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Abstract: In this paper we classify distance-regular graphs, including
strongly regular graphs, admitting a transitive action of the unitary groups
U(3, 4), U(4, 3) and U(5, 2) for which the rank of the permutation repre-
sentation is at most 15. We give details about the constructed graphs. The
graphs constructed in the paper were known before, but have been obtained
in a different way.

1 Introduction

We assume that the reader is familiar with the basic facts of the group
theory, the theory of strongly regular graphs and the theory of distance-
regular graphs. We refer the reader to [6, 17] for relevant background
reading in the group theory, to [3, 18] for the theory of strongly regular
graphs, and to [4, 13] for the theory of distance-regular graphs.

A construction of distance-regular graphs (DRGs), and especially strongly
regular graphs (SRGs), from finite groups gave an important contribution
to the graph theory and the design theory (see [3, 4]). Recently, in [11, 12]
the authors found new SRGs admitting a transitive action of some finite
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simple groups and show how one can use groups as a tool to produce wide
range of interesting regular graphs.

In this paper we classify distance-regular graphs, including strongly regular
graphs, admitting a transitive action of the unitary groups U(3, 4), U(4, 3)
and U(5, 2) for which the rank of the permutation representation is at most
15 (i.e. the number of orbits of the stabilizer of a vertex is at most 15). The
graphs constructed in the paper were known before, but have been obtained
in a different way. The method of construction is outlined in Section 3. We
give a details about the obtained graphs. Note that primitive strongly
regular graphs from the groups U(3, 4), U(4, 3) and U(5, 2) are described in
[7], [9] and [8]. We refer the reader to [6, 20] for more details about these
unitary groups.

We used programmes written for Magma [2] and GAP [14]. The constructed
SRGs and DRGs can be found at the link:
http://www.math.uniri.hr/~asvob/DRGs_UniGps.zip.

2 Preliminaries

In this section we define coherent configurations and association schemes,
which are the tools for the construction of graphs presented in this paper.
We also give basic definitions and properties of DRGs and SRGs.

Definition 2.1 A coherent configuration on a finite non-empty set Ω is an
ordered pair (Ω,R) with R = {R0, R1, . . . , Rd} a set of non-empty relations
on Ω, such that the following axioms hold.

(i) There exists t such that

t∑

i=0

Ri is the identity relation, where

{R0, R1, . . . , Rt} ⊆ {R0, R1, . . . , Rd}.
(ii) R is a partition of Ω2.

(iii) For every relation Ri ∈ R, its converse RT
i = {(y, x) : (x, y) ∈ Ri} is

in R.

(iv) There are constants pkij known as the intersection numbers of the co-
herent configuration R, such that for (x, y) ∈ Rk, the number of ele-
ments z in Ω for which (x, z) ∈ Ri and (z, y) ∈ Rj equals pkij.
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We say that a coherent configuration is homogeneous if it contains the iden-
tity relation, i.e., if R0 = I. If R is a set of symmetric relations on Ω, then
a coherent configuration is called symmetric. A symmetric coherent con-
figuration is homogeneous (see [5]). Symmetric coherent configurations are
introduced by Bose and Shimamoto in [1] and called association schemes.
An association scheme with relations {R0, R1, . . . , Rd} is called a d-class
association scheme.

Let Γ be a graph with diameter d, and let δ(u, v) denote the distance
between vertices u and v of Γ. The ith-neighborhood of a vertex v is
the set Γi(v) = {w : δ(v, w) = i}. Similarly, we define Γi to be the ith-
distance graph of Γ, that is, the vertex set of Γi is the same as for Γ, with
adjacency in Γi defined by the ith distance relation in Γ. We say that Γ is
distance-regular if the distance relations of Γ give the relations of a d-class
association scheme, that is, for every choice of 0 ≤ i, j, k ≤ d, all vertices v
and w with δ(v, w) = k satisfy |Γi(v) ∩ Γj(w)| = pkij for some constant pkij .

