
BULLETIN of the Volume 86
June 2019

INSTITUTE of
COMBINATORICS and its
APPLICATIONS
Editors-in-Chief: Marco Buratti, Donald Kreher, Tran van Trung

Boca Raton, FL, U.S.A. ISSN 1182 - 1278

Successor algorithms via counting

arguments

Nicholas A. Loehr

Virginia Tech, Blacksburg, Virgina, U.S.A.
nloehr@vt.edu

Abstract: A successor algorithm for a set of combinatorial ob-
jects takes as input an arbitrary object in the set and computes
the next object relative to some total ordering. This note presents
an extremely simple general paradigm for creating successor algo-
rithms based on three fundamental counting rules (the Bijection
Rule, the Sum Rule, and the Product Rule). Using this approach,
we can proceed immediately and automatically from a counting
argument for a given set into a successor algorithm for that set.
We show that this technique applies to many classical combinato-
rial families such as words, subsets, permutations, anagrams, set
partitions, integer partitions, trees, tableaux, and derangements.
We also compare our method to two other general approaches to
successor algorithms: decision trees and the Nijenhuis-Wilf com-
binatorial family construction. Finally, we present versions of the
three counting rules that convert counting arguments to ranking
and unranking algorithms for finite sets.

Key words and phrases: successor algorithms, combinatorial enumera-
tion, counting.

AMS (MOS) Subject Classifications: 05-04, 68R05, 05A15

BULLETIN OF THE ICA
Volume 86 (2019), Pages 101–122

Received: 3 January 2019
Accepted: 23 April 2019

101

1 Introduction

An important problem in the theory of combinatorial algorithms is
to create programs that generate a list of all combinatorial objects
of a given kind. For example, we may seek algorithms to gener-
ate words, subsets, permutations, anagrams, integer partitions, set
partitions, trees, tableaux, etc., satisfying given restrictions. Sub-
routines for listing such objects appear in many standard references
including the books by Nijenhuis and Wilf [5, 10], Knuth [3, Sec.
7.2], Stanton and White [9], Bender and Williamson [1], Reingold,
Nievergelt, and Deo [7], Kreher and Stinson [4], and Ruskey [8].

We can think of an algorithm for listing the objects in a given set
S as consisting of two subroutines (depending on the set S) called
first and next. Calling the routine first(S) returns the first
object in S relative to some (explicit or implicit) total ordering of
S. Given a particular object x ∈ S, calling the routine next(x, S)
returns the immediate successor of x in S relative to the ordering.
If x happens to be the last object in S, the routine next returns
a special value LAST. We can now list all objects in S using a loop
that initializes x to be first(S), then repeatedly replaces x by
next(x, S) until the LAST flag is returned.

The purpose of this note is to describe a simple general framework
for automatically converting counting arguments into successor al-
gorithms. We begin by recalling three fundamental counting rules
that form the very foundation for enumerative combinatorics.

Bijection Rule. If F : S → T is a bijection (i.e., a function that
is one-to-one and onto), then

|S| = |T |.

Sum Rule. If S1, S2, . . . , Sk are pairwise disjoint finite sets, then

|S1 ∪ S2 ∪ · · · ∪ Sk| = |S1|+ |S2|+ · · ·+ |Sk|.

Product Rule. If S1, S2, . . . , Sk are finite sets, then

|S1 × S2 × · · · × Sk| = |S1| · |S2| · . . . · |Sk|.

102

In Section 2, we convert these basic counting rules into Successor
Rules for building successor algorithms. The main point is that
anytime one can count a set S using the three counting rules, one
can automatically create a successor algorithm for S with no fur-
ther effort. In particular, one need not give separate, ad hoc treat-
ments for each different family of combinatorial objects (permuta-
tions, subsets, partitions, etc.), as is often done in the literature on
this subject. All algorithms can be developed uniformly within the
single unifying framework provided by the successor rules.

In Section 3, we give examples of successor algorithms created from
counting arguments via the successor rules. In particular, we con-
struct algorithms for listing subsets, anagrams, set partitions, and
derangements. We also briefly discuss other families of objects to
which this technique applies, including permutations, integer par-
titions, trees, and tableaux. We stress that the main contribution
is not the individual successor algorithms presented as examples,
but rather the extremely simple meta-algorithm by which these al-
gorithms are automatically created. In Section 4, we compare our
method to two other general approaches to this problem, decision
trees and the “combinatorial families” defined in [5, Chpt. 13].

In Section 5, we briefly discuss the related problem of creating
ranking and unranking algorithms for finite sets. We develop ver-
sions of the three fundamental counting rules that automatically
convert counting arguments to ranking and unranking algorithms
for the sets being counted.

2 The successor rules

The Bijection Rule, Sum Rule, and Product Rule allow us to count
finite sets. We now present the corresponding Successor Rules for
building successor algorithms for these sets. The rules operate
recursively, assembling first and next subroutines for previously
studied sets to create first and next subroutines for new sets.

103

Successor Bijection Rule. Let F : S → T be a bijection
with inverse G : T → S, and suppose we already know succes-
sor subroutines for the set S. Then T has successor subroutines
defined as follows: first(T) = F (first(S)) and next(y, T) =
F (next(G(y), S)). Here we use the convention F (last) = last.

