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Abstract: Let G be a graph with vertices labeled v1, v2, . . . , vn. The
Mycielski construction is the inspiration for a graph coloring scheme, called
an IS coloring, in which the colors available for a vertex depend on the
indices of the vertex and its neighbors. Specifically, a proper coloring is an
IS coloring if, whenever the color of vi is j, then j 6= i and vi is not adjacent
to vj . Such a coloring sometimes can force a color greater than n, although
this paper concentrates on graphs for which that is not the case. Many
properties of IS colorings are developed, and a relationship to a new type
of marriage problem is shown.

1 Introduction

A proper k-coloring c of a graph G = (V,E) is a function c : V →
{1, 2, . . . , k} such that adjacent vertices have distinct images. A typical
application is class scheduling. Over time several other coloring schemes
have been developed due both to theoretical interest and demands of al-
ternative applications. An introduction to many of these can be found in
Chartrand and Zhang [1]. This paper describes a new method for vertex
coloring a graph which was inspired by the Mycielski construction [3].

The symbols NG(v) and NG[v] represent the open and closed neighbor-
hoods, respectively, of vertex v in graph G. If c is a coloring of G, c(v) is
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the color given vertex v, and ci is the set of vertices of G colored i, 1 ≤ i ≤ n,
where n = |V (G)|. If no vertex is colored i, ci is said to be an empty color
class. The number of vertices in a largest clique of G is denoted ω(G); the
vertex independence number of G, that is, the largest set of vertices such
that no two are adjacent, is represented by β0(G); and δ(G) refers to the
minimum degree of G. Unless otherwise noted, |V (G)| = n.

It is convenient to define the Mycielski graph of G, the complement of the
graph G of interest below. Assume G has vertices V = {v1, v2, . . . , vn}.
The Mycielski graph, denoted M , of G is constructed from it by adding
new vertices W = {w1, w2, . . . , wn} and z, with NM (wi) = NG(vi)∪{z} for
1 ≤ i ≤ n. In the complement, M , V induces G = (V,E), W induces Kn,
z is adjacent to all vertices of G, and NM [wi] = NG[vi] ∪W for 1 ≤ i ≤ n.

At most 2n colors are required for any proper coloring c′ of M . Without
loss of generality we may assume that c′(wi) = i for 1 ≤ i ≤ n. Then the
restriction of c′ to G produces a proper coloring c of G. However, there
are constraints on c. Since wivi is an edge of M , c(vi) is not equal to i.
Furthermore, if vivj ∈ E(G), viwj is an edge of M so c(vi) is not equal
to j. These limitations suggest the following definition for a new type of
coloring for arbitrary graphs, called an Index Sensitive coloring.

Definition 1.1. Let c be a proper coloring of the graph G with vertices
v1, v2, . . . , vn. Then c is an Index Sensitive (IS) coloring of G if, when
c(vi) = j, j 6= i and vi is not adjacent to vj.

A consequence of Definition 1.1 is that the color of any vertex in an IS
coloring must be different from its own index, from the index of all its
neighbors, and from the color of all its neighbors. Thus a different indexing
of the vertices likely will require a different coloring. An IS coloring of G
using k colors is called an IS k-coloring of G. Note that an IS k-coloring
of G does not mean the color classes c1, c2, . . . , ck are the ones that are not
empty since the colors are tied to the indices of the vertices. Figure 2 in
Section 2.2 illustrates this, where the assigned colors are shown in circles.

A simple example of an IS coloring is given by C5. Let the vertices be
v1, v2, v3, v4, v5 in order. Vertex v1 is adjacent to v2 and v5 so it can be
colored only 3 or 4 which are equivalent by symmetry. Color v1 by 4. Now
v2 is adjacent to vertices v1 and v3 as well as a vertex colored 4 so it must
be colored 5. Similarly the colors on v3, v4, and v5 are forced to be 1, 2,
and 3, respectively. See Figure 1. Since five colors are used, this is an IS
5-coloring of C5.
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Figure 1: An IS 5-coloring of C5

A further consequence of Definition 1.1 is the following useful result.

Proposition 1.2. A proper coloring c of a graph G with no isolated vertex
is an IS coloring if and only if, for every edge vivj, |{i, c(vi), j, c(vj)}| = 4.