In a distance-regular graph, we have that pkij = 0 whenever i + j < k or
k < |i − j|. A distance-regular graph Γ is necessarily regular with degree
p0

11; more generally, each distance graph Γi is regular with degree ki = p0
ii.

An equivalent definition of distance-regular graphs is the existence of the
constants bi = pii+1,1 and ci = pii−1,1 for 0 ≤ i ≤ d (notice that bd = c0 = 0).
The sequence {b0, b1, . . . , bd−1; c1, c2, . . . , cd}, where d is the diameter of Γ
is called the intersection array of Γ. Clearly, b0 = k, bd = c0 = 0, c1 = 0.

A regular graph is strongly regular with parameters (v, k, λ, µ) if it has v
vertices, degree k, and if any two adjacent vertices are together adjacent
to λ vertices, while any two non-adjacent vertices are together adjacent to
µ vertices. A strongly regular graph with parameters (v, k, λ, µ) is usually
denoted by SRG(v, k, λ, µ). A strongly regular graph is a distance-regular
graph with diameter 2 whenever µ 6= 0. The intersection array of an SRG
is given by {k, k − 1− λ; 1, µ}.

3 SRGs and DRGs constructed from the groups

Let G be a finite permutation group acting on the finite set Ω. This action
induce the action of the group G on the set Ω×Ω. For more information see
[19]. The orbits of this action are the sets of the form {(αg, βg) : g ∈ G}.
If G is transitive, then {(α, α) : α ∈ Ω} is one such orbit. If the rank of
G is r, then it has r orbits on Ω × Ω. Let |Ω| = n and ∆i is one of these
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orbits. We say that the n × n matrix Ai, with rows and columns indexed
by Ω and entries

Ai(α, β) =

{
1, if (α, β) ∈ ∆i

0, otherwise.

is called the adjacency matrix for the orbit ∆i.

Let A0, . . . , Ar−1 be the adjacency matrices for the orbits of G on Ω × Ω.
These satisfy the following conditions.

(i) A0 = I, if G is transitive on Ω. If G has s orbits on Ω, then I is a
sum of s adjacency matrices.

(ii)
∑

i

Ai = J , where J is the all-one matrix.

(iii) If Ai is an adjacency matrix, then so is its transpose AT
i .

(iv) If Ai and Aj are adjacency matrices, then their product is an integer-
linear-combination of adjacency matrices.

If Ai is symmetric, then the corresponding orbit is called self-paired. Fur-
ther, if Ai = AT

j , then the corresponding orbits are called mutually paired.

The graphs obtained in this paper are constructed using the method de-
scribed in [10] which can be rewritten in terms of coherent configurations
as shown in [12].

Theorem 3.1 [12, Theorem 1] Let G be a finite permutation group acting
transitively on the set Ω and A0, . . . , Ad be the adjacency matrices for orbits
of G on Ω × Ω. Let {B1, . . . , Bt} ⊆ {A1, . . . , Ad} be a set of adjacency

matrices for the self-paired or mutually paired orbits. Then M =

t∑

i=1

Bi is

the adjacency matrix of a regular graph Γ. The group G acts transitively
on the set of vertices of the graph Γ.

Using this method one can construct all regular graphs admitting a tran-
sitive action of the group G. We will be interested only in those regular
graphs that are distance-regular, and especially strongly regular.

106



The running time complexity of the algorithm used for the construction of
the graphs depends on a number of parameters, such as the size of the used
group and subgroup, the number of orbits of the stabilizer and the number
of self-paired and mutually paired orbits in a particular case.

3.1 SRGs and DRGs from the group U(3, 4)

In [7] the authors constructed primitive strongly regular graphs by defin-
ing incidence structures on conjugacy classes of maximal subgroups of the
simple group U(3, 4). Here, we give a classification of all transitive (not
just primitive) SRGs and DRGs of diameter d ≥ 3 for which the number of
orbits of the vertex stabilizer is at most 15.

