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Abstract: A balanced 3-nearly Platonic graph of type (k, d) is a k-
regular planar graph with three faces of the same degree m, and all f − 3
remaining faces of degree d 6= m. We present constructions of infinite
families of balanced 3-nearly Platonic graph of type (k, d) for all admissible
pairs (k, d), whose existence was claimed by Deza, Dutour Sikirič, and
Shtogrin in 2013.

1 Introduction

The five Platonic solids have been known since antiquity, and their discovery
is often attributed to Pythagoras (cca 570–495 B.C.).

It is well-known that the graph representations of the five Platonic solids are
the only finite regular planar graphs with all faces of the same size. These
graphs are often called Platonic graphs. We say that a Platonic graph is of
type (k, d) if it is k-vertex-regular and all its faces are of size d (sometimes
also called degree). The five Platonic graphs—tetrahedron, cube, dodecahe-
dron, octahedron, and icosahedron—are of types (3, 3), (3, 4), (3, 5), (4, 3),
and (5, 3), respectively.

A k-regular planar graph with f faces is a t-nearly Platonic graph of type
(k, d) if f − t of its faces are of size d and the remaining t faces are of
sizes other than d. The faces of size d are often called common faces, and
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the remaining ones exceptional or disparate faces. When t > 1 and all
disparate faces are of the same size, then the graph is called a balanced
t-nearly Platonic graph.

Keith, Froncek, and Kreher [4, 5] and Froncek and Qiu [3] proved recently
that there are no 1-nearly Platonic graphs. There are several well-known
families of balanced 2-nearly Platonic graphs (see, e.g., [4]). In [4], the
authors asked about existence of balanced 3-nearly Platonic graphs.

We constructed the graphs (except one, adapted from [2]) presented in this
paper before we discovered that this question had been studied earlier by
Deza and Dutour Sikirič [1] and Deza, Dutour Sikirič, and Shtogrin [2]. Be-
cause their proofs are not easily accessible and the publications are largely
unknown to combinatorial community, we present detailed constructive
proofs in this paper, obtaining infinite classes of balanced 3-nearly Platonic
graphs.

We show that the only admissible types of 3-nearly Platonic graphs are
(3, 3), (3, 4), (3, 5), (4, 3), and (5, 3), and for each pair construct at least one
infinite family of such graphs. All our constructions are based on surgeries
of Platonic graphs.

2 Necessary conditions and small cases

Denote the order of the 3-nearly Platonic graph of type (k, d) by v, the
number of edges by e, and number of faces by f . The degree (or size) of
the exceptional faces will be denoted m. By vertex regularity the number
of edges is kv

2 . Since the graph is planar, we have e ≤ 3v − 6 according to
Euler’s formula. Therefore, the inequality

kv

2
≤ 3v − 6

holds. This gives
kv ≤ 6v − 12,

which implies
12 ≤ 6v − kv = (6− k)v.

Since the right-hand side must be positive, we observe that k = 3, 4, or 5.

35



Now we show the possible values of d for each k. We can compute the
number of faces based on Euler’s formula, that is, v− e+f = 2. Therefore,

f = e− v + 2

=
kv

2
− v + 2

=

(
k

2
− 1

)
v + 2. (1)

Since the sum of all face degrees equals twice the number of edges and we
have f − 3 faces of degree d and three of degree m, we obtain

(f − 3) d+ 3m = 2e

(2)

and by substituting (1)

((
k

2
− 1

)
v + 2− 3

)
d+ 3m = kv

((
k

2
− 1

)
v − 1

)
d+ 3m = kv. (3)

Solving for d, we get

d =
kv − 3m(

k
2 − 1

)
v − 1

=
2kv − 6m

(k − 2)v − 2
. (4)

We plug in k = 3, 4, 5 separately into the equation (4) to determine the
possible values of d. First, for k = 3, we obtain

d =
6v − 6m

v − 2

=
6(v − 2) + 12− 6m

v − 2

= 6 +
12− 6m

v − 2
.
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Since m ≥ 3, we have 12−6m
v−2 < 0, and then d < 6. Possible values of d for

k = 3 are therefore 3, 4, or 5.

When k = 4, then

d =
8v − 6m

2v − 2

=
4v − 3m

v − 1

=
4(v − 1) + 4− 3m

v − 1

= 4 +
4− 3m

v − 1
.