Proof. Assume c is an IS coloring of G and vivj is an arbitrary edge.
Vertices vi and vj are distinct so i 6= j; c is a proper coloring mean-
ing c(vi) 6= c(vj); c is an IS coloring implying c(vi), c(vj) /∈ {i, j}. Thus
|{i, c(vi), j, c(vj)}| = 4.

Next assume c is not an IS coloring of G. Then either there is a vertex vi
such that c(vi) = i, or there is an edge vivj where c(vi) = j or c(vi) = c(vj).
In each possibility |{i, c(vi), j, c(vj)}| ≤ 3.

With traditional coloring, there never is a need for a color larger than
n = |V (G)|. That is not the case for IS colorings, even when the total
number of colors required is small. A simple example is K1,n−1, n ≥ 3,
with leaves v1, v2, . . . , vn−1 and central vertex vn. Let c be an IS coloring.
It follows from Definition 1.1 that vertex vn cannot be colored with any
color less than or equal to n, so c(vn) ≥ n+ 1. The rest of the IS coloring
can be c(v1) = 2 and c(v2) = c(v3) = . . . = c(vn−1) = 1. Thus only three
colors are required, but one must be greater than n. If G = Kn, n distinct
colors are necessary in an IS coloring of it, all of which are larger than n. In
fact, if ω(G) > n/2, at least 2ω(G)− n colors are required that are greater
than n. The remainder of this paper considers only graphs that have IS
colorings that do not require a color greater than n.

The following definition is a natural extension of the traditional chromatic
number of a graph.
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Definition 1.3. The IS chromatic number χIS(G) of graph G is the small-
est k such that there is an IS k-coloring of G.

Since the IS coloring of C5 shown above is forced, five colors are necessary.
Thus χIS(C5) = 5. In Section 2 it is shown that any minimum IS color-
ing of G, no matter what the indexing of the vertices, uses χIS(G) colors,
and furthermore there is a vertex indexing for which c1, c2, . . . , ck are all
nonempty, where k = χIS(G). Section 2 also develops several other prop-
erties of IS colorings. Section 3 introduces a new marriage problem whose
solution depends on IS colorings and Section 4 discusses results related to
when χIS(G) = n.

2 Properties

2.1 Elementary properties

The properties of traditional colorings are well known. Because the indices
of vertices influence choices in IS colorings, it is not obvious that those
properties still hold for them. This section shows several do remain valid.
The following theorem demonstrates how a given IS coloring associated
with a specific indexing can be transformed to another IS coloring if the
indexing of the vertices is altered.

Theorem 2.1. (Reindexing Theorem) Let c be an IS coloring of graph
G with vertices labeled v1, v2, . . . , vn, none of which are isolated. Let π be
a permutation of the integers 1, 2, . . . , n. Then the coloring c′ defined by
c′(vπ(i)) = π(c(vi)) is an IS coloring of G using the same number of colors
as c.

Proof. Suppose vivj is an edge of G. By Proposition 1.2,

|{i, c(vi), j, c(vj)}| = 4.

After the reindexing specified by π, the same edge is indicated by vπ(i)vπ(j).
Then

|{π(i), c′(vπ(i)), π(j), c′(vπ(j))}| = |{π(i), π(c(vi)), π(j), π(c(vj))}| = 4

since the four integers in the last set result from a permutation of four
distinct integers. Again appealing to Proposition 1.2, c′ is an IS coloring.
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Since every color of c′ is a permutation of a color of c, the number of colors
in c′ is the same as the number of colors in c.

It follows from Theorem 2.1 that χIS(G) can be determined from any in-
dexing of the vertices. In a standard coloring of a graph the colors of two
color classes can be interchanged and the result is another proper coloring
of the graph. A similar result holds for IS colorings.

Corollary 2.2. Let c be an IS k-coloring of graph G. Then, for any two
integers r and s such that 1 ≤ r < s ≤ n, a new IS k-coloring of G is
obtained by interchanging both the indices of vertices vr and vs and the
vertices in classes cr and cs.

