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Abstract: It is conjectured that the polygonal bigraphs, denoted
Pm,k, are all 2-edge-Hamiltonian and that a 3-connected bicubic graph
is Hamilton-laceable if and only if it is 2-edge-Hamiltonian. There is per-
suasive evidence for the first conjecture based on proofs for several infinite
families of the Pm,k as well as exhaustive computer searches for 56 or fewer
vertices and suggestive evidence for the second. However, none of the case
proofs suggest a general technique which is why the conjectures are put
forward.

1 Introduction

There are four Hamiltonian graph properties listed below in roughly in-
creasing order of restrictiveness (strength).

1. A graph is Hamiltonian if there exists a Hamilton cycle on the ver-
tices.

2. A graph is edge-Hamiltonian if there exists a Hamilton cycle on every
edge.

3. A graph is 2-edge-Hamiltonian if there exists a Hamilton cycle on
every pair of edges.

4. A graph is Hamilton-connected if there exists a Hamilton path be-
tween every pair of vertices.
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Hamiltonian and edge-Hamiltonian are each implied by any stronger prop-
erty, i.e. by a property below it in the list, and neither implies a stronger
property. The graph in Figure 1 is edge-Hamiltonian since every edge is ei-
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Figure 1

ther in the outer cycle or in the bold cycle, but can’t be 2-edge-Hamiltonian

since no Hamilton cycle is possible on the edge pair 2
1

4 , nor can
it be Hamilton-connected since no Hamilton path exists between vertices 1
and 6.

A bigraph (bipartite graph) can only host a Hamilton cycle if it is equi-
table, i.e. if the two parts have the same cardinality. An equitable bigraph
can be Hamiltonian, edge-Hamiltonian or 2-edge-Hamiltonian but cannot
be Hamilton-connected since there can’t be a Hamilton path between two
vertices in the same part. An equitable bipartite graph is Hamilton-laceable
if there exists a Hamilton path between every pair of vertices in different
parts. Hamilton-laceable is the analogous property for bipartite graphs to
Hamilton-connected for general graphs.

Hamilton cycles include exactly two edges incident to each vertex. Hence
a k-edge-Hamiltonian graph with k > 2 cannot have a vertex of degree
exceeding 2 and thus when k > 2 the only graph of order n ≥ k that is k-
edge-Hamiltonian is trivially the cycle Cn. Therefore edge-Hamiltonian
and 2-edge-Hamiltonian exhaust the non-trivial possibilities for k-edge-
Hamiltonicity. Furthermore a 2-edge-Hamiltonian graph G cannot have
a vertex x of degree 2 adjacent to a vertex y of degree exceeding 2, because
no cycle on a pair of edges on y and not on x can include vertex x. There-
fore all the vertices in a non-trivial 2-edge-Hamiltonian graph have degree
at least 3. The interesting graphs to consider are the edge-minimal cubics
and bicubics (cubic bigraphs), the latter of which are necessarily equitable.
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It is easy to show that 2-edge-Hamiltonian bicubic graphs are 3-connected.
Let G be a 2-edge-Hamiltonian bicubic graph. Suppose G has a cutset with
two vertices u and v. Since G is Hamiltonian, G\{u, v} has two components
A and B. If u v is an edge, then it is easy to see it cannot be in a
Hamilton cycle so that G is not even edge-Hamiltonian. We may assume
u and v are not adjacent. By the pigeonhole principle, u has at least two
neighbors x, y in one part, say A. The edges u x and u y cannot
be in a Hamilton cycle H because H then must pass between A and B more
than once and v is the only available vertex to facilitate this. Therefore, G
is 3-connected.

Virtually the same argument can be used to show that Hamilton-laceable
bicubic graphs are also 3-connected. Let G be a Hamilton-laceable bicubic
graph with bipartition A,B. If u, v are in different parts, then they are
the ends of a Hamilton path. This implies that G \ {u, v} is connected so
that if {u, v} is a cutset, then u, v belong to the same part, say A, and
are not adjacent. Let Z1, Z2 be the components of G \ {u, v}. If u has
three neighbors x1, x2, x3 in the same component, say Z1, then there is no
Hamilton path from u to x1 in G because the path must go through v to
reach Z2 and there is no way to return to Z1. Thus, neither u nor v have
three neighbors in the same component. If both u and v have two neighbors
in the same component, say Z1, then there is no Hamilton path from u to
x, where x is the neighbor of v in Z2. Finally, if u has one neighbor y1 in
Z1 and v has two neighbors in x1, x2 in Z1, then there is no Hamilton path
from v to y1. Therefore, G is 3-connected.

