G1 and G2), two adjacent vertices x and y, p pendants
adjacent to x, and p pendants adjacent to y. For all v ∈ S, we add an
edge from x to v, and an edge from y to the corresponding vertex v′ in G2.
Examples of these graphs are given in Figure 3.

Theorem 3.1. Let G be a graph, let S ⊆ V (G), and let p be a non-negative
integer. The graphs Pal1(G,S, 2p) and Pal2(G,S, p) are palindromic.

Proof. Consider Pal1(G,S, 2p). In this graph, let x1,...,x2p be the pendants
adjacent to x, let V (G1) = {v1, ..., vn}, and V (G2) = {v′1, ..., v′n}, where v′i
is the vertex in G2 corresponding to vi in G1. Define g to be any bijection
between V (G) and the set {1, ..., n}.

It suffices to give the required palindromic labeling on Pal1(G,S, 2p). De-
fine f on V (Pal1(G,S, 2p)) as follows: f(vi) = g(vi), f(v′i) = 2n+ 2p+ 2−
g(vi), f(x) = n+p+1, f(xi) = n+p+1−i for i = 1, ..., p, and f(xi) = n+1+i
for i = p + 1, ..., 2p. Clearly, f is a bijection. If uv ∈ E(G1), then u′v′ ∈
E(G2) satisfies f(u′) = 2n+ 2p+ 2− g(u) = |V (Pal1(G,S, 2p))|+ 1− f(u)
and f(v′) = 2n + 2p + 2 − g(v) = |V (Pal1(G,S, 2p))| + 1 − f(v). A
similar argument holds if u′v′ ∈ E(G2). If v ∈ S1, then xv′ satisfies
f(x) = n+ 1 + p = 2n+ 2p+ 2− (n+ 1 + p) = |V (Pal1(G,S, 2p))| − f(x)
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and f(v′) = |V (Pal1(G,S, 2p))| + 1 − f(v). A similar argument holds if
v′ ∈ V (G2). For i = 1, ..., p, note that xxi ∈ E(Pal1(G,S, 2p)). The
edge xxp+i satisfies f(x) = |V (Pal1(G,S, 2p))| + 1 − f(x) and f(xp+i) =
n+1+p+ i = 2n+2p+2− (n+p+1− i) = |V (Pal1(G,S, 2p))|+1−f(xi).
A similar argument holds for the case where i ∈ {p+ 1, ..., 2p}.

The proof for Pal2(G,S, p) follows in a similar manner. Let x1, ..., xp be
the pendants adjacent to x, let y1,...,yp be the pendants adjacent to y, let
V (G1) = {v1, ..., vn}, and V (G2) = {v′1, ..., v′n}. Define g to be any bijection
between V (G) and the set {1, ..., n}.

It suffices to give the required labeling. Define f on V (Pal2(G,S, p)) as
follows: f(vi) = g(vi), f(v′i) = 2n + 2p + 3 − g(vi), f(x) = n + p + 1,
f(y) = n + p + 2, f(xi) = n + p + 2 + i for i = 1, ..., p, and f(yi) =
n + p + 1 − i for i = 1, ..., p. For v ∈ S, note that vx ∈ E(Pal2(G,S, p))
and v′y ∈ E(Pal2(G,S, p)). Further, f(y) = n+ p+ 2 = 2n+ 2p+ 3− (n+
p + 1) = |V (Pal2(G,S, p))| + 1 − f(x) and f(v′) = 2n + 2p + 3 − g(v) =
|V (Pal2(G,S, p))| + 1 − f(v). Likewise, for xxi ∈ E(Pal2(G,S, p)), yyi
satisfies f(y) = |V (Pal2(G,S, p))| + 1 − f(x) and f(yi) = n + p + 1 − i =
2n+ 2p+ 3− (n+ p+ 2 + i) = |V (Pal2(G,S, p))|+ 1− f(xi). The rest of
the proof is analogous to above.

IfG is non-trivial, then two of the automorphism classes of Pal1(G,S, 2p+1)
are {x} and {x1, ..., x2p+1}. Hence, it cannot be palindromic by Theorem
1.2. However, Pal1(G,S, 0) remains palindromic when x is deleted. To
see this, simply subtract one from each of the labels on the vertices of
G2. Similarly, Pal2(G,S, p) is palindromic if the edge xy is deleted. Fi-
nally, note that in either graph we may add any number of edges between
corresponding vertices in G1 and G2.