The group U(3, 4) is the simple group of order 62400. Up to conjugation it
has 34 subgroups, 6 of them have rank at most 15.

In Table 1 we give the list of all the subgroups (for which the rank of the
permutation representation is at most 15) H1

i ≤ U(3, 4) which lead to the
construction of SRGs or DRGs of diameter d ≥ 3.

Subgroup Structure Order Index Rank Primitive

H1
1 (E4.E16) : Z5 320 195 6 no

H1
2 Z5 × A5 300 208 5 yes

H1
3 (E4.E16) : Z3 192 325 10 no

H1
4 (E25 : Z3) : Z2 150 416 9 yes

Table 1: Subgroups of the group U(3, 4) that give rise to DRGs.

Using the method described in Theorem 3.1 we obtained all DRGs on which
the group U(3, 4) acts transitively and for which the rank of the permutation
representation of the group is at most 15.

Theorem 3.2 Up to isomorphism there are exactly three strongly regular
graphs and exactly three distance-regular graphs of diameter d ≥ 3 admit-
ting an transitive action of the group U(3, 4), having the rank at most 15.
The constructed SRGs have parameters (208, 75, 30, 25), (325, 68, 3, 17) and
(416, 100, 36, 20), and the DRGs of diameter d ≥ 3 have 195, 208, 325 ver-
tices, respectively. Details about the obtained strongly regular graphs are
given in Table 2 and details about the obtained DRGs with d ≥ 3 are given
in Table 3.
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Graph Γ Parameters Aut(Γ)

Γ1
1 = Γ(U(3, 4), H1

2 ) (208,75,30,25) U(3, 4) : Z4

Γ1
2 = Γ(U(3, 4), H1

3 ) (325,68,3,17) U(4, 4) : Z4

Γ1
3 = Γ(U(3, 4), H1

4 ) (416,100,36,20) G(2, 4) : Z2

Table 2: SRGs constructed from the group U(3, 4).

Graph Γ Vertices Diameter Intersection array Aut(Γ)

Γ1
4 = Γ(U(3, 4), H1

1 ) 195 3 {64, 42, 1; 1, 21, 64} U(3, 4) : Z4

Γ1
5 = Γ(U(3, 4), H1

2 ) 208 3 {12, 10, 5; 1, 1, 8} U(3, 4) : Z4

Γ1
6 = Γ(U(3, 4), H1

3 ) 325 3 {64, 60, 1; 1, 15, 64} (Z5 × U(3, 4)) : Z4

Table 3: DRGs constructed from the group U(3, 4), d ≥ 3.

Remark 3.3 The strongly regular graphs Γ1
1 and Γ1

3 are isomorphic to the
SRGs constructed in [7]. Moreover, Γ1

3 is known as G(2, 4) graph. It is
locally the Janko graph, and the second subconstituent of the Suzuki tower
(see [16]). Further, the strongly regular graphs Γ1

2 and Γ1
3 are rank 3 graphs.

The SRG Γ1
2 is isomorphic to the graph that belongs to the family of U(4, 4)

graphs described in [15] and constructed in the following way. Let V be an
4-dimensional vector space over the field GF (4), provided with a nondegen-
erate Hermitean form. The vertices of the graph are the isotropic points
that are adjacent when orthogonal.

Remark 3.4 The distance-regular graphs Γ1
4 and Γ1

6 have diameter 3. They
belong to the family of antipodal but not bipartite distance regular graphs.
The graph Γ1

5 having 208 vertices and diameter 3 is known as unitary non-
isotropic graph. See [4] for more information.

3.2 SRGs and DRGs from the group U(4, 3)

In [9] the authors constructed primitive strongly regular graphs by defin-
ing incidence structures on conjugacy classes of maximal subgroups of the
simple group U(4, 3). Here, we give a classification of all transitive (not
just primitive) SRGs and DRGs of diameter d ≥ 3 for which the number of
orbits of the vertex stabilizer is at most 15.