Successor Sum Rule. Let (S1, S2, . . . , Sk) be a given sequence of
nonempty pairwise disjoint finite sets for which successor subrou-
tines first and next are already known. Then S = S1∪S2∪· · ·∪Sk
has successor subroutines defined as follows:

procedure first(S)

{ return first(S_1); }

procedure next(x,S)

{ find the unique i with x in S_i;

y=next(x,S_i);

if (y is not LAST) return y;

if (i<k) return first(S_{i+1});

return LAST;

}

The pseudocode can readily be modified to account for the case
where some sets Si may be empty. For example, the first subrou-
tine for S would return first(Sj), where j is the minimal index
with Sj 6= ∅.

last(S1)

1
S

2
S

4
S

3

S

first(S1) first(S2) first(S3) first(S4)

last(S2) last(S4)last(S3)

first(S) last(S)

S

Figure 1: Schematic diagram for the Successor Sum Rule.

Figure 1 gives a visual representation of how the Successor Sum
Rule operates. Intuitively, this rule lists elements of S by first

104

listing objects in S1, then listing objects in S2, and so on, finally
listing all objects in Sk. Each subset is listed recursively using
successor subroutines already available for the sets Sj . Reordering
the terms in the sequence (S1, S2, . . . , Sk) leads to other successor
algorithms for S that list the objects of S in different orders.

Successor Product Rule. Let S1, S2, . . . , Sk be given nonempty
finite sets for which successor subroutines first and next are al-
ready known. Then S = S1×S2×· · ·×Sk has successor subroutines
defined as follows:

procedure first(S)

{ return (first(S_1),first(S_2),...,first(S_k)); }

procedure next(x,S)

{ write x=(x_1,x_2,...,x_k),

where x_i is in S_i for each i;

j=k;

while (j>0 and next(x_j,S_j) is LAST) do j=j-1;

if (j is 0) return LAST;

return (x_1,...,x_{j-1},next(x_j,S_j),

first(S_{j+1}),...,first(S_k));

}

Here is an intuitive description of how the Successor Product Rule
operates. The next routine for S acts like an odometer counting
up through the values of the k-tuple (x1, x2, . . . , xk), using the
next routines for each Si to increment each “digit” xi. In a given
call to next for S, the routine first finds the index j such that xj is
not last in Sj , but all values beyond xj are last in their respective
sets. To proceed, xj is incremented and all later values are reset
to the first positions in their respective sets. This succeeds unless
all xi are last in their sets, in which case we return LAST.

Remarkably, we can actually construct the Successor Product Rule
automatically using the more primitive Successor Sum Rule. We
briefly sketch how this is done. Given a product set S × T with
only two factors, let S = {s1, . . . , sm}. Write S × T as the disjoint
union of m sets T1, . . . , Tm, where Ti = {si} × T . A successor

105

algorithm for T induces a successor algorithm for each Ti via the
Successor Bijection Rule. Specifically, first(Ti) = (si,first(T))
and next((si, t), Ti) = (si,next(t, T)). The successor algorithms
for T1, . . . , Tm get linked together by the Successor Sum Rule to
give a successor algorithm for S × T . One readily checks that this
algorithm acts exactly like the algorithm in the Successor Product
Rule when k = 2. The algorithm for general k follows by induction
on k, thinking of the Cartesian product S1 × · · · × Sk+1 of k + 1
factors as the product of the two sets S1 and S2 × · · · × Sk+1.
Similarly, the Successor Sum Rule for k sets can be constructed
automatically by induction from the Successor Sum Rule for two
sets.

3 Examples

This section gives examples of how counting arguments can be
automatically converted to successor algorithms by application of
the Successor Rules. A key point is that one often needs to indicate
explicitly how the Bijection Rule is used in the original counting
argument, so that the associated successor subroutines perform the
correct bookkeeping tasks on intermediate objects. Throughout
this section, we write [n] to denote the set {1, 2, . . . , n}.

3.1 Subsets

For 0 ≤ k ≤ n, let Sub(n, k) be the set of all k-element subsets
of [n]. It is well known that |Sub(n, k)| is the binomial coefficient(
n
k

)
. Furthermore, the numbers |Sub(n, k)| are characterized by

the “Pascal’s Triangle” recursion

|Sub(n, k)| = |Sub(n− 1, k)|+ |Sub(n− 1, k − 1)|, (1)

for 0 < k < n, with initial conditions |Sub(n, 0)| = |Sub(n, n)| = 1
for all n ≥ 0.

106

The standard proof of (1) decomposes Sub(n, k) into the disjoint
union of sets A and B, where A = Sub(n − 1, k) is the set of k-
element subsets of [n] that do not contain n, and B is the set of
k-element subsets of [n] that do contain n. Deleting n from each
subset in B defines a bijection from B onto Sub(n − 1, k − 1).
Now (1) follows immediately from the Bijection Rule and the Sum
Rule.