Since the exceptional faces are of degree at least 3, we have 4 − 3m < 0,
which leads to d < 4. Hence, d = 3 is the only possibility for k = 4.

Finally, for k = 5,

d =
10v − 6m

3v − 2

=
10
3 (3v − 2) + 20

3 − 6m

3v − 2

=
10

3
+

20
3 − 6m

3v − 2
.

Again, we have m ≥ 3. Then 20
3 − 6m < 0 and because 3v − 2 is positive,

it follows that d < 4 for k = 5.

Therefore, (3, 3), (3, 4), (3, 5), (4, 3), (5, 3) are the only possible combinations
for (k, d). We formalize our findings as follows.

Proposition 2.1. If there exists a balanced 3-nearly Platonic graph of type
(k, d), then (k, d) ∈ {(3, 3), (3, 4), (3, 5), (4, 3), (5, 3)}.

Now we show minimum balanced 3-nearly Platonic graphs for each possible
(k, d). We plug each (k, d) into (3) to obtain the lower bound for the order
of the graph and present a smallest graph for each (k, d).
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For (k, d) = (3, 3) we have
((

3

2
− 1

)
v − 1

)
· 3 + 3m = 3v

(
1

2
v − 1

)
· 3 + 3m = 3v

3

2
v − 3 + 3m = 3v

3

2
v = 3m− 3

v = 2m− 2.

The length of three exceptional faces should differ from the common faces,
therefore m ≥ 4. Thus the minimum order is six, and such graph is shown
in Figure 1. Here and in all figures in this section, the common faces are
shaded and the three exceptional faces are left white. Notice that except
the last case (5, 3) in Figure 5, the outer face is always one of the exceptional
faces.

Figure 1: Minimum balanced 3-nearly Platonic graph of type (3,3)

For type (3, 4),
((

3

2
− 1

)
v − 1

)
· 4 + 3m = 3v

(
1

2
v − 1

)
· 4 + 3m = 3v

2v − 4 + 3m = 3v

v = 3m− 4.

Since the graph is 3-regular, the number of vertices must be even, thus
m ≥ 6 and v ≥ 14. Hence we obtain a smallest graph shown in Figure 2.
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Figure 2: Minimum balanced 3-nearly Platonic graph of type (3, 4)

For type (3, 5),

((
3

2
− 1

)
v − 1

)
· 5 + 3m = 3v

5

2
v − 5 + 3m = 3v

1

2
v = 3m− 5

v = 6m− 10

We claim that m 6= 3. Suppose m = 3, v = 8, and e = kv
2 = 12, f =

e−v+ 2 = 6. Consider the dual graph, which is of order six. Then three of
the vertices of the dual graph are of degree five, others are of degree three.
Therefore each vertex of degree five must be adjacent to all the vertices
of degree three, which forms a K3,3. Since K3,3 is not planar, the original
graph cannot be planar. Thus m 6= 3. Then m ≥ 4, and v ≥ 14. A smallest
graph is shown in Figure 3.

Figure 3: Minimum balanced 3-nearly Platonic graph of type (3, 5)
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For type (4, 3),

((
4

2
− 1

)
v − 1

)
· 3 + 3m = 4v

(v − 1) · 3 + 3m = 4v

3v − 3 + 3m = 4v

v = 3m− 3.

Again, the minimum value for m will be 4 since the common faces are
triangles, which yields v ≥ 9. A smallest graph is shown in Figure 4.

Figure 4: Minimum balanced 3-nearly Platonic graph of type (4, 3)

For type (5, 3),

((
5

2
− 1

)
v − 1

)
· 3 + 3m = 5v

(
3

2
v − 1

)
· 3 + 3m = 5v

9

2
v − 3 + 3m = 5v

9v − 6 + 6m = 10v

v = 6m− 6.

Since m ≥ 4, we have v ≥ 18. A smallest graph is shown in Figure 5.
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Figure 5: Minimum balanced 3-nearly Platonic graph of type (5, 3)

3 Pseudoblocks and connectors

As mentioned in Introduction, our constructions are based on surgeries per-
formed on Platonic graphs. In this section, we build graphs with connec-
tivity 2 using two types of structures, called pseudoblocks and connectors.

Definition 3.1. A 2-connected planar graph Ba,b(k, d) with a, b < k is
called a pseudoblock if it has one vertex of degree a, one vertex of degree b,
all remaining vertices of degree k, and all inner faces of degree d.