The group U(4, 3) is the simple group of order 3265920. Up to conjugation
it has 381 subgroups, 27 of them have rank at most 15.

In Table 4 we give the list of all the subgroups (for which the rank of the
permutation representation is at most 15) H1

i ≤ U(4, 3) which lead to the
construction of SRGs or DRGs of diameter d ≥ 3.
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Subgroup Structure Order Index Rank Primitive

H2
1 E81 : A6 29160 112 3 yes

H2
2 U(4, 2) 25920 126 3 yes

H2
3 L(3, 4) 20160 162 3 yes

H2
4 31+4

+ × 2S4 11664 280 3 yes

H2
5 U(3, 3) 6048 540 4 yes

H2
6 E81 : A5 4860 672 6 no

Table 4: Subgroups of the group U(4, 3) that give rise to DRGs.

Using the method described in Theorem 3.1 we obtained all DRGs for which
the rank of the permutation representation of the group is at most 15.

Theorem 3.5 Up to isomorphism there are exactly six strongly regular
graphs and there are no distance-regular graphs of diameter d ≥ 3 admitting
an transitive action of the group U(4, 3), having the rank at most 15. The
SRGs have parameters (112, 30, 2, 10), (126, 45, 12, 18), (162, 56, 10, 24),
(280, 36, 8, 4), (540, 224, 88, 96) and (672, 176, 40, 48). Details about the ob-
tained strongly regular graphs are given in Table 5.

Graph Γ Parameters Aut(Γ)

Γ2
1 = Γ(U(4, 3), H2

1 ) (112,30,2,10 U(4, 3) : D8

Γ2
2 = Γ(U(4, 3), H2

2 ) (126,45,12,18) (U(4, 3) : Z2) : Z2

Γ2
3 = Γ(U(4, 3), H2

3 ) (162,56,10,24) (U(4, 3) : Z2) : Z2

Γ2
4 = Γ(U(4, 3), H2

4 ) (280,36,8,4) U(4, 3) : D8

Γ2
5 = Γ(U(4, 3), H2

5 ) (540,224,88,96) U(4, 3) : D8

Γ2
6 = Γ(U(4, 3), H2

6 ) (672,176,40,48) U(6, 2) : S3

Table 5: SRGs constructed from the group U(4, 3).

Remark 3.6 The strongly regular graphs Γ2
1, Γ2

2, Γ2
3 and Γ2

4 are rank 3
graphs and are isomorphic to the SRGs constructed in [9]. The graph Γ2

5

is known as U(4, 3) graph and is isomorphic to the graph constructed in
[11]. Further, the strongly regular graph Γ2

6 is known as U(6, 2) graph.
Both Γ2

5 and Γ2
6 belong to the family of graphs described in [15] and can

be constructed in the following way. Let V be an 4-dimensional and 6-
dimensional vector space over the field GF (16) and GF (36), respectively,
provided with a nondegenerate Hermitean form. The vertices of the graph
are the nonisotropic points, adjacent when joined by a tangent.
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3.3 SRGs and DRGs from the group U(5, 2)

In [8] the authors constructed primitive strongly regular graphs by defin-
ing incidence structures on conjugacy classes of maximal subgroups of the
simple group U(5, 2). Here, we give a classification of all transitive (not
just primitive) SRGs and DRGs of diameter d ≥ 3 for which the number of
orbits of the vertex stabilizer is at most 15.

The group U(5, 2) is the simple group of order 13685760. Up to conjugation
it has 556 subgroups, 19 of them have rank at most 15.

In Table 6 we give the list of all the subgroups (for which the rank of the
permutation representation is at most 15) H1

i ≤ U(5, 2) which lead to the
construction of SRGs or DRGs of diameter d ≥ 3.