Proof. Employ Theorem 2.1 using the permutation π on {1, 2, . . . , n} de-
fined by π(i) = i if i /∈ {r, s}, π(r) = s, and π(s) = r. The indices of vr
and vs are interchanged. Since c′(vπ(i)) = π(c(vi)), any vertex originally
colored s is now colored r and vice versa.

Any application of Corollary 2.2 keeps all color classes the same except
for cr and cs for which the vertices are interchanged. Thus, while the
colors may differ, the partition of vertices into color classes remains the
same. Corollary 2.2 is valid even if one or both of cr and cs are empty.
This observation allows the conclusion that, if G has an IS k-coloring with
k ≤ n, there is an indexing of the vertices such that only colors 1 through
k are used.

Theorem 2.3. Let c be an IS k-coloring of G with k ≤ n. Then there is
an IS k-coloring c′ of G in which color classes c′1, c

′
2, . . . , c

′
k are not empty.

Proof. Let cr be an empty color class with r ≤ k and cs be a nonempty
color class with s > k. Then by Corollary 2.2 there is an IS k-coloring of
G in which color class r is nonempty and color class s is empty. Repeating
as necessary yields the result.

If there is a standard coloring of a graph with k < n colors, there is one
with k + 1 colors. All that is necessary is replace the color of any vertex
whose color class contains at least two vertices by k+1. A similar property
is also true for IS colorings, but showing it is more difficult.

Definition 2.4. Let c be an IS coloring of a graph. Two color classes ci
and cj are an excluded pair if |ci| = |cj | = 1, vj ∈ ci and vi ∈ cj.
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The reason for the term “excluded” in Definition 2.4 will become evident
in the proof of the next theorem because such a pair will not play a role in
the development.

Theorem 2.5. Let graph G have an IS k-coloring where k < n. Then
there is an IS (k + 1)-coloring of G.

Proof. Since k < n, there are three color classes ci, cj and cr such that
ci = ∅, vi ∈ cj and vj ∈ cr. None of these color classes is in an excluded
pair.

Suppose cj contains a second vertex vs, where s = r is a possibility. Then
move vs from cj to ci. If cr contains a second vertex vs, move vj to ci. In
either case the result is an IS (k + 1)-coloring of G.

If |cj | = |cr| = 1, move vj from cr to ci to create a new IS k-coloring
where ci is no longer empty, but cr now is. The process can be repeated.
However, ci and cj will not be involved in any repetition because they form
an excluded pair and no color classes in an excluded pair play a role in
the process. Thus the number of color classes that still can play a role is
decreased by two and iteration must eventually lead to one of the previous
cases that create an IS (k + 1)-coloring.

Appealing to Theorem 2.5 repeatedly shows that, if χIS(G) = k, there is
an IS j-coloring for k ≤ j ≤ n. The concept of an excluded pair can be
extended to an excluded set of color classes, that is, a collection of classes
where each contains exactly one vertex and the set of colors is identical to
the set of indices of the vertices in those classes. No color class in any such
excluded set is involved in the proof of Theorem 2.5. Excluded pairs are
sufficient in that proof.

2.2 Graphs with given number of vertices and χIS value

This section demonstrates the existence of connected graphs for most values
of χIS and any value of n. The following definition is key to showing this.

Definition 2.6. Let n and p be positive integers such that n ≥ 2p. Then
Q(p, n) is a complete p-partite graph with partite sets Si such that |Si| ≥ 2
for 1 ≤ i ≤ p.
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Lemma 2.7. χIS(Q(p, n)) = 2p.

Proof. A vertex vj ∈ Si can be colored k only if vk ∈ Si. Similarly vk can
be colored m only if vm ∈ Si. Thus at least two colors are required to color
the vertices of each Si, implying χIS(Q(p, n)) ≥ 2p. The following is an IS
coloring with 2p colors. For any set Si select two distinct contained vertices
vj and vk. Color vj with color k and all remaining vertices of Si, including
vk, with color j.

The sum G + H of graphs G and H is the graph obtained from G and H
by adding an edge between every vertex of G and every vertex of H.

Lemma 2.8. Let G and H be two graphs. Then χIS(G+H) = χIS(G) +
χIS(H).