A 2-connected planar graph Da,b,c(k, d) with a, b, c < k is called a connector
if it has one vertex of degree a, one vertex of degree b, one vertex of degree
c, all remaining vertices of degree k, and all inner faces of degree d.

The vertices with exceptional degrees a, b and possibly c all belong to the
exceptional face. The graph K1 will be denoted as D0,0,0 and K2 as B1,1.

In Figure 6 we show a balanced 3-nearly Platonic graph of type (3, 3) with
six pseudoblock on 4 vertices B2,2(3, 3) isomorphic to K4−e, 9 pseudoblocks
B1,1 isomorphic to K2, one connector D2,2,2(3, 3) isomorphic to K3, and
one connector D0,0,0 isomorphic to K1.

All pseudoblocks and connectors used in this section arise from Platonic
solids be either removing an edge or splitting a vertex.
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Figure 6: A balanced 3-nearly Platonic graph of type (3, 3)

Definition 3.2. Let G be a graph and x a vertex of G of degree at least
3. Let NG(x) = {x1, x2, . . . , xs} be the neighborhood of x in G and sets
N1, N2, . . . , Np form a partition of NG(x) for some p, 2 ≤ p ≤ s. We
construct a graph Gx by taking G, removing vertex x and adding vertices
x1, x2, . . . , xp and edges from xi to all vertices in N i. We say that graph
Gx arises from G by splitting vertex x.

Type Ba,b(3, d)

All pseudoblocks of type Ba,b(3, d) arise from tetrahedron, cube, or dodeca-
hedron. In this case, we will be only using edge removal. Splitting a vertex
would result in the same pseudoblock with a pendant edge attached.

Pseudoblock B2,2(3, 3) arises from the tetrahedron and is shown in Figure 7.

Figure 7: Pseudoblock B2,2(3, 3)

We use two connectors, D2,2,2(3, 3) arising from the tetrahedron by remov-
ing a vertex (isomorphic to triangle K3 and shown in Figure 8), and the
trivial connector D0,0,0, that is, a single vertex.
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Figure 8: Connector D2,2,2(3, 3)

Using pseudoblocks B2,2(3, 3) and B1,1 and combining them with the two
connectors, we obtain three infinite classes of balanced 3-nearly Platonic
graphs of type (3, 3) shown in Figures 9, 10, 11. It is easy to verify that
the sizes of the three exceptional faces are 2, 3, 4 (mod 6), respectively.

Figure 9: Type (3,3) with exceptional faces of size 2 (mod 6)

Figure 10: Type (3,3) with exceptional faces of size 3 (mod 6)
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Figure 11: Type (3,3) with exceptional faces of size 4 (mod 6)

Proposition 3.3. There exist balanced 3-nearly Platonic graphs of type
(3, 3) with connectivity 2 and exceptional faces of size m for every m ≡
2, 3, 4 (mod 6), m ≥ 4.

Pseudoblock B2,2(3, 4) arises from the cube by deleting an edge and is
shown in Figure 12.

Figure 12: Pseudoblock B2,2(3, 4)

We again have two connectors, D2,2,2(3, 4) arising from the cube by remov-
ing a vertex (shown in Figure 13), and the trivial connector D0,0,0.

Figure 13: Connector D2,2,2(3, 4)

44



We use pseudoblocks B2,2(3, 4) and B1,1 and combine them with the two
connectors in three different ways. Thus, we obtain three infinite classes of
balanced 3-nearly Platonic graphs of type (3, 4) shown in Figures 14, 15,
16. One can check that the sizes of the exceptional faces are 2, 4, 6 (mod 8),
respectively.

Figure 14: Type (3,4) with exceptional faces of size 2 (mod 8)

Figure 15: Type (3,4) with exceptional faces of size 4 (mod 8)

Figure 16: Type (3,4) with exceptional faces of size 6 (mod 8)
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Proposition 3.4. There exist balanced 3-nearly Platonic graphs of type
(3, 4) with connectivity 2 and exceptional faces of size m for for every m ≡
2, 4, 6 (mod 8),m ≥ 6.

Pseudoblock B2,2(3, 5) shown in Figure 17 arises from the dodecahedron by
deleting an edge.

Figure 17: Pseudoblock B2,2(3, 5)

We have once more two connectors, D2,2,2(3, 5) arising from the dodecahe-
dron by removing a vertex (shown in Figure 18), and the trivial connector
D0,0,0.