Edge-Hamiltonian graphs, 2-edge-Hamiltonian graphs and Hamilton-
laceable bigraphs are all Hamiltonian; the first two by definition and the lat-
ter by joining an edge to a Hamilton path between its endpoints. Any of the
several constructions disproving Tutte’s conjecture [4] that a 3-connected
bicubic graph must be Hamiltonian therefore show that 3-connectedness is
a necessary but not necessarily a sufficient condition for a bicubic graph to
be 2-edge-Hamiltonian or Hamilton-laceable.

It was noted recently [3] that the Tutte 8-cage is Hamiltonian, edge-
Hamiltonian, 2-edge-Hamiltonian and Hamilton-laceable; apparently a re-
markable confluence of Hamilton related graph properties. However, since
the first two properties follow from either of the latter two it is only remark-
able that the graph is both Hamilton-laceable and 2-edge-Hamiltonian. Not
mentioned though was the fact that the 8-cage is also edge-stable with re-
spect to Hamilton-laceability. The 10-fold symmetry of the 8-cage greatly
reduced the number of edges that had to be considered and the genera-
tion of Hamilton paths between the endpoints of an edge could be halted
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as soon as a cover for the remaining edges was found which is how it was
first noticed that the 8-cage was 2-edge-Hamiltonian. These simplifications
made it possible to deal with the 30 vertices and 45 edges in the 8-cage.

Besides the 8-cage, it was noted earlier the m-prisms (m even) and the m-
Möbius ladders (m odd) are infinite families of bicubics which are also edge-
stable with respect to Hamilton-laceability. This result was a serendipitous
byproduct of enumerating Hamilton paths in the graphs [1] but can easily
be exploited to show the graphs are also 2-edge-Hamiltonian. All that is
required is that the considered graph be a Hamilton-laceable cubic bigraph
that is also is edge-stable. Let a b and c d be an arbitrary pair
of edges in a bicubic graph which is edge stable with respect to Hamilton-
laceability. They are either disjoint or share a vertex, say b = c. In either
case let the other two edges on d be d e and d f . If d e is
deleted, by hypothesis there will still be a Hamilton path between vertices a

and b, which to include vertex d must lie on edges c
d

f . Irrespective

of whether b and c are distinct or not appending edge a b to the
Hamilton path between vertices a and b forms a Hamilton cycle on the pair
of arbitrary edges.

These ladder-like graphs are the simplest members of a doubly infinite fam-
ily of bicubics many of which (all?) share this dual property of being both
Hamilton-laceable and 2-edge-Hamiltonian. To construct the graphs, ex-
tend the sides of a regular m-gon to define the mb(m−1)/2c finite points of
intersection (including the vertices of the m-gon) and draw centrally sym-
metric concentric circles such that each annulus includes just one set of
the intersections. The polygonal bigraph Pm,k is defined on the kth circle,
where vertices are the intersections of the circle with lines in the configu-
ration and edges are the segments of the lines cut out by the circle and the
arcs of the circle between the intersections. The innermost circle, k = 1,
contains only the vertices of the m-gon itself and defines Pm,1 which are
just the m-prisms (m even) and the m-Möbius ladders (m odd). Figure 2
shows the three P7,k defined by a heptagon.

2 Conjecture 1

The polygonal bigraphs, Pm,k, are 2-edge-Hamiltonian.

An alternative description of Pm,k, which obscures the relationship to the
defining m-gon though, is: in a clockwise numbered cycle C2m connect
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Figure 2: P7,k

each odd vertex to the even vertex 2k+1 clockwise from it in the cycle. It
is worth noting that the three polygonal bigraphs generated by a heptagon
are each a member of an infinite family, Pm,1, Pm,2 or Pm,3, all of whose
members have been proven to be Hamilton-laceable [2]. This description
of Pm,k however makes obvious the LCF notation:

[
(2k+ 1), (2k+ 1)−1

]m
,

k ≤ b(m− 1)/2mc.

Theorem 2.1. The Pm,k are 3-connected.