Applying the Successor Bijection Rule and the Successor Sum Rule,
we automatically obtain recursively defined successor algorithms
for all the sets Sub(n, k). For the base case k = 0, first(Sub(n, 0))
returns the empty subset and next(∅,Sub(n, 0)) returns last. For
the base case k = n, first(Sub(n, n)) returns the subset [n] and
next([n],Sub(n, n)) returns last. When 0 < k < n, the routine
first(Sub(n, k)) recursively returns first(Sub(n − 1, k)). Given
T ∈ Sub(n, k), we compute next(T, Sub(n, k)) as follows.

Case 1: n 6∈ T . Return the answer next(T, Sub(n− 1, k)) unless
this answer is last, in which case return first(Sub(n−1, k−
1)) with n adjoined.

Case 2: n ∈ T . Let T ′ be T with n deleted. If next(T ′,Sub(n−
1, k−1)) is not last, then return this answer with n adjoined;
otherwise return last.

This successor algorithm lists all k-element subsets of [n] not con-
taining n first, followed by all k-element subsets of [n] that do con-
tain n. Interchanging the two terms on the right side of (1) would
lead to a different successor algorithm, in which the k-subsets of
[n] containing n would all appear first.

3.2 Anagrams

Given letters a1, a2, . . . , ak and multiplicities n1, n2, . . . , nk ≥ 0, let
R(an1

1 an2
2 · · · ank

k) be the set of all rearrangements of n1 copies of
a1, n2 copies of a2, and so on. It is well known that |R(an1

1 · · · ank

k)|
is the multinomial coefficient

(
n

n1,n2,...,nk

)
= n!

n1!n2!···nk!
, where n =

107

n1+n2+· · ·+nk. These numbers are characterized by the recursion

|R(an1
1 · · · ank

k)| =
k∑

i=1
ni>0

|R(an1
1 · · · ani−1

i · · · ank

k)|, (2)

when at least two ni are positive, with initial conditions

|R(a01 · · · ani
i · · · a0k)| = 1,

when ni ≥ 0 and all other nj are zero.

To prove (2) with the counting rules, decompose a given set S =
R(an1

1 · · · ank

k) into disjoint subsets Si indexed by i’s with ni > 0,
where Si is the set of anagrams in S that start with the letter ai.
Deleting this initial letter gives a bijection from Si onto the set
S′i = R(an1

1 · · · ani−1
i · · · ank

k). Thus (2) follows from the Sum Rule
and the Bijection Rule.

The corresponding successor algorithms for anagrams act as fol-
lows. For the base case where exactly one ni is positive, the first
routine returns the word consisting of ni copies of ai, and the next
routine always returns last. Now suppose at least two ni are
positive. Define sets S, Si, and S′i as in the previous paragraph.
first(S) is the word aifirst(Si), where i is minimal with ni > 0.
To compute next(w, S), let ai be the first symbol in the word w.
Let w′ be w with this symbol erased, so w′ ∈ S′i. Return the an-
swer ainext(w′, S′i) unless the recursive call returns last. In that
case, let j be the smallest index larger than i with nj > 0. If there
is no such j, return last; otherwise, return ajfirst(S′j).

The anagram successor algorithm yields as a special case a suc-
cessor algorithm for permutations (take all nj = 1). Similarly,
using the natural bijection between k-element subsets of [n] and
the anagram set R(0n−k1k), the anagram successor algorithm also
specializes to give a successor algorithm for subsets (via the Suc-
cessor Bijection Rule).

108

3.3 Set partitions

Our next example illustrates the Successor Product Rule. Re-
call that a set partition of [n] is a set of nonempty sets P =
{B1, B2, . . . , Bk} such that every j ∈ [n] belongs to exactly one of
the sets Bj , which are called the blocks of P . Let SP (n, k) be the
set of set partitions of [n] with k blocks. The numbers |SP (n, k)|
are called Stirling numbers of the second kind. These numbers are
characterized by the recursion

|SP (n, k)| = |SP (n−1, k−1)|+k|SP (n−1, k)| for 1 < k < n, (3)

with initial conditions |SP (n, n)| = 1 for all n ≥ 0 and |SP (n, 1)| =
1 for all n ≥ 1.

To prove (3) with the counting rules, decompose a given set SP (n, k)
into disjoint sets A and B, where A consists of all P ∈ SP (n, k)
such that {n} is one of the blocks of P , and B consists of all
P ∈ SP (n, k) such that n belongs to a block of size at least two.
Deleting the block {n} leaves a set partition of [n − 1] into k − 1
blocks, so we get a bijection from A onto SP (n− 1, k− 1). On the
other hand, we can define a bijection F : B → [k]×SP (n−1, k) as
follows. Suppose P = {B1, B2, . . . , Bk} is a set partition in B. We
choose the indexing so that min(B1) < min(B2) < · · · < min(Bk),
where min(Bj) denotes the smallest integer in the block Bj . Now,
n belongs to exactly one block of P , say Bj , where |Bj | ≥ 2. Delet-
ing n from its block leaves a set partition P ′ of [n−1] into k blocks.
One readily checks that the map F (P) = (j, P ′) is invertible and
hence bijective. Now (3) follows from the Bijection Rule, the Sum
Rule, and the Product Rule.