Figure 18: Connector D2,2,2(3, 5)

Combining pseudoblocks B2,2(3, 5) and B1,1 with the two connectors, we
obtain three infinite classes of balanced 3-nearly Platonic graphs of type
(3, 5) shown in Figures 19, 20, 21. It is easy to show that the exceptional
faces are of sizes 2, 5, 8 (mod 10), respectively.

46



Figure 19: Type (3,5) with exceptional faces of size 2 (mod 10)

Figure 20: Type (3,5) with exceptional faces of size 5 (mod 10)

Figure 21: Type (3,5) with exceptional faces of size 8 (mod 10)

Proposition 3.5. There exist balanced 3-nearly Platonic graphs of type
(3, 5) with connectivity 2 and exceptional faces of size m for for every m ≡
2, 5, 8 (mod 10),m ≥ 8.
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Type Ba,b(4, 3)

There are two pseudoblocks arising from the octahedron. Namely B2,2(4, 3)
is obtained by splitting a vertex and B3,3(4, 3) is obtained by removing an
edge. They are shown in Figures 22 and 23.

Figure 22: Pseudoblock B2,2(4, 3)

Figure 23: Pseudoblock B3,3(4, 3)

We use three different connectors, D2,2,2(4, 3) arising from the octahedron
by removing all edges of one triangle, D′2,2,2(4, 3) isomorphic to K3 arising
from the tetrahedron by removing a vertex, and D3,3,2(4, 3) arising from
the tetrahedron by removing two adjacent edges. They are shown in Fig-
ures 24, 25, and 26.

Figure 24: Connector D2,2,2(4, 3)
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Figure 25: Connector D′2,2,2(4, 3)

Figure 26: Connector D3,3,2(4, 3)

Combining pseudoblocks B2,2(4, 3) with the connectors D2,2,2(4, 3) and
D′2,2,2(4, 3) in three ways, we get three infinite classes of balanced 3-nearly
Platonic graphs of type (4, 3) shown in Figures 27, 28, 29. The exceptional
faces are of sizes m ≡ 2, 3, 4 (mod 6), respectively.

Figure 27: Type B2,2(4, 3) with exceptional faces of size 2 (mod 6)
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Figure 28: Type B2,2(4, 3) with exceptional faces of size 3 (mod 6)

Figure 29: Type B2,2(4, 3) with exceptional faces of size 4 (mod 6)

Also, we can combine two chains of pseudoblocks B3,3(4, 3) and B1,1 with
a single chain using B2,2(4, 3) with connector D3,3,2(4, 3) and another one
isomorphic to B2,2(4, 3) to obtain another class with exceptional faces of
sizes m ≡ 3 (mod 6), as shown in Figure 30.

Figure 30: Combined chains Ba,b(4, 3)
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Proposition 3.6. There exist balanced 3-nearly Platonic graphs of type
(4, 3) with connectivity 2 and exceptional faces of size m for every m ≡
2, 3, 4 (mod 6), m ≥ 4.

Type Ba,b(5, 3)

We use two pseudoblocks arising from the icosahedron. By splitting a
vertex, we obtain B3,2(5, 3), and by removing an edge we get B4,4(5, 3),
both shown in Figures 31 and 32.

Figure 31: Pseudoblock B3,2(5, 3)

Figure 32: Pseudoblock B4,4(5, 3)

We combine pseudoblocks B3,2(5, 3) and use two connectors, the triangle
which we now for consistency call D2,2,2(5, 3), and D3,3,3(5, 3) obtained
from the dodecahedron by removing all edges of one triangle (shown in
Figure 33).
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Figure 33: Connector D3,3,3(5, 3)

We obtain an infinite class of balanced 3-nearly Platonic graphs of type
(5, 3) shown in Figure 34. The exceptional faces are of size m ≡ 3 (mod 6).

Figure 34: Type (5, 3) with exceptional faces of size 3 (mod 6)

Or we can build two chains consisting of pseudoblocks B4,4(5, 3) and B1,1

and one chain consisting only of copies of B3,2(5, 3). One connector is
D3,1,1(5, 3) arising from the icosahedron by splitting a vertex. One can
also instead use as a connector its subgraph, D4,4,3(5, 3), arising from the
icosahedron by removing two adjacent edges (shown in Figure 35). This
would mean that the two chains made of B4,4(5, 3) and B1,1 would contain
one extra copy of B1,1 each.
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Figure 35: Connector D4,4,3(5, 3)

The other connector D2,1,1(5, 3) obtained from the icosahedron by first
splitting a vertex and adding two pendant edges at one of the two new
vertices, namely the one of degree 3, is shown in Figure 36. It can be also
viewed as the pseudoblock B3,2(5, 3) with two copies of B1,1 attached to
the single vertex of degree 3. The exceptional faces are also of size m ≡ 3
(mod 6).