Proof. The Pm,k are vertex-transitive because both rotation by two posi-
tions and reflection about the axis joining the midpoints of the arcs between
1 and 2, and m+ 1 and m+ 2 are automorphisms. Watkins [5] proved that
the connectivity of a connected vertex-transitive graph of degree d is strictly
greater than two-thirds d from which the result follows.
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A Sullivan subgraph Sm,k is a unique graph associated with each chord
in a polygonal bigraph Pm,k. Sm,k contains the two pairs of edges in the
outer cycle lying on the endpoints of the defining chord with no other pair
of edges in the outer cycle having a vertex in common in Sm,k. The S12,3

defined by chord 1 8 in P12,3 is shown by the bold lines in Figure 3. If
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Figure 3: S12,3

m = 2k+ 1, Pm,k is just the cycle C2m and the m diameters, in which case
Sm,k is degenerate and consists of a C6 cycle on the two pairs of edges on the
endpoints of the defining chord and k− 1 C4 cycles on the remaining pairs
of opposite edges in C2m. It will be shown that Pm,k is both Hamilton-
laceable and 2-edge-Hamiltonian in this case so it suffices to consider cases
m ≥ 2k + 2.

Theorem 2.2. Every pair of edges in Pm,k is covered by some rotation of
an Sm,k.

Proof. The edges in Pm,k have a natural partition into three perfect match-
ings: the chords, the plus edges and the minus edges in the outer cycle;
where an edge is said to be “plus” if the chords on its endpoints do not
cross and “minus” if they do. It is easy to see that every pair of edges lies
in some rotation of an Sm,k. If the pair of edges to be covered in Pm,k are
either both in the outer cycle or are both chords the statement is obviously
true. The only other possibility is that one of the edges is a chord and the
other an edge in the outer cycle. It is easier to treat plus and minus edges
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separately. The k + 1 outer edges in Sm,k in the circular segment cut off
by the defining chord are all minus while the m− k in its complement are
all plus. There are at least two plus edges in the complement that are not
in either of the pairs of edges on the ends of the defining chord. Any plus
edge paired with the defining chord in Pm,k will be covered by the rotation
of one of these two edges to lie on the edge in question, so every pairing of
a plus edge with a chord is covered by a rotation of Sm,k. For all Pm,k the

minus edges 1 2 and (2k + 1) (2k + 2) are paired with all chords

except for the defining chord 1 (2k + 2) on vertex 1 in the first case

and on 2k + 2 in the second. Rotating Sm,k 2k positions counterclockwise
in the first case or clockwise in the second will cause one of the minus edges
to lie on the other and bring the chord on 2 or on 2k + 2 to the position
originally occupied by the defining chord.

Corollary 2.3. If Sm,k is a Hamilton cycle, Pm,k is 2-edge-Hamiltonian.

It was this corollary which motivated the introduction of the Sullivan graphs
since the conjecture that polygonal bigraphs are 2-edge-Hamiltonian would
be proven if the Sullivan graphs were all Hamilton cycles. Obviously, since
the conjecture is still open, they are not, but most are as shown in Table 1
where ‘-’ indicates Sm,k is a Hamilton cycle and ‘N’ that it is not. Sev-
eral patterns are evident in the entries, all of which are accounted for by
Theorem 2.4.

Theorem 2.4. The Sullivan subgraph Sm,k is a Hamilton cycle in Pm,k if
and only if gcd(m+ 1, k + 1) ≤ 2.

Proof. The basic idea is simple: show that if gcd(m + 1, k + 1) > 2, a
path originating on vertex 4 can not connect to either end of the edge pair
(2m− 1) 2 in the Sm,k defined by edge 1 (2k + 2) .

Since the vertices in Sm,k are all of degree 2, Sm,k is either a Hamilton
cycle or a union of two or more cycles. By construction the path reverses
direction from clockwise to counterclockwise or vice versa only on the edge
pairs on the ends of the defining chord. This forces the two edge pairs to
be in the same cycle.

To show the necessity of the condition that gcd(m + 1, k + 1) ≤ 2 if Sm,k

is to be a Hamilton cycle, consider the path originating on vertex 4 and
continuing 3, 2k + 4 etc. The next even vertex will be 4k + 6 etc., better
written 2(k + 1) + 2, 4(k + 1) + 2. If this sequence doesn’t land on one of
2m or 2 before, it will eventually land again on a minus edge in the circular
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segment as a result of the formal sum exceeding 2m. When this happens
2m must be subtracted to get the actual vertex label. Formally the vertex
labels in the path are of the form 2α(k + 1) − 2β(m + 1) + δ, where α is
the number of vertices in the path thus far, β is the number of times the
path has wrapped around the graph (also the number of minus edges in
the path thus far) and δ is 4 if the current vertex is in the circular segment
or 2 if it is not. The explanation for the difference in the value of δ is that
the path moves counterclockwise on a minus edge and clockwise on a plus
edge. If the path is to be in a Hamilton cycle, 2α(k + 1) − 2β(m + 1) + 2
must equal 2m or 2 for some set of path defined α and β. Then δ = 2 since
the vertex preceding either 2m or 2 will be in the complement.