Proof. Let the vertices corresponding to G in G + H be v1, v2, . . . , vn and
those corresponding to H be vn+1, vn+2, . . . , vn+s. In G + H no vertex of
either graph can be colored with the index of a vertex in the other graph.
Therefore, any IS coloring of G in G+H must employ only colors 1 through
n while only colors n+ 1 to n+ s can be used for H. This establishes the
result as an upper bound. However, no IS coloring of G or H can use
fewer than χIS(G) or χIS(H) colors, respectively, and the lower bound is
shown.

Theorem 2.9. Let m = 3 and n ≥ 5 or 4 ≤ m ≤ n. Then there is a
connected graph G on n vertices for which χIS(G) = m.

Proof. By Lemma 2.7, G = Q(m/2, n) demonstrates the result when m is
even. When m is odd and at least 7, let G = C5+Q((m−5)/2, n−5). Then
Lemmas 2.7 and 2.8 show χIS(G) = 5 + 2[(m− 5)/2] = m. If n = m = 5,
the C5 indexed and colored as in Figure 1 illustrates the result. When
n ≥ 6, add to that C5 an independent set of n − 5 vertices v6, v7, . . . , vn,
each adjacent to v1, v3 and v4, and color all of them with 5. There are no
connected graphs G on four or fewer vertices with χIS(G) = 3. Figure 2
shows such a graph for any n ≥ 5.
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Figure 2: A graph G on n ≥ 5 vertices and χIS(G) = 3

2.3 Relationship with vertex independence number

Let G be a graph with indexed vertices {v1, v2, . . . , vn} and IS coloring
c. From Proposition 1.2, if vivj is an edge, then |{i, c(vi), j, c(vj)}| = 4.
However, that condition can be satisfied even if vivj is not an edge. In
such an instance the edge can be added and c remains an IS coloring for
the revised graph. If all possible such edges are added, the resultant graph
is said to be edge maximal with respect to c. It follows that, if G is edge
maximal with respect to c, vivj is an edge if and only if |{i, c(vi), j, c(vj)}| =
4. Conversely, if vi is not adjacent to vj in an edge maximal graph, then
at least one of c(vi) = c(vj), i = c(vj), or j = c(vi) must hold. One might
expect, if a graph has an IS coloring c, adding all edges as above would
create a graph G for which χIS(G) is equal to the number of colors used in
c. This is not necessarily the case. As an example, Figure 3(a) shows an IS
5-coloring c of P5. It is easy to check that χIS(P5) = 4. Using c, the edge
maximal graph with respect to it is obtained by adding edges v1v4 and v2v5
as shown in Figure 3(b). But the result can be IS-colored with four colors,
that is, adding all the edges possible did not raise the IS chromatic number
to the number of colors of c.

v1 v2 v3 v4 v5

3 4 5 2 1

v1 v2 v3 v4 v5

3 4 1 2 1

(a) (b)

Figure 3: Edge maximal graph with respect to a 5-coloring c using fewer
than five colors

26



The main result of this subsection is an upper bound on β0(G) for edge
maximal graphs. A series of preliminary results is required.

Lemma 2.10. Let G be a graph with χIS(G) = n and an IS n-coloring c.
Then for every vertex vi, NG[vi] contains at least one of vj and the unique
vertex colored j, for 1 ≤ j ≤ n.

Proof. Let j be an integer such that NG[vi] contains neither vj nor the
vertex colored j. Then vi can be recolored j, resulting in an IS (n − 1)-
coloring of G, a contradiction.

Lemma 2.11. For graph G, χIS(G) ≥ n/(β0(G)− 1).

Proof. Since G is not complete, β0(G) ≥ 2. Consider any χIS-coloring c of
G. For any nonempty color class ci, vi /∈ ci and has no neighbors in ci, so
ci ∪ {vi} is an independent set of vertices. Thus |ci| ≤ β0(G) − 1. Hence
n ≤ χIS(G)(β0(G)− 1).

The remainder of this section deals with edge maximal graphs.

Lemma 2.12. Let G be an edge maximal graph with respect to an IS col-
oring c. If a pair of vertices in an independent set X are colored the same,
say r, then every vertex in X, except vr, is colored r. Thus |X| ≤ |cr|+1 ≤
β0(G).