We now automatically obtain successor algorithms for the sets
SP (n, k) by invoking the Successor Counting Rules. The one ad-
ditional ingredient needed is a successor algorithm for the set [k] =
{1, 2, . . . , k}. This is straightforward: we define first([k]) = 1,
next(j, [k]) = last if j = k, and next(j, [k]) = j + 1 if j < k.

Here is a verbal description of the recursive successor algorithm
for SP (n, k), where 1 < k < n. On one hand, first(SP (n, k)) is
first(SP (n− 1, k − 1)). On the other hand next(P, SP (n, k)) is
computed as follows.

109

Case 1: {n} ∈ P . In this case, let P ′ = P − {{n}} and com-
pute Q′ = next(P ′, SP (n − 1, k − 1)). If the answer is
not last, return Q = Q′ ∪ {{n}}. Otherwise, compute
Q′′ = first(SP (n − 1, k)), and return the set partition ob-
tained from Q′′ by inserting n into the block of Q′′ that con-
tains 1.

Case 2: {n} 6∈ P . Label the blocks of P as described earlier, and
let Bj be the block containing n. Let P ′ be the set parti-
tion obtained by removing n from block Bj , and recursively
compute Q′ = next(P ′, SP (n− 1, k)). If Q′ is not last, let
the blocks of Q′ be B′1, . . . , B

′
k (labeled as before), and return

the set partition obtained from Q′ by inserting n into block
B′j . Otherwise, let Q′′ = first(SP (n − 1, k)) have blocks
B′′1 , . . . , B

′′
k , and (if j < k) return the set partition obtained

by inserting n into block B′′j+1 of Q′′. If j = k, return last.

In this application (and in many other examples treatable by our
approach), we can find a more direct description of the successor
algorithm by unraveling the recursive calls. We find that the first
object in SP (n, k) is

first(SP (n, k))={{1, . . . , n−k+1}, {n−k+2}, {n−k+3}, . . . , {n}},

whereas the last object in SP (n, k) is

{{1}, {2}, . . . , {k−1}, {k, k+1, . . . , n−1, n}}.

To compute next(P, SP (n, k)), list all the blocks of π and erase
the symbols n, n− 1, n− 2, one at a time, until encountering a set
partition that is last in its class. When erasing each symbol, record
whether that symbol was in a block by itself or (if not) the index
j of the block Bj containing that symbol. Suppose the final erased
symbol is m, leaving a set partition P ′ that is the last object in
SP (m− 1, r).

Case 1: If m was in a block by itself just before it was erased,
replace P ′ by first(SP (m − 1, r + 1)) and insert m in the
lowest-indexed block of this new set partition.

110

Case 2: If m was in the jth block of P ′ just before being erased,
replace P ′ by first(SP (m − 1, r)), and insert m in block
j + 1 of the new set partition. In both cases, continue by
reinserting symbols m+1 through n, one by one, giving them
the same “block status” they had when erased. For instance,
if m+1 was in a block by itself when it got erased, put it back
in a block by itself. If m + 1 was erased from the sth block,
put it back into the sth block of the current set partition.

Like the Successor Sum Rule, the Successor Product Rule is “non-
commutative.” For example, consider the recursion

|SP (n, k)| = |SP (n−1, k−1)|+|SP (n−1, k)|k, for 1 < k < n, (4)

which is obtained from (3) by changing the term k|SP (n − 1, k)|
to |SP (n − 1, k)|k. This change leads to a different (and proba-
bly more efficient) successor algorithm. Specifically, referring to
Case 2 of the recursive description of next(P, SP (n, k)) above,
the new subroutine usually acts by moving the value n from block
Bj to Bj+1 of P . We only need to make the recursive call Q′ =
next(P ′, SP (n − 1, k)) when n starts in block Bk. In this situa-
tion, if Q′ is not last, we obtain the answer by inserting n into
block B′1 of Q′; otherwise we return last.

3.4 Derangements

A derangement of [n] is a bijection f : [n]→ [n] such that f(i) 6= i
for all i ∈ [n]. Let D(n) be the set of all derangements of [n]. The
numbers |D(n)| are characterized by the recursion

|D(n)| = (n− 1)|D(n− 1)|+ (n− 1)|D(n− 2)| for all n ≥ 2, (5)

with initial conditions |D(0)| = 1 and |D(1)| = 0.

To prove (5) using the counting rules, we view each function f :
[n]→ [n] as a directed graph with vertex set [n] and directed edge
set {(i, f(i)) : i ∈ [n]}. It is well known that f is a bijection iff
its directed graph is a disjoint union of directed cycles. Moreover,

111

f is a derangement iff all the cycles in its directed graph have
length greater than 1. For fixed n ≥ 2, write D(n) as the disjoint
union A ∪ B, where A is the set of f ∈ D(n) in which n belongs
to a cycle of length 3 or more, and B is the set of f ∈ D(n) in
which f belongs to a cycle of length 2. Given f ∈ A, we obtain a
derangement f ′ ∈ D(n − 1) by removing n from its cycle. More
specifically, if f(a) = n and f(n) = b, we define f ′(a) = b and
f ′(j) = f(j) for all j 6= a in [n − 1]. The passage from f to f ′

is reversible if we remember the value b following n in its cycle.
Thus, the map sending f to the pair (b, f ′) is a bijection G : A→
[n−1]×D(n−1). Similarly, given f ∈ B, we obtain a derangement
f ′′ ∈ D(n− 2) by removing the cycle of length 2 containing n and
renumbering the remaining vertices. More specifically, if f(n) = c
and f(c) = n, the directed graph of f ′′ is obtained by erasing the
cycle (n, c) and then subtracting 1 from all remaining vertex labels
that exceed c. The map sending f to the pair (c, f ′′) is a bijection
H : B → [n − 1] × D(n − 2). Now (5) follows from the Bijection
Rule, the Sum Rule, and the Product Rule.