Case 1: 2α(k + 1) − 2β(m + 1) + 2 = 2m can be rewritten in the form
α(k+1)−(β−1)(m+1) = −2, which is impossible when gcd(m+1, k+1) =
j > 2 since j divides each of the terms on the left, but doesn’t divide 2.

Case 2: 2α(k+ 1)− 2β(m+ 1) + 2 = 2m+ 2 can be rewritten in the form
α(k + 1)− (β)(m+ 1) = m which is also impossible since j divides each of
the terms on the left but not the one on the right since gcd(m+ 1,m) = 1.

But the path on vertex 4 must close to form a cycle irrespective of the
value of j. The preceding argument shows this cycle will be disjoint from
the one including the edge pairs on the ends of the defining chord when
j > 2, hence Sm,k cannot be a Hamilton cycle in this case.

It isn’t just that the path originating on vertex 4 can’t land on either
of vertices 2m or 2 if j > 2, but that it must if j > 2. Depending on
the values of m and k it can be either; for example when m = 15 and
k = 4 it lands on vertex 2 and when m = 15 and k = 5 it lands on
vertex 30 = 2m. There are two paths originating on vertex 2(k + 1), one
starting with the plus edge (2k + 2) (2k + 3) , the other with the minus

edge (2k + 2) (2k + 1) . The corresponding formal vertex sequences are:

2α(k + 1)− 2β(m+ 1) (A)

and

2α′(k + 1)− 2β′(m+ 1)− 2 (B)

where α, β, α′ and β′ have the same interpretation as before. By Bézout’s
identity the integers of the form a(k+1)+b(m+1) are multiples of gcd(k+
1,m + 1). Hence when gcd(k + 1,m + 1) ≤ 2, sequences (A) and (B)
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together generate all the even integers between 2 and 2m inclusive if each
formal sequence is stopped as soon as 2 or 2m is reached: in other words,
Sm,k is a Hamilton cycle when gcd(m+ 1, k + 1) ≤ 2.

The probability the greatest common divisor of a pair of randomly drawn
integers x and y, x = m+ 1 and y = k+ 1, will be no greater than 2 is just
the probability they are relatively prime plus the probability their GCD is
2, i.e. 15/2π2 or approximately 0.76. In other words the Sullivan graphs
show that at least three out of four of the Pm,k are 2-edge-Hamiltonian. Of
course the conjecture is that they all are.

Since the Sullivan graphs were so effective in constructing edge pair covering
Hamilton cycles in Pm,k when gcd(m + 1, k + 1) ≤ 2 it is natural to look
for another family of graphs with similar properties for the cases in which
gcd(m + 1, k + 1) > 2. An anti-Sullivan subgraph Sm,k in a polygonal
bigraph Pm,k is a unique graph associated with each minus edge in the
outer cycle in Pm,k. Sm,k contains the two pairs of contiguous edges in the
outer cycle lying on either side of the defining minus edge and the m − 2
chords not incident on the shared vertex in either edge pair. Figure 4 shows
in bold edges the first two anti-Sullivan graphs, S8,2 and S11,3 defined by
the minus edge 1 2m in P8,2 and P11,3 respectively, in the familiar
representation as a cycle on 2m vertices with, in this case, m− 2 chords.
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Figure 4

The Sullivan and anti-Sullivan graphs differ in virtually every respect. The
one property they share is that the rotations of either covers all the edge
pairs in Pm,k. The anti-Sullivan graphs are only defined for m = n(k +
1) − 1, n ≥ 3; a forced consequence of the definition. Sm,k is defined
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for all parameter pairs m and k, k ≤ b(m − 1)/2c, where the bound on
k is simply to avoid repetition. Sn(k+1)−1,k can be generated by simple

repetitive extensions of S3(k+1)−1,k for all n > 3. There is no comparable
operation for the Sm,k. The biggest difference though is that whereas Sm,k

is only a Hamilton cycle roughly three times out of four and then subject
to less than obvious conditions, it is almost trivial to show that Sm,k is
always a Hamilton cycle. The remarkable thing about the two families of
graphs though is that the Sm,k are Hamilton cycles in precisely those cases
in which the Sm,k are not. Unfortunately there are parameter pairs which
do not define a Hamilton cycle in either construction; when m + 1 and
k + 1 share a proper divisor greater than 2. Just as there is a Sullivan
graph associated with every chord in Pm,k there is an anti-Sullivan graph
associated with every minus edge in the outer cycle.