Proof. Consider any two vertices vi and vj in cr. Let vt be any other vertex
in X and suppose it is not in cr. Since G is edge maximal,

|{i, c(vi), t, c(vt)}| = |{i, r, t, c(vt)}| < 4.

Since i 6= t and c(vi) 6= c(vt), either i = c(vt) or t = c(vi) = r. Similarly
either j = c(vt) or t = c(vj) = r. It follows that t = r and this can happen
for only one vertex.

Another possibility is if every vertex in X is in a different color class and
the next lemma deals with that.

Lemma 2.13. Let G be an edge maximal graph with respect to an IS color-
ing c. If no pair of vertices in an independent set X are colored the same,
then |X| ≤ 3.
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Proof. Suppose |X| ≥ 4. Assume vi, vj , and vt are in X. Since all colors
are different, we must have either i = c(vj) or j = c(vi). Without loss of
generality assume i = c(vj). Then we need i = c(vt) or t = c(vi). The first
is not possible, so t = c(vi). Finally one of t = c(vj) or j = c(vt) must hold.
Again the first is not possible, so j = c(vt). Now consider a fourth vertex
vs. It is necessary that either i = c(vs) or s = c(vi), neither of which is
possible since i = c(vj) 6= c(vs) and s 6= t = c(vi).

Theorem 2.14. Let G be an edge maximal graph with respect to a χIS(G)-
coloring c. Then χIS(G) = n if and only if β0(G) = 2.

Proof. Assume β0(G) = 2. From Lemma 2.11 and the fact χIS(G) ≤ n,
χIS(G) = n. Suppose next that χIS(G) = n and G has three independent
vertices vi, vj , and vt. Each is the only vertex in its color class so by the
proof to Lemma 2.13 we may assume i = c(vj). Then, by Lemma 2.10, vt
must have a neighbor indexed by i, that is, vi, or one colored i, that is, vj .
But vt is independent of vi and vj , so this is impossible.

Edge maximal is not required for the first part of the above proof, so, for
any graph G, β0(G) = 2 implies χIS(G) = n.

Theorem 2.15. Let G be an edge maximal graph with respect to a χIS(G)-
coloring. For graph G, β0(G) ≤ n− χIS(G) + 2.

Proof. Let k = n−χIS(G) and X be a maximum independent set. Exactly
k color classes are empty which means k vertices are in the same color
classes as other vertices. It follows that no color class can contain more
than k + 1 vertices. Theorem 2.14 covers the case when k = 0, so assume
k ≥ 1. Suppose X is composed of vertices from different color classes.
Then Lemma 2.13 indicates |X| = β0(G) ≤ 3 ≤ k + 2 since k ≥ 1. If
X contains two vertices in the same color class, Lemma 2.12 shows only
one vertex not in that class is independent of all the vertices there. Thus
|X| ≤ (k + 1) + 1.

3 Sibling marriage problem

In the Classical Marriage Problem, n men and n women seek matrimony
with harmonious man/woman pairs specified. The goal is to determine
if there is a pairing such that everyone is happily married. This can be
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thought of as a bipartite graph with the partite sets being the men and
women and an edge signifying a compatible couple. A solution is then a
perfect matching of the graph, that is, a set of n independent edges. One
can think of the problem as one defined on an arbitrary bipartite graph
with equal sized partite sets and asking if there is a solution on that graph,
that is, does the graph have a perfect matching?

Here a new marriage problem, the Sibling Marriage Problem, is discussed.
It involves n brother/sister pairs {bi, si}, 1 ≤ i ≤ n, and all wish to marry
happily. Of course, no brother should marry his sister. Furthermore, if two
families Fi anf Fj do not get along, no marriage should join them. This
can be modeled as an n-vertex graph G where the vertices represent the
families Fi, 1 ≤ i ≤ n, and an edge joins two families if and only if they
are incompatible. It will be seen that a solution which allows everyone to
be happily married is equivalent to an IS n-coloring on G. As with the
classical problem, we can start with an arbitrary graph G and ask if there
is a solution on that graph.