Combining Corollary 1.3 and Theorem 3.1 allows us to characterize addi-
tional palindromic graphs. A caterpillar is obtained from the path on n
vertices by appending pendant vertices to the existing vertices of the path.
The vertices of the original path are labeled v0, v1,...,vn−1 in the obvious
way. We append ai pendant vertices to vi−1. These pendants are denoted
vi−1,1,...,vi−1,ai . Without loss of generality, we may assume that a1 ≥ 1
and an ≥ 1. A caterpillar is illustrated in Figure 4.
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Figure 4: The caterpillar P4(6, 1, 4, 3)

Theorem 3.2. The graph P2t(a1, ..., a2t) is palindromic if and only if ai =
a2t−i+1 for all i = 1, ..., t. The graph P2t+1(a1, ..., a2t+1) is palindromic if
and only if ai = a2t−i+2 and at+1 is even.

Proof. Suppose that ai 6= an−i+1 for some i. Two automorphism classes of
the graph are {vi−1} and {vn−i}. Thus, Pn(a1, ..., an) is not palindromic
by Theorem 1.2. Likewise, suppose that n = 2t + 1 and at+1 is odd. Two
automorphism classes of the graph are {vt} and {vt,1, ..., vt,at+1}. Since
both of these classes have an odd number of vertices, the graph is not
palindromic by Theorem 1.2.

Suppose n = 2t and ai = a2t−i+1 for i = 1, ..., t. Note that P2t(a1, ..., a2t) is
isomorphic to Pal2(Pt−1(a1, ..., at−1), {vt−2}, at). Thus, the graph is palin-
dromic by Theorem 3.1. Likewise, suppose that n = 2t + 1, ai = a2t−i+2,
and at+1 = 2p for some p. Note that P2t+1(a1, ..., a2t+1) is isomorphic to
Pal1(Pt(a1, ..., at), {vt−1}, 2p). Hence, the graph is palindromic by Theo-
rem 3.1.

One of the interesting implications of Theorem 3.2 is that a caterpillar is
palindromic if and only if its parameters form a palindrome. The caterpillar
also provides an infinite family of graphs in which the necessary condition
given in Corollary 1.3 is not sufficient. To see this, consider the caterpillar
Pn(a1, ..., an), where n ≥ 6, a2 = an−2 = 2, a3 = an−1 = 3, and ai = 1 for
all other i. Since a2 6= an−1, this graph is not palindromic by Theorem 3.2.
The technique employed in the proof of Theorem 3.2 can be used for other
trees as well. With this in mind, we now prove our main result that all
palindromic trees can be obtained via the construction given in Theorem
3.1.
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Theorem 3.3. If T is a palindromic tree, then there exists a forest F and a
set of vertices S ⊆ V (F ) such that T = Pa11(F, S, 0) or T = Pal2(F, S, 0).

Proof. Suppose that T is a palindromic tree with n vertices and even diam-
eter. Let φ be the associated automorphism. Since T has even diameter,
the center consists of a single vertex x (see for example, [9]). This vertex
is in an automorphism class by itself. This being the case, φ(x) = x. Note
that deleting the vertex x separates T into a set of connected components.

Suppose that C is a connected component of T −x such that φ[C] = C. Let
v ∈ C such that vx ∈ E(T ). Since trees are acyclic, this vertex is unique.
Graph automorphisms are distance preserving (see for example [8]). Thus
φ(v) = v. However, φ(x) = x as well. This contradicts φ having at most
one fixed point. Thus, there exists a connected component C ′ such that
φ[C] = C ′ and C 6= C ′.

Partition the connected components of T−x as {C1, C
′
1},...,{Ck, C

′
k}, where

φ[Ci] = C ′i and Ci 6= C ′i. Let F be the disjoint union of the Ci. Since T
is a tree, it follows that F is a forest. Let vi be the unique vertex in Ci

adjacent to x in T . Let S = {v1, ..., vk}. Now, T = Pal1(F, S, 0).

The case when the tree is of odd diameter follows in a similar manner. Let
T be a palindromic tree with n vertices and odd diameter. Let f be a
palindromic labeling of T . Since T has odd diameter, the center consists
of a pair of adjacent vertices x and y (see for example [9]). Note that
T −{x, y} is a forest. Suppose that C1,...,Ck are the connected components
of T −{x, y} such that there is xi ∈ V (Ci) that is adjacent to x in T . Since
T is palindromic, each component Ci corresponds to a component C ′i such
that there is x′i ∈ V (C ′i) that is adjacent to y in T . Let F be the disjoint
union of C1,...,Ck and let S = {x1, ..., xk}. Now, T = Pal2(F, S, 0).