Theorem 2.5. Every pair of edges in Pm,k is covered by some rotation of
an Sm,k.

Proof. Identical to the proof of Theorem 2.2.

Theorem 2.6. Sn(k+1)−1,k , n ≥ 3 is a Hamilton cycle.

Proof. Unlike the case for Sm,k where it was difficult to determine whether
a particular graph was a Hamilton cycle or not, crucial to showing Pm,k is
2-edge-Hamiltonian, it becomes little more than a remark for Sn(k+1)−1,k
given the representation in Figure 5. For the moment consider only the
minimal case in which m = 3(k + 1) − 1. The structure is forced by the
definition; there will be k − 2 plus edges between the two central pair of
edge pairs and k− 1 minus edges between the edge pairs on either end and
the central ones. S11,3 suffices to illustrate how easy it is to show Sm,k is
always a Hamilton cycle. Notice that the path from endpoint labeled {3}
on the left connects to a minus edge on the left, then to a plus edge in
the middle and finally to a minus edge on the right to exit at an endpoint
labeled {2} on the right. For an arbitrary k > 3 there will be k − 2 such
paths which daisy chain to each other to connect endpoint labeled {k} on
the left to the endpoint labeled {2} on the right. Irrespective of how large
k may be, the endpoint labeled {1} on the right connects to the endpoint
labeled {k+ 1} on the left. These two partial paths are linked by the path

reversals on edges 1
2

3 and (2m− 2)
(2m− 1)

(2m) to form

a Hamilton cycle. Therefore S3(k+1)−1,k is a Hamilton cycle for k ≥ 2.

Next we show that Sn(k+1)−1,k is a Hamilton cycle for all n ≥ 3. Figure 6

shows examples for k = 2 and k = 3 of links which can be spliced into S8,2
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or S11,3 at the indicated vertical bars. Since the paths described above are
merely extended by such an operation, the end labels will be unchanged
and the extended graphs will still be Hamilton cycles. Arbitrarily many
such extensions can be made to form Sn(k+1)−1,2 or Sn(k+1)−1,3. For other
values of k the links will have k+1 plus edges arranged in the same manner
as shown in the two links in Figure 6 depending on whether k is even or
odd. Therefore Sn(k+1)−1,k is a Hamilton cycle for k ≥ 2.

Corollary 2.7. Pm,k is 2-edge-Hamiltonian when gcd(m+1, k+1) = k+1.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

{1}
{2}
{3} {1}

{2}
{3}

S8,2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

{1}
{2}
{3}
{4} {1}

{2}
{3}
{4}

S11,2

Figure 5

k = 2 link k = 3 link

Figure 6

To summarize, Pm,k has been shown to be 2-edge-Hamiltonian except when
2 < (m + 1, k + 1) < k + 1. Several infinite families in this range can also
be shown to be 2-edge-Hamiltonian, but since these special cases don’t
affect the asymptotic result only a couple of cases that are both 2-edge-
Hamiltonian and Hamilton-laceable will be mentioned since they support
Conjecture 2. Pm,2 and Pm,3, the entries in the first two columns in Table
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1, and their isomorphs are obvious examples: 2-edge-Hamiltonian in con-
sequence of Theorems 2.4 and 2.6 here and proven to be Hamilton-laceable
in [2]. The entries on the diagonal k = b(m − 1)/2c in Table 1 are also
both 2-edge-Hamiltonian and Hamilton-laceable as shown in Theorems 2.8
and 2.9. Pm,1 was shown to be Hamilton-laceable in [1] but there is such
a simple proof using the Sullivan subgraphs that the new proof is included
here. Pm,k is vertex-transitive so all that is required is to show there exists
a Hamilton path between vertex 1 and every even vertex.

Theorem 2.8. Pm,1 is 2-edge-Hamiltonian and Hamilton-laceable.