The description of graph G seems a bit counterintuitive as, unlike the clas-
sical problem, an edge means no marriage is allowed, the opposite of the
classical problem. However, if one considers the complement G of G, edges
refer to allowable pairings. Notice that if FiFj is an edge of G, marriage
between bi and sj is possible as is one between bj and si. A solution might
include none, one or both of those marriages. Unlike the classical problem,
a solution is not necessarily a perfect matching in G. Indeed, solutions are
possible even when n is odd. A condition on G that does give a solution is
discussed in Section 4.

Theorem 3.1. Given graph G, the Sibling Marriage Problem has a solution
if and only if there is an IS n-coloring of G.

Proof. Suppose there is a solution. The index i of vertex Fi is interpreted
as representing bi. A color j represents sj . Since there is a solution, color
i is not assigned to Fi since no sister marries her brother. If color j is
assigned to vi, then families Fi and Fj are compatible and this means there
is no edge between Fi and Fj . Thus this is an IS n-coloring of G. Now
let there be an IS n-coloring of G. Then no sister si marries her brother
bi and anyone she does marry must correspond to no edge between the
corresponding families. Thus there is a solution.

In view of the comment following Theorem 2.5, there is a solution to the
Sibling Marriage Problem on graph G if and only if χIS(G) ≤ n.
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There is a straightforward Classical Marriage Problem equivalent to the Sib-
ling Marriage Problem. Given graph G and employing the notation above,
construct a bipartite graph B on 2n vertices with partite sets {b1, b2, . . . , bn}
and {s1, s2, . . . , sn}. Place no edge in B between si and bi for 1 ≤ i ≤ n,
and place both edges sibj and sjbi if and only if there is no edge joining Fi
and Fj in G, that is, if and only if that edge is present in G. Then there
is a solution on G to the Sibling Marriage Problem if and only if there is
a solution on B to the Classical Marriage Problem, that is, if and only if
B contains a perfect matching. Since the transformation from G to B is
polynomial as is the finding of a maximum matching on B [2], it follows
that determining if there is an IS n-coloring on G is polynomial.

4 χIS(G) = n

Lemma 2.10 deals with the special siituation of χIS(G) = n. This is an
important case because it lies at the border between graphs with IS coloring
numbers at most n and those requiring a color greater than n, graphs not
considered in this paper. A number of relevant results are presented in this
section and together provide information about such graphs. The first is
straightforward.

Observation 4.1. For graph G, χIS(G) = n if and only if, for every IS
n-coloring c of G, |ci| = 1 for 1 ≤ i ≤ n.

Not surprisingly, χIS(G) = n requires a fairly large minimum degree.

Proposition 4.2. For graph G, if χIS(G) = n, then δ(G) ≥ (n− 2)/2.

Proof. Let vi be a vertex of minimum degree. Then, for any IS n-coloring
of G, NG[vi] contains vertices with δ(G)+1 different indices having δ(G)+1
different colors. By Lemma 2.10 this collection of indices and colors must
include every i for 1 ≤ i ≤ n, that is, 2(δ(G) + 1) ≥ n, yielding the
result.

Theorem 4.3. For graph G, χIS(G) = n if and only if, for every IS n-
coloring c and every vertex vi, there is a vertex vj where j = c(vi) such that
{vi, vj} forms an independent dominating set of G.

Proof. Suppose χIS(G) = n and let vi be an arbitrary vertex and vj be the
unique vertex such that j = c(vi). Vertices vi and vj are independent since
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vi cannot have a neighbor whose index is c(vi). Consider any vertex vt,
t /∈ {i, j}. By Lemma 2.10, NG[vt] possesses at least one of a vertex with
index j or a vertex with color j. Since vj is the only vertex indexed j and
vi the only vertex colored j, vt must be adjacent to at least one of them.
Thus {vi, vj} is an independent dominating set of G.

Next suppose for every IS n-coloring c of G and any vertices vi and vj where
j = c(vi), {vi, vj} is an independent dominating set of G. Since c is an IS
n-coloring of G, χIS(G) = k ≤ n. Assume k < n. Then there is a color
class cj containing at least two vertices, say vi and vr. Thus neither vi
nor vj is adjacent to vr so {vi, vj} is not a dominating set, a contradiction
implying χIS(G) = n.

From Theorem 2.14, χIS(G) = n for edge maximal graphG implies β0(G) =
2. However, when G is not edge maximal, β0(G) can be significantly larger.