This counting argument translates into the following successor al-
gorithm for derangements. For n ≥ 3, we find f = first(D(n)) by
initially computing f ′ = first(D(n−1)), and then splicing n into a
cycle just before 1. For n = 2, first(D(2)) is the 2-cycle (1, 2). Un-
raveling the recursion, we see that for all n ≥ 2, first(D(n)) is the
n-cycle (1, 2, 3, . . . , n). To compute next(f,D(n)) for n ≥ 4, first
suppose f ∈ A with G(f) = (b, f ′). Return G−1(b,next(f ′, D(n−
1))) if the recursive call to next does not yield value last. Oth-
erwise, if b < n − 1, return G−1(b + 1, first(D(n − 1))). Other-
wise, return H−1(1, first(D(n − 1))). Next suppose f ∈ B with
H(f) = (c, f ′′). Return H−1(c,next(f ′′, D(n−1))) if the recursive
call to next does not yield value last. Otherwise, if c < n − 1,
return H−1(c+ 1, first(D(n− 1))). Otherwise, return last. (For
n = 2 or n = 3, a few modifications are needed since D(1) = ∅.)

As with set partitions, we can build a different successor algorithm
for derangements that makes fewer recursive calls by writing the
recursion (5) in the form

|D(n)| = |D(n−1)| ·(n−1)+ |D(n−2)| ·(n−1) for all n ≥ 2. (6)

112

3.5 Other families of objects

The method of converting counting arguments to successor algo-
rithms applies to many families of combinatorial objects beyond
the ones considered in the preceding examples. As a sample, we
mention the following structures.

• Words. A word of length m in a k-letter alphabet can be
identified with an m-tuple in the product set [k]m by num-
bering the letters of the alphabet 1, 2, . . . , k in some fashion.
A successor algorithm for these words arises immediately by
combining the Successor Product Rule with the simple suc-
cessor subroutine for the set [k] described in §3.3. This algo-
rithm essentially implements counting in base k.

• Permutations. We have already mentioned that permuta-
tions are a special case of anagrams (see §3.2). Alternatively,
let Perm(n) be the set of permutations of [n]. We get a bijec-
tion from Perm(n) to [n]×Perm(n−1) by removing the value
n from a permutation of [n] and remembering which position
was occupied by n. A successor algorithm for Perm(n) now
follows from the Successor Bijection Rule and the Successor
Product Rule.

• Set partitions of any size. Let SP (n) be the set of all set
partitions of [n] with any number of blocks. The numbers
|SP (n)| are called Bell numbers. On one hand, SP (n) is
clearly the disjoint union of the sets SP (n, k) as k ranges
from 1 to n. So one successor algorithm for SP (n) follows by
combining successor routines for SP (n, k) using the Successor
Sum Rule. Alternatively, the Bell numbers are known to
satisfy the recursion

|SP (n)| =
n−1∑

k=0

(
n− 1

k

)
|SP (n− 1− k)| for all n ≥ 1, (7)

with initial condition |SP (0)| = 1. We can prove this recur-
sion by an explicit counting argument (the idea is to remove
n and all elements in its block from a set partition of [n]), so
we obtain another successor algorithm for SP (n).

113

• Integer partitions. An integer partition of n is a weakly de-
creasing list of positive integers (called parts) whose sum is
n. Let IP (n, k) be the set of all integer partitions of n into
k parts. One readily proves the recursion

|IP (n, k)| = |IP (n− 1, k − 1)|+ |IP (n− k, k)|, (8)

for 0 < k ≤ n by a counting argument. The Successor Sum
Rule and Successor Bijection Rule automatically provide a
successor algorithm for the sets IP (n, k).

• Catalan structures. The Catalan numbers Cn = 1
n+1

(
2n
n

)

count many collections of combinatorial objects, including
Dyck paths of order n. These are paths consisting of n north
steps and n east steps from (0, 0) to (n, n) such that the path
never goes below the line y = x. One readily proves the
Catalan recursion

Cn =

n∑

k=1

Ck−1Cn−k, for all n > 0 (9)

by considering the least integer k > 0 where a Dyck path
touches a point (k, k) on the diagonal. The Successor Rules
convert the proof of this recursion to a successor algorithm
for Dyck paths. Using appropriate bijections, one obtains
successor algorithms for many other structures enumerated
by Catalan numbers.