Proof. Let Sm,1 be the Sullivan subgraph defined in Pm,1 by edge

2 (2m−1) , i.e. the Sm,1 in which the path reverses direction on ver-

tices 1 and 2m; See Figure 7. Clearly Sm,1 is a Hamilton cycle so Pm,1 is
2-edge-Hamiltonian.
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Figure 7

Define a Hamilton path between 1 and an arbitrary even vertex y by fol-
lowing the outer cycle in a clockwise direction from vertex 1 to the odd
vertex just before y and then following Sm,1 until it returns to y. This con-
struction is well defined for all even y: if y = 2, 1 is the vertex preceding y
so Sm,1 is followed from the beginning and if y = 2m, 2m− 1 is the vertex

preceding y so only the final edge (2m− 1) 2m is followed.

Theorem 2.9. Pm,b(m−1)/2c is 2-edge-Hamiltonian and Hamilton-laceable.

Proof. If m is odd, Pm,b(m−1)/2c ∼= Pm,1 which was just shown to be 2-edge-
Hamiltonian and Hamilton-laceable. If m is even let 2d be the minimum
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number of vertices between endpoints x and y on C2m. For k = b(m−1)/2c
the chords are parallel and on adjacent vertices. Form a cross of d pairs
of the parallel edges as shown in Figure 8 for d = 1 and 2 and connect
the open ends to endpoints x and y as shown to form a Hamilton path
between x and y. Since S2n+2,n is a Hamilton cycle for all n ≥ 1, P2n+2,n

is 2-edge-Hamiltonian.

x y
yx

d = 1 d = 2
Figure 8

Of the 156 m, k parameter pairs in Table 1 all but 10 define Pm,k which are
2-edge-Hamiltonian as a consequence of Theorems 2.4, 2.6 and 2.9. The
smallest case in doubt is P14,5 which is isomorphic to P14,3 [2] and hence
both 2-edge-Hamiltonian and Hamilton-laceable. Obviously, if one member
of an isomorphic pair of graphs possesses a property, the other member
must also. This makes graph isomorphism a powerful tool in investigating
how many members of a family of graphs possess a given property, and
was in fact the primary tool used in studying the Hamilton laceability of
polygonal bigraphs [2]. There, since the existence of Hamilton paths is the
defining feature for Hamilton-laceability, all the Hamilton paths in Pm,k

were calculated using a backtracking program; approaching 10,000 paths
on each vertex for several values of k when m = 21. A striking feature
of the tabulation was that for most m there were several sets of two or
three values of k for which the path tally was the same, suggesting the
associated graphs might be isomorphs. In fact, in every instance in which
the number of Hamilton paths on a vertex in Pm,k was the same as in Pm,k′

the bigraphs were one or the other of the following two simple isomorphs.
In the case of polygonal bigraphs, there are two natural mappings: the Plus
mapping in which plus edges on the outer cycle alternately join chords in
Pm,k and the Minus mapping in which the minus edges do. If either of
these mappings defines a Hamilton cycle an isomorphism has been found,
but as was pointed out in [2] either or both can be an auto-isomorphism
which is of no assistance in identifying another Hamilton-laceable Pm,k′ . An
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extreme example is P13,3 in which both the Plus and Minus mappings are
Hamilton cycles but in which both of the resulting graphs are isomorphic
to the original P13,3. P13,3 does not appear in the table of isomorphs in [2]
since neither isomorph leads to a new Pm,k. The fact that both the Plus and
the Minus mappings are Hamilton cycles though suffices to prove P13,3 is
2-edge-Hamiltonian: the outer cycle covers every edge pair in the cycle, the
cycle defined by the Plus mapping every pair of chords and every pairing
of a chord with a plus edge. Similarly for the Minus mapping, so even
though the Plus and Minus mappings are auto-isomorphs to P13,3, it is
the fact that the three cycles cover all edge pairs that matters here since
this shows P13,3 is 2-edge-Hamiltonian. Of course this was already known
for P13,3 since gcd(14, 4) = 2. There are infinitely many m though, m a
prime of form 6n + 1 for example, which behave the same even though
2 < (m+ 1, k + 1) < k + 1: P79,23 is one example.