Figure 36: Connector D2,1,1(5, 3)

We get another infinite class of balanced 3-nearly Platonic graphs of type
(5, 3) shown in Figure 37. The exceptional faces are again of size m ≡ 3
(mod 6).
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Figure 37: Type (5, 3) with exceptional faces of size 3 (mod 6)

Proposition 3.7. There exist balanced 3-nearly Platonic graphs of type
(5, 3) with connectivity 2 and exceptional faces of size m for every m ≡ 3
(mod 6),m ≥ 9.

4 Bars and joints

In the previous section, the graphs had connectivity 2. In this section, we
construct 3-connected graphs. The building ingredients are again arising
from the Platonic solids by either splitting an edge or by deleting vertices.

Definition 4.1. A 2-connected planar graph Ra,b(k, d) is called a bar if
the outer face has two edges e1 and e2, each with endvertices of degree a
and b, where a, b < k, all remaining vertices of degree k, and all inner faces
of degree d.

All bars used in this section arise from Platonic solids by splitting an edge.

Definition 4.2. Let G be a graph and e = xy an edge of G with both
vertices x, y of degree at least 3. Let the neighborhood NG(e) of e = xy in
G be the set of all vertices other than x and y that are adjacent to at least
one of x, y. Let N1, N2 form a partition of NG(e). We construct a graph
Ge by taking G, removing edge e, adding edges e1 = x1y1, e2 = x2y2 and
xiz and yiz to vertices in N i whenever there was an edge xz or yz in G.
We say that graph Ge arises from G by splitting edge e = xy.
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By amalgamating bars at the split edges we obtain strips, and we will
connect strips by subgraphs of Platonic graphs called joints. The joints are
too heterogeneous to introduce a unified notation. However, the joints that
we use again all arise from Platonic graphs by splitting or removing edges
and/or vertices. We will use notation related only to the type of graph,
that is, J(k, d) will be a joint used for building 3-nearly Platonic graphs of
type (k, d).

We have three infinite classes of 3-nearly Platonic graphs of type (3, 5) and
three of type (5, 3) constructed only from bars and joints.

Type R2,2(3, 5)

The graph shown in Figure 38 obtained by splitting an edge of the dodec-
ahedron will be denoted R2,2(3, 5).

Figure 38: Bar R2,2(3, 5)

We use two different joints, J(3, 5) on 10 vertices and J ′(3, 5) on 16 vertices,
shown in Figure 39. Notice that they arise from the dodecahedron by
splitting three edges.

Figure 39: Joints J(3, 5) and J ′(3, 5)
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Combining bars R2,2(3, 5) with joints J2,2(3, 5) and J ′2,2(3, 5) in three differ-
ent ways we obtain 3-nearly Platonic graphs of type (5, 3) with the excep-
tional faces of sizes 4, 5, 6 (mod 10), respectively, shown in Figures 40, 41,
and 42.

Figure 40: Bars and joints (3, 5) with exceptional faces of size 4 (mod 10)

Figure 41: Bars and joints (3, 5) with exceptional faces of size 5 (mod 10)

Figure 42: Bars and joints (3, 5) with exceptional faces of size 6 (mod 10)

Proposition 4.3. There exist balanced 3-nearly Platonic graphs of type
(3, 5) with connectivity 3 and exceptional faces of size m for every m ≡
4, 5, 6 (mod 10), except when m = 5.
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Type R4,2(5, 3)

The graph shown in Figure 43 obtained by splitting an edge of the do-
decahedron will be denoted R4,2(5, 3). We also use joints J(5, 3) on 12
vertices and J ′(5, 3) on 6 vertices arising from the dodecahedron, shown in
Figures 44 and 45.