Whether an analog of Theorem 3.3 holds for all graphs is unknown at this
time.

4 The join and cartesian product

In the previous section, we gave a method for constructing palindromic
graphs. Another method of constructing such graphs would be to use graph
operations, such as the join and the Cartesian product.
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The join of graphs G and H is the graph with vertex set V (G) ∪ V (H)
and edge set E(G) ∪ E(H) ∪ {gh : g ∈ V (G), h ∈ V (H)}. This graph is
denoted G∨H. As our results will involve the automorphism group of the
join, we first establish some elementary properties of Aut(G∨H). Clearly,
Aut(G) × Aut(H) is isomorphic to a subgroup of Aut(G ∨ H). Our next
lemma establishes when an automorphism of Aut(G∨H) maps a vertex of
V (G) to a vertex of V (H).

Lemma 4.1. Let φ ∈ Aut(G∨H) such that φ2 is the identity isomorphism.
Let G′ be the subgraph induced by the set {g ∈ V (G) : φ(g) ∈ V (H)}. It
follows that:

(i) The image of G′ under φ is a subgraph of H.

(ii) The subgraph induced by this image, H ′, is isomorphic to G′.

(iii) For all x ∈ V (G′) and for all y ∈ V (G−G′), xy ∈ E(G).

(iv) For all w ∈ V (H ′) and for all z ∈ V (H −H ′), wz ∈ E(H).

Proof. Let φ and G′ be defined as above. Clearly, the image of G′ under φ
is a subgraph of H. As above, this subgraph is denoted H ′. Suppose that
g1, g2 ∈ V (G′) such that g1g2 ∈ E(G′). Since φ is an automorphism on
G∨H, it follows that φ(g1)φ(g2) ∈ E(G∨H). By definition, φ(g1), φ(g2) ∈
V (H ′). Thus, the edge φ(g1)φ(g2) ∈ E(H ′). Ergo, H ′ is isomorphic to G′

and (ii) follows.

Let x ∈ V (G′) and y ∈ V (G − G′). By definition, φ(x) ∈ V (H ′). As for
φ(y), it may either be in V (G − G′), V (G′), or V (H). If φ(y) ∈ V (H),
then y ∈ V (G′), a contradiction. If φ(y) ∈ V (G′), then φ2(y) ∈ V (G−G′),
contrary to the definition of G′. Hence, φ(y) ∈ V (G−G′). It follows from
the definition of G ∨ H that φ(x) is adjacent to φ(y) in G ∨ H. Because
φ is an automorphism such that φ2 is the identity, xy ∈ E(G). Thus (iii)
holds. The proof of (iv) is analogous.

With this in mind, we are prepared to provide necessary and sufficient
conditions for the join to be palindromic.

Theorem 4.2. Let G and H be graphs. The join G ∨H is palindromic if
and only if all of the following conditions hold:

(i) There exists a subgraph G′ of G such that for all x ∈ V (G′) and for
all y ∈ V (G−G′), xy ∈ E(G).
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(ii) There exists a subgraph H ′ of H such that for all w ∈ V (H ′) and for
all z ∈ V (H −H ′), wz ∈ E(H).

(iii) G′ and H ′ are isomorphic.

(iv) G−G′ and H −H ′ are both palindromic graphs such that G−G′ or
H −H ′ have an even number of vertices.

Proof. Suppose that (i)-(iv) hold. By (iv), G − G′ and H −H ′ are palin-
dromic with associated automorphisms φ and θ, respectively. By (iii), there
is an isomorphism ψ mapping V (G′) to V (H ′). We define ξ : V (G∨H)→
V (G ∨ H) as follows: ξ(v) = φ(v) for v ∈ V (G − G′), ξ(v) = θ(v) for
v ∈ V (H − H ′), ξ(v) = ψ(v) for v ∈ V (G′), and ξ(v) = ψ−1(v) for
v ∈ V (H ′). We claim that ξ is the required automorphism on G ∨ H.
If xy ∈ E(G−G′), then ξ(x)ξ(y) is an edge in E(G−G′) because φ is an
automorphism on G − G′. A similar argument holds if xy ∈ E(H − H ′).
If xy ∈ E(G′), then ξ(x)ξ(y) ∈ E(H ′) because ψ is an isomorphism. A
similar argument holds if xy ∈ E(H ′). If x ∈ V (G) and y ∈ V (H), then
xy ∈ E(G ∨H) and their adjacency is preserved by the join. If x ∈ V (G′)
and y ∈ V (G−G′), then xy ∈ E(G∨H) by (i). Further, ξ(x) ∈ V (H ′) and
ξ(y) ∈ V (G − G′) implies that ξ(x)ξ(y) ∈ E(G ∨H). A similar argument
holds for the case where x ∈ V (H ′) and y ∈ V (H − H ′). Note that by
definition of φ, θ, and ψ, ξ2 is the identity automorphism. Further, ξ leaves
at most one vertex fixed by (iv). Thus, ξ is the required automorphism.
Ergo, G ∨H is palindromic by Theorem 1.1.