Subgroup Structure Order Index Rank Primitive

H3
1 (E64 : Z2).(E9 : Z3).SL(2, 3) 829444 165 3 yes

H3
2 Z3 × U(4, 2) 46080 176 3 yes

H3
3 (E16 : E16) : (Z3 × A5) 77760 297 3 yes

H3
4 (((Z2 ×D8) : Z2).A4).(E9 : Q8) 27648 495 7 no

H3
5 O(5, 3) 25920 528 7 no

H3
6 ((E4 ×Q8) : Q8) : A5 15360 891 9 no

H3
7 E81 : S5 9720 1408 7 yes

H3
8 (((E4 ×Q8) : Q8) : Z5) : S3 7680 1782 7 no

Table 6: Subgroups of the group U(5, 2) that give rise to DRGs.

Using the method described in Theorem 3.1 we obtained all DRGs for which
the rank of the permutation representation of the group is at most 15.

Theorem 3.7 Up to isomorphism there are exactly seven strongly regu-
lar graphs and exactly one distance-regular graphs of diameter d ≥ 3 ad-
mitting an transitive action of the group U(5, 2), having the rank at most
15. The constructed SRGs have parameters (165, 36, 3, 9), (176, 40, 12, 8),
(297, 40, 7, 5), (495, 238, 109, 119),
(528, 255, 126, 120), (1408, 567, 246, 216) and (1782, 416, 100, 96), and the
DRG of diameter d ≥ 3 have 891 vertices. Details about the obtained
strongly regular graphs are given in Table 7 and details about the obtained
DRG with d ≥ 3 are given in Table 8.
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Graph Γ Parameters Aut(Γ)

Γ3
1 = Γ(U(5, 2), H3

1 ) (165,36,3,9) U(5, 2) : Z2

Γ3
2 = Γ(U(5, 2), H3

2 ) (176,40,12,8) U(5, 2) : Z2

Γ3
3 = Γ(U(5, 2), H3

3 ) (297,40,7,5) U(5, 2) : Z2

Γ3
4 = Γ(U(5, 2), H3

4 ) (495,238,109,119) O−(10, 2) : Z2

Γ3
5 = Γ(U(5, 2), H3

5 ) (528,255,126,120) O−(10, 2) : Z2

Γ3
6 = Γ(U(5, 2), H3

7 ) (1408,567,246,216) U(6, 2) : Z2

Γ3
7 = Γ(U(5, 2), H3

8 ) (1782,416,100,96) Suz : Z2

Table 7: SRGs constructed from the group U(5, 2).

Graph Γ Vertices Diameter Intersection array Aut(Γ)

Γ3
8 = Γ(U(5, 2), H3

6 ) 891 3 {42, 40, 32; 1, 5, 21} U(6, 2)× S3

Table 8: DRG constructed from the group U(5, 2), d ≥ 3.

Remark 3.8 The strongly regular graphs Γ3
1, Γ3

2, Γ3
3 and Γ3

6 are isomorphic
to the graphs constructed in [8]. The graphs Γ3

1, Γ3
2, Γ3

3, Γ3
4, Γ3

5 and Γ3
7

are rank 3 graphs. The graph Γ3
4 is known as O−(10, 2) graph, i.e. the

graph that belongs to the family of graphs constructed in the following way.
Take the elliptic points on a nondegenerate quadric in PG(5, 2), where the
points are adjacent when orthogonal. The graph Γ3

5 belongs to the family of
graph that can be constructed by taking the nonisotropic points of O−(10, 2),
adjacent when joined by a tangent. Both graphs, Γ3

4 and Γ3
5 are described

in [15]. The SRG Γ3
7 is known as a locally G(2, 4) graph. See [16] for more

information.

Remark 3.9 The distance-regular graph Γ3
8 have 891 vertices and diameter

3 is known as dual polar graph 2A6(2). It is the unique DRG with this
intersection array. See [4] for more information.
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