• Trees. An n-vertex labeled tree is a connected simple undi-
rected graph on the vertex set [n] having no cycles. The
number of such trees is [n]n−2. Eğecioğlu and Remmel [2]
defined a bijection from the set of n-vertex labeled trees onto
the set of words w ∈ [n]n with w1 = 1 and wn = n. Using the
Successor Bijection Rule and successor subroutines for words,
we thereby obtain successor algorithms for trees. We can also
restrict attention to trees with specified degree sequences, by
using Prüfer codes [6] to map these trees bijectively to a set
of anagrams determined by the degree sequence.

• Tableaux. Given an integer partition λ of n, the diagram of
λ is an array of n boxes, with λi left-justified boxes in the

114

ith row from the bottom. A standard tableau of shape λ is a
filling of the diagram of λ with the integers 1 through n, used
once each, such that the values in all rows increase reading
left to right, and the values in all columns increase reading
bottom to top. Let SYT(λ) be the set of standard tableaux
of shape λ. By removing n from a standard tableau of shape
λ, one can prove the recursion

|SYT(λ)| =
∑

µ

|SYT(µ)|, (10)

summed over all µ arising from λ by removing a corner cell.

We thereby obtain a successor algorithm for the sets SYT(λ)
via the Successor Sum Rule and Successor Bijection Rule.
Here we must specify a total ordering of the partitions µ
arising from λ, say based on a left-to-right ordering of the
corner cells removed from λ to produce µ.

This list of examples is far from exhaustive, but it should convince
the reader of the wide applicability of the methods presented here.
One limitation of the Successor Rules is that they do not automat-
ically apply to counting arguments relying on indirect methods,
such as generating functions or algebraic simplifications involving
subtraction or division. Moreover, there often exist more efficient
successor algorithms than the ones produced by the Successor Rules
(e.g., loopless subroutines or Gray codes). Many such algorithms
are discussed in detail in [3, Sec. 7.2].

4 Comparison to other approaches

This section briefly compares our Successor Rules to two other
general approaches for creating successor algorithms: decision trees
and the “combinatorial family” concept of Nijenhuis and Wilf. The
main benefit of our method is its extreme simplicity: counting ar-
guments based on the Bijection Rule, Sum Rule, and Product Rule
can be converted automatically and effortlessly into successor algo-

115

rithms. There is no need to worry about auxiliary data structures
or complicated mathematical formalisms.

4.1 Decision trees

One common method for finding successor algorithms is the deci-
sion tree paradigm (see, for instance, the textbook of Bender and
Williamson [1]). We describe decision trees in the context of the
specific example of enumerating set partitions of n into k blocks
(see §3.3). We rewrite the recursion (3) as a sum of k + 1 terms:

|SP (n, k)| = |SP (n− 1, k − 1)|+ |SP (n− 1, k)|
+ |SP (n− 1, k)|+ · · ·+ |SP (n− 1, k)|. (11)

We imagine creating a set partition P ∈ SP (n, k) by making a
sequence of decisions. Each internal node in the tree represents
a particular decision we make in the process of building P . At
the root node of the tree, we choose from the following ordered
list of k + 1 alternatives: should n be in a block by itself, or in
block B1, or in block B2, ..., or in block Bk? (Here the blocks Bj
will have other elements besides n and are indexed by increasing
minimum element, as in §3.3.) The root node has an ordered list
of k + 1 edges leading down to the next level, corresponding to
the k + 1 choices we could make. If we follow the leftmost edge,
we arrive at a node where we make an analogous choice for n − 1
relative to the set SP (n − 1, k − 1). Similarly, the other k edges
lead to nodes where we make decisions based on the recursion for
|SP (n − 1, k)|. The tree keeps growing until we reach an initial
condition for the recursion, which produces a leaf node containing
a single set partition.

After the full decision tree is built, each set partition in SP (n, k)
appears in exactly one leaf of the tree. Using standard algorithms
for traversing ordered trees, we can go from a particular leaf in
the tree to the “next” leaf (in a left to right scan of the leaves)
by moving up and down the edges of the decision tree. For many
combinatorial objects of interest (such as permutations, subsets,
etc.), one can often unravel the tree traversal process to obtain a

116

more direct description of the successor algorithm that does not
specifically mention the tree.

It is not hard to see that the decision tree technique, when applied
to a recursion that can be written as a sum of terms, produces the
same results as our Successor Sum Rule. Our method is simpler
in the sense that the programmer need not explicitly design, build,
or traverse the decision tree. Indeed, the recursive calls to next
carry out these bookkeeping tasks implicitly and automatically.

4.2 Combinatorial families

In [5, Chpt. 13, pp. 100–102], Nijenhuis and Wilf define the con-
cept of a combinatorial family and describe a next subroutine for
listing objects in such a family. The combinatorial family itself is a
directed graph G whose vertex set V (G) is partially ordered with
a unique minimal element τ , such that each edge of G goes from a
vertex v to a smaller vertex w in the partial ordering. Moreover,
every vertex except τ has at least one outgoing edge, and there
is a total ordering on the set of edges leaving any given vertex v.
Multiple edges can go from v to w, but the graph must be locally
finite. A combinatorial object in the family is a directed walk in G
from some vertex v to τ .