Theorem 4.4. For graph G having at least four vertices, if χIS(G) = n,
then β0(G) ≤ n/2.

Proof. The result holds for β0(G) = 2 so assume c is an IS n-coloring of G
and X is a set of β0(G) ≥ 3 independent vertices. Suppose there are two
vertices in X, say vr and vt, such that r = c(vt). Since χIS(G) = n, r is
not the index or color assigned to any vertex in V (G)−X. Thus, for any
third vertex vi in X, NG[vi] does not contain a vertex indexed r or colored
r, a contradiction to Lemma 2.10. Therefore, this situation can not occur.
It follows that each of the β0(G) colors assigned to the vertices of X match
an index of a vertex in V (G)−X, that is, n−β0(G) = |V (G)−X| ≥ |X| =
β0(G), establishing the result.

Theorem 4.4 is sharp. Let G be the graph on an even number n vertices
{v1, v2, . . . , vn} where V1 = {v1, v2, . . . , vn/2} induces a complete graph and
V2 = {vn/2+1, vn/2+2, . . . , vn} forms an independent set of n/2 vertices.
Vertex vi ∈ V2 is adjacent to V1 − {vi−n/2}. It is straightforward to show
the only IS coloring has c(vi) = i+ n/2 for vi ∈ V1 and c(vi) = i− n/2 for
vi ∈ V2. Thus χIS(G) = n.

We now show the complement G of a graph G can yield information about
the existence of an IS n-coloring of G.

Definition 4.5. A graph is IS-covered if there is a partition of its vertices
such that each set of the partition induces either a K2 or a chordless odd
cycle.

31



Theorem 4.6. Let G be an n-vertex graph. Then G has an IS n-coloring
if and only if G is IS-covered.

Proof. Assume G is IS-covered. Define a coloring c of G as follows. For
every set of the partition containing two vertices vi and vj which induce a
K2, let ci = {vj} and cj = {vi}. For every set of the partition containing
vertices {vi1 , vi2 , . . . , vit} which induce a chordless odd cycle, let ci1 = {vit}
and cij = {vij−1

} for 2 ≤ j ≤ t. Every color class contains a single vertex
so this defines an n-coloring of G. Furthermore, by the way c is defined, if
cj = {vi}, i 6= j and vi and vj are adjacent in G and hence are not joined
by an edge in G. It follows that the coloring is an IS n-coloring of G.

Now assume G has an IS n-coloring c. Create a graph H having the same
vertex set as G as follows. For 1 ≤ i ≤ n, if ci = {vj}, include edge vivj
which also is an edge of G. Consider cj = {vk}. If k = i, this creates the
same edge vivj and it is included only once. In this case vi and vj have
degree one in H and induce a K2 there. If k 6= i, edges vivj and vjvk both
appear in H and vj has degree two. Thus degree one vertices occur in pairs
and induce K2’s and all other vertices are degree two, and these latter must
induce cycles. If a cycle is even on t vertices, alternating edges can be re-
moved leaving t/2 vertex disjoint K2’s. If an odd cycle {vi1 , vi2 , . . . , vit} has
a chord in G, say vi1vir , one of {vi1 , vi2 , . . . , vir} and {vi1 , vir , vir+1

, . . . , vit}
defines an odd cycle and the other an even cycle. Without loss of generality
assume {vi1 , vi2 , . . . , vir} gives an even cycle. Then removing alternative
edges along the path {vi1 , vi2 , . . . , vir}, beginning with vi1vi2 , leaves K2’s
that include all the vertices of the even cycle not on the odd cycle. The
process can be repeated if the resulting odd cycle still has a chord in G.
The final result shows G, the complement of G is IS-covered.

Theorem 4.6 represents the condition on G mentioned prior to Theorem 3.1
necessary for graph G to have a solution to the Sibling Marriage Problem.
There also is an interesting comparison between solutions to the two mar-
riage problems. The Sibling Marriage Problem has a solution for a graph
G if and only if the vertices of G can be partitioned into sets inducing K2’s
and chordless odd cycles. The Classical Marriage Problem has a solution
for a bipartite graph B if and only if the vertices of B can be partitioned
into sets inducing K2’s.
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