Conversely, suppose that G ∨ H is palindromic with associated automor-
phism ξ. Let G′ be the subgraph induced by the set {g ∈ V (G) : ξ(g) ∈
V (H)}. By Lemma 4.1, the image of G′ under ξ is H ′, a subgraph of H.
Further, (i), (ii), and (iii) hold by Lemma 4.1. Using a similar argument as
above, it follows that ξ : V (G − G′) → V (G − G′) and ξ : V (H − H ′) →
V (H−H ′). Thus, G−G′ and H−H ′ are palindromic. Since G∨H is also
palindromic, at most one of G −G′ and H −H ′ can have an odd number
of vertices by Theorem 1.2. Hence (iv) follows.

Note that the wheel graph is defined as the join K1∨Cn. With this in mind,
the next corollary follows from Theorem 2.1 and Theorem 4.2.

Corollary 4.3. The wheel K1 ∨Cn is palindromic if and only if n is even.

We now turn our attention to the Cartesian product. The Cartesian prod-
uct of graphs G and H is the graph with vertex set {(g, h) : g ∈ V (G), h ∈
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V (H)} and (g, h) is adjacent to (g′, h′) if and only if either g = g′ and
hh′ ∈ E(H) or h = h′ and gg′ ∈ E(G). This graph is denoted G2H. For
more information on the Cartesian product as well as other graph products,
refer to [6, 7].

Theorem 4.4. If G and H are both palindromic graphs, then G2H is
palindromic. If G is a palindromic graph with an even number of vertices,
then G2H is palindromic.

Proof. Suppose that G and H are both palindromic with associated auto-
morphisms φ and θ, respectively. Consider the mapping ξ : V (G2H) →
V (G2H) defined by ξ((g, h)) = (φ(g), θ(h)). Note that

ξ2((g, h)) = (φ2(g), θ2(h)) = (g, h).

Further, the vertex (g, h) is a fixed point under ξ if and only if φ(g) = g
and θ(h) = h. Hence, G2H has at most one fixed point under ξ.

It suffices to check that ξ is a graph automorphism on G2H. Suppose that
(g1, h1) and (g2, h2) are adjacent in G2H. If h1 = h2, then θ(h1) = θ(h2).
Further, g1 and g2 would be adjacent in G. It follows that φ(g1) and φ(g2)
are adjacent in G. Since ξ((g1, h1)) = (φ(g1), θ(h1)) and ξ((g2, h2)) =
(φ(g2), θ(h2)), it follows that ξ((g1, h1)) and ξ((g2, h2)) are adjacent in
G2H. A similar argument holds if g1 = g2 and h1 is adjacent to h2 in
H. Thus, ξ is the required automorphism on G2H.

Suppose that G is a palindromic graph with an even number of vertices.
Again, let φ be the associated automorphism on G. Define ξ : V (G2H)→
V (G2H) by ξ((g, h)) = (φ(g), h). Since G has an even number of vertices,
φ(g) 6= g for all g ∈ V (G). The remaining details of showing that ξ is the
required automorphism follows in a similar manner to above.

Theorem 4.4 allows us to show additional families of graphs are palin-
dromic. Note that the n-dimensional hypercube Qn is defined recursively
by Q1 = P2 and Qn = Qn−12P2 for n ≥ 2. Hence the next corollary follows
immediately from Theorem 2.1 and Theorem 4.4.

Corollary 4.5. The n-dimensional hypercube Qn is palindromic.

Whether the conditions given in Theorem 4.4 are necessary for a Cartesian
product to be palindromic is unknown at this time.
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