The successor algorithm for finding the next object after a given
walk W proceeds as follows. Start at τ and backtrack along the
walk until first reaching an outgoing edge e that is not the final edge
departing from its initial vertex v. If no such e exists, W is the
last walk. Otherwise, replace e by the next edge in the ordered list
of edges leaving v, and then complete the new walk by repeatedly
following the first edge from each new vertex until reaching τ .

We claim that this successor algorithm for combinatorial families
can be realized as a special case of the Successor Sum Rule. For
each vertex v, let W (v) be the set of directed walks from v to τ .
Let the edges leaving v be e1, . . . , ek in this order. For 1 ≤ i ≤ k,
let Wi(v) be the set of walks in W (v) that begin by following the
edge ei. Evidently, W (v) is the disjoint union of the sets Wi(v),

117

so |W (v)| =
∑k
i=1 |Wi(v)|. It is routine to check that the succes-

sor algorithm described in the previous paragraph is exactly the
algorithm produced by applying the Successor Sum Rule to these
recursions characterizing the numbers |W (v)|. The initial condition
is |W (τ)| = 1.

To use the Nijenhuis-Wilf approach to obtain successor algorithms
for objects such as subsets, permutations, set partitions, etc., one
must first find an “encoding bijection” mapping such objects to
directed walks in an appropriate directed graph satisfying the def-
inition of a combinatorial family. Examples of such encodings are
given in [5, pp. 103–105]. The benefits of our approach using Suc-
cessor Counting Rules are similar to those cited for decision trees:
we need not explicitly construct the directed graphs or the walks,
nor is it needed for the programmer to find encodings of the ob-
jects or backtrack through walks in the graph. Of course, objects
are still encoded implicitly in our method through the use of the
Successor Bijection Rule, but any necessary manipulations of the
objects are already present in the original counting argument.

5 Rules for ranking and unranking

Given an n-element set S, a ranking procedure for S is an algo-
rithm implementing a bijection F : S → [n], where [n] is the set
{1, 2, . . . , n}. The corresponding unranking procedure for S is an
algorithm implementing the inverse bijection G : [n] → S. In-
tuitively, G(1), G(2), . . . , G(n) is a list of all elements of S in a
particular order. Given any object x ∈ S, F (x) gives the position
(or “rank”) of x in this list without requiring us to generate the
entire list. Similarly, we can determine the object occupying posi-
tion j on the list by computing G(j). Among other applications,
unranking algorithms allow us to generate random objects in the
set S. To do so, we use any standard random sampling algorithm
to pick an integer j from the set [n], then return the object G(j).

Earlier, we converted the Bijection Rule, Sum Rule, and Product
Rule into successor rules for building successor algorithms. Here,

118

we describe versions of these three rules for building ranking and
unranking algorithms. The new rules apply to any set S that we
can count using the three fundamental counting principles. As be-
fore, the ranking and unranking rules automatically convert any
counting argument for S into explicit ranking and unranking algo-
rithms for S. In particular, we can obtain such algorithms for all
the examples considered earlier.

Here are the ranking versions of the three basic counting rules.

Ranking Bijection Rule. Let H : S → T be a bijection with
inverse H−1 : T → S, and suppose we already know a ranking
bijection F : S → [n] and the associated unranking bijection G :
[n] → S. Then a ranking bijection for T is the composition F ◦
H−1 : T → [n]. The associated unranking bijection for T is the
composition H ◦G : [n]→ T .

The validity of this rule follows at once from the fact that the
composition of bijections is a bijection.

Ranking Sum Rule. Let (S1, S2, . . . , Sk) be a given sequence
of nonempty pairwise disjoint finite sets such that |Si| = ni and
we already know ranking algorithms Fi : Si → [ni] and associated
unranking algorithms Gi : [ni] → Si for i = 1, 2, . . . , k. Define
S = S1 ∪ S2 ∪ · · · ∪ Sk and n = n1 + n2 + · · · + nk. We obtain a
ranking bijection F : S → [n] as follows. Given x ∈ S, find the
unique i with x ∈ Si, and define

F (x) = n1 + n2 + · · ·+ ni−1 + Fi(x).

The associated unranking bijection G : [n] → S acts as follows.
Given j ∈ [n], find the unique i such that n1 + n2 + · · · + ni−1 <
j ≤ n1 + n2 + · · ·+ ni, and define

G(j) = Gi(j − [n1 + n2 + · · ·+ ni−1]).

Just like the Successor Sum Rule, the Ranking Sum Rule lists the
elements of S by concatenating lists for S1, S2, . . . , Sk in this order
(as shown in Figure 1). Given x ∈ Si, we find the position F (x)
of x in the list for S by moving past the n1 + · · ·+ ni−1 positions

119

occupied by the elements in S1, . . . , Si−1, then finding the position
of x in the list for Si. The recipe for G inverts this process, as is
readily verified.