Figure 43: Bar R4,2(5, 3)

Figure 44: Two drawings of joint J(5, 3)

Figure 45: Joint J ′(5, 3)

Amalgamating bars R4,2(5, 3) with joints J(5, 3) and J ′(5, 3) we obtain 3-
nearly Platonic graphs of type (5, 3) with the exceptional faces of size 2, 3
and 4 (mod 6) shown in Figures 46, 47, and 48, respectively. The graph in
Figure 5 has the exceptional face of size 4 and consists of two joints J(5, 3).
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Figure 46: Bars and joints of type (5, 3), exceptional faces of size 2 (mod 6)

Figure 47: Bars and joints of type (5, 3), exceptional faces of size 3 (mod 6)

Figure 48: Bars and joints of type (5, 3), exceptional faces of size 4 (mod 6)
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Proposition 4.4. There exist balanced 3-nearly Platonic graphs of type
(5, 3) with connectivity 4 and exceptional faces of size m for every m ≡
2, 3, 4 (mod 6), m ≥ 4.

5 Mixed constructions

In this section, we combine the techniques from the previous two sections
to obtain more families of balanced 3-nearly Platonic graphs.

Mixed type (3, 4)

For graphs of type (3, 4) shown in Figure 49, both the bars and joints are
rectangles C4. The pseudoblocks are B2,2(3, 4) combined with B1,1. The
exceptional faces have size m ≡ 4 (mod 8).

Figure 49: Mixed construction for type (3, 4)

Proposition 5.1. There exist balanced 3-nearly Platonic graphs of type
(3, 4) with connectivity 2 and exceptional faces of size m for every m ≡ 4
(mod 8),m ≥ 12.

Mixed type (3, 5)

For graphs of type (3, 5), we use bars R2,2(3, 5), pseudoblocks B2,2(3, 5)
combined with B1,1 and joints J ′′(3, 5) and C5, shown in Figure 50. No-
tice that the joints arise from the dodecahedron by removing an edge and
splitting two other edges. The exceptional faces have size m ≡ 5 (mod 10).
The graph is shown in Figure 50.
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Figure 50: Mixed construction for type (3, 5) with joints J ′′(3, 5) and C5

Proposition 5.2. There exist balanced 3-nearly Platonic graphs of type
(3, 5) with connectivity 2 and exceptional faces of size m for every m ≡ 5
(mod 10),m ≥ 15.

Mixed type (4, 3)

For graphs of type (4, 3), we use bars R2,2(4, 3) arising from the octahedron
by splitting an edge, pseudoblocks B2,2(4, 3), B3,3(4, 3) combined with B1,1

and joints J(4, 3) and J ′(4, 3) (shown in Figure 51). The exceptional faces
have size m ≡ 3 (mod 6). The graph is shown in Figure 52.

Figure 51: Joints J(4, 3) and J ′(4, 3)
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Figure 52: Mixed construction for type (4, 3)

Proposition 5.3. There exist balanced 3-nearly Platonic graphs of type
(4, 3) with connectivity 2 and exceptional faces of size m for every m ≡ 3
(mod 6),m ≥ 9.

Mixed type (5, 3)

For graphs of type (5, 3), we use bars R3,3(5, 3) arising from the icosahe-
dron by splitting an edge, pseudoblocks B3,2(5, 3), and joints J ′′(5, 3) and
J ′′′(5, 3) (shown in Figure 53). The exceptional faces have size m ≡ 3
(mod 6). The graph is shown in Figure 54.

Figure 53: Joints J ′′(5, 3) and J ′′′(5, 3)
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Figure 54: Mixed construction for type (5, 3)

Proposition 5.4. There exist balanced 3-nearly Platonic graphs of type
(5, 3) with connectivity 2 and exceptional faces of size m for every m ≡ 3
(mod 6),m ≥ 9.

6 Main result

We summarize our constructions in our main result as follows.

Theorem 6.1. There exist balanced 3-nearly Platonic graphs with excep-
tional faces of size m of type

• (3, 3) for every m ≡ 2, 3, 4 (mod 6),m ≥ 4,

• (3, 4) for every m ≡ 2, 4, 6 (mod 8),m ≥ 6,

• (3, 5) for every m ≡ 2, 4, 5, 6, 8 (mod 10),m 6= 2, 5,

• (4, 3) for every m ≡ 2, 3, 4 (mod 6),m ≥ 4,

• (5, 3) for every m ≡ 2, 3, 4 (mod 6),m ≥ 4.

Notice that Deza, Dutour Sikirič, and Shtogrin [2] published the above list
as a necessary and sufficient condition. Because with our methods we are
unable to easily verify the necessity, we present their result separately.

Theorem 6.2 ([2]). The above conditions are both necessary and sufficient.
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