Ranking Product Rule. Let S1, S2, . . . , Sk be given nonempty
finite sets such that |Si| = ni and we already know ranking algo-
rithms Fi : Si → [ni] and associated unranking algorithms Gi :
[ni] → Si for i = 1, 2, . . . , k. Define S = S1 × S2 × · · · × Sk and
n = n1 ·n2 ·. . .·nk. We obtain a ranking bijection F : S → [n] as fol-
lows. Given x = (x1, x2, . . . , xk) ∈ S, first compute (j1, j2, . . . , jk)
where ji = Fi(xi) for i = 1, 2, . . . , k. Then define

F (x) = (j1 − 1)n2n3 · · ·nk
+ (j2 − 1)n3 · · ·nk + (j3 − 1)n4 · · ·nk
+ · · ·+ (jk−1 − 1)nk + jk

= 1 +

k∑

i=1

(ji − 1)

k∏

s=i+1

ns.

The associated unranking bijection G : [n] → S acts as follows.
Given j ∈ [n], we first find (j1, j2, . . . , jk) with each ji ∈ [ni] as
follows. Divide j − 1 by d1 = n2n3 · · ·nk to get a quotient q1 and
remainder r1 with 0 ≤ r1 < d1; let j1 = q1 + 1. Then divide
r1 by d2 = n3 · · ·nk to get a quotient q2 and remainder r2 with
0 ≤ r2 < d2; let j2 = q2 + 1. Continue similarly to find j3, . . . , jk;
finally, return G(j) = (G1(j1), G2(j2), . . . , Gk(jk)).

The formulas for F and G in the Ranking Product Rule may ap-
pear unwieldy, but (as in the case of the Successor Product Rule)
these formulas emerge automatically from previous simpler rules.
In particular, the Ranking Product Rule for k = 2 sets arises from
the Ranking Sum Rule via the same method discussed at the end
of Section 2. In more detail, let us write S1 = {s1, . . . , sn1} and
S2 = {t1, . . . , tn2

} where sj1 = G1(j1) for j1 = 1, 2, . . . , n1 and
tj2 = G2(j2) for j2 = 1, 2, . . . , n2. Think of S = S1 × S2 as the
disjoint union of the sets

{s1} × S2, {s2} × S2, . . . , {sn1} × S2

in this order. Each of these sets has size n2 by the Bijection Rule.
Using the Ranking Sum Rule to compute F (sj1 , sj2), we skip over

120

the first j1 − 1 sets and find sj2 in the j2’th position in the set
{sj1} × S2. Thus, F (sj1 , sj2) = (j1 − 1)n2 + j2, in agreement with
the formula for F in the Ranking Product Rule when k = 2. If the
output of F is the integer j ∈ [n1n2], we recognize j1−1 and j2−1
as the unique quotient and remainder when j − 1 is divided by n2.
This explains the formula for G = F−1 in the Ranking Product
Rule when k = 2.

Finally, the Ranking Product Rule for k + 1 sets follows by apply-
ing the version of this rule for two sets to the Cartesian product
S1 × (S2 × · · · × Sk+1), since we can assume by induction that a
ranking map of the required form has already been built for the
k-fold Cartesian product S2 × · · · × Sk+1. It is routine to unravel
this recursive construction to get the formulas for F and G stated
above. Moreover, as one readily checks, the total ordering of S
determined by the Ranking Rules in this section coincides with the
total ordering of S built via the Successor Rules in Section 2.

As a final remark, we mention an open problem concerning the
Successor Rules. Can these rules (or similar techniques) provide
a uniform framework for automatically developing minimal-change
listings such as Gray codes or de Bruijn sequences? The author’s
initial investigation of small examples suggests this may be a subtle
question. One difficulty is that the links between the last element
in set Si and the first element in set Si+1 (see Figure 1) do not nec-
essarily correspond to allowable changes in the underlying objects,
even if we already have minimal-change listings for the individual
sets Si. I hope to return to this question in future work.

Acknowledgements

I thank the anonymous referee for helpful suggestions, including
the open question raised in the previous paragraph. This work
was partially supported by a grant from the Simons Foundation
(#244398 to Nicholas Loehr).

121

References

[1] E. Bender and S.G. Williamson, Foundations of Combina-
torics with Applications, Dover, Mineola, NY (2006).

[2] Ö. Eğecioğlu and J. Remmel, “Bijections for Cayley trees,
spanning trees, and their q-analogues,” J. Combin. Theory
Ser. A 42 (1986), 15–30.

[3] D. Knuth, The Art of Computer Programming, Volume 4 (mul-
tiple fascicles), Addison-Wesley, Reading, MA (2005).

[4] D.L. Kreher and D.R. Stinson, Combinatorial Algorithms:
Generation, Enumeration, and Search, CRC Press (1999).

[5] A. Nijenhuis and H. Wilf, Combinatorial Algorithms, Aca-
demic Press, New York, NY (1975).

[6] H. Prüfer, “Neuer Beweis eines Satzes über Permutationen,”
Arch. Math. Phys. 27 (1918), 742–744.

[7] E. Reingold, J. Nievergelt, and N. Deo, Combinatorial Algo-
rithms: Theory and Practice, Prentice-Hall, Englewood Cliffs,
NJ (1977).

[8] F. Ruskey, Combinatorial Generation (preliminary draft).

[9] D. Stanton and D. White, Constructive Combinatorics,
Springer-Verlag, New York, NY (1986).

[10] H. Wilf, Combinatorial Algorithms: An Update, SIAM (1989).

122