Similar appeals to isomorphism show that all but four of the remaining
cases are 2-edge-Hamiltonian but doesn’t say whether they are Hamilton-
laceable or not since k > 3 for them. The four undecided cases are P19,7,
P20,5, P20,8 and P24,9, all of which elude the Sullivan and anti-Sullivan
constructions. P19,7 is 2-edge-Hamiltonian by the argument in the previous
paragraph since both the Plus and the Minus mappings define Hamilton
cycles. In other words, all but 3 out of the 156 m, k pairs, m ≤ 28, i.e.
over 98%, can be shown to represent 2-edge-Hamiltonian bigraphs without
having to resort to direct computation. Because of their importance to
supporting the conjectures all three of P20,5, P20,8 and P24,9 were shown
to be 2-edge-Hamiltonian by direct computation. It was barely possible for
P24,9: requiring twenty-three and a half hours dedicated computation with
a 4GHz 16GB computer. The bottom line is that all of the 156 parameter
pairs in Table 1 define 2-edge-Hamiltonian Pm,k.

The improvement from 76% to 98% depended on showing that some of
the Pm,k of unknown property were isomorphs to Pm,k known to be 2-
edge-Hamiltonian. Since the object here is to summarize the evidence for
the conjectures, it is natural to try to estimate how much the existence of
isomorphs improves the bound in general. Their existence is a very irregular
function of m and k, ranging from the extreme when m is a prime of the
form m = 6n − 1 and every Pm,k has two isomorphs, to the cases m = 12
or 24 where none do.

It is possible to estimate the probability a randomly chosen Pm,k is 2-
edge-Hamiltonian using only what has already been proven. If Pm,k is
in the 76% of cases covered by the Sullivan graphs there is nothing to
prove. That is also true if it is one of the cases covered by the anti-Sullivan
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graphs or by Theorems 2.4, 2.6 and 2.9, but these cases do not affect the
asymptotic likelihood, even though they figured in showing that 98% of the
cases in Table 1 were 2-edge-Hamiltonian since recalcitrant cases could be
considered individually. A case by case argument isn’t feasible in general,
but the existence of such special cases makes an estimate which doesn’t
invoke them conservative.

It is computationally easy to calculate whether a Plus or Minus mapping of
Pm,k defines a distinct isomorph for arbitrarily large m and k. Taken over
all m ≤M , let p0, p1, and p2 be the fraction of the k for which Pm,k has no,
one or two isomorphs respectively. Assume that in the limit isomorphs are
uniformly distributed on k. From previously proven results the probability
a randomly chosen Pm,k, m ≤M , is 2-edge-Hamiltonian is then given by:

p = 0.760+0.240(0.760p1+(1−(0.240)2)p2) = 0.760+0.182p1+0.226p2 (1)

The resulting probabilities are shown in Table 2 for selected values of M .
The probability a Pm,k drawn from Table 1 is 2-edge-Hamiltonian is esti-

Table 2

M 28 100 200 400 500

p 0.893 0.919 0.926 0.931 0.932

mated by Equation (1) to be 0.893 when in fact it is 0.981. If the other
estimates underestimate the true values comparably it is safe to conclude
that for sufficiently large M almost all Pm,k are 2-edge-Hamiltonian. Of
course the conjecture is that they all are.

3 Conjecture 2

A 3-connected bicubic graph is Hamilton-laceable if and only if
it is 2-edge-Hamiltonian.

Conjecture 2 holds in the cases for which Pm,k was shown to be both 2-edge-
Hamiltonian and Hamilton-laceable in the previous section, i.e. for k = 1, 2
and 3, and their isomorphs, the family of graphs in Theorem 2.8 and for the
overlap between entries in Table 1 and a similar tabulation in [2] showing
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Pk,m is Hamilton-laceable for m ≤ 21. The Pm,k are vertex-transitive
by construction so each vertex hosts the same number of Hamilton paths.
These were computed and tabulated for m ≤ 21, the limit of computational
feasibility, in [2]. Roughly half of the tallies for a fixed value of m appear
more than once, suggesting some of the Pm,k are isomorphs which was
easily shown to be the case. The condition for Pm,k

∼= Pm,k′ is that one of
a pair of modular equations be satisfied [2] which is an easy computation
for any pair of parameter values irrespective of the size of m or k. The
isomorphism classes contain one, two or three parameter pairs so the total
number of classes is a slowly growing function of m; only 10 for m = 59.
The fact that P14,5 is isomorphic to P14,3, which is known to be both

Table 3: Number of isomorphism classes of Pm,k

m 0 1 2 3 4 5 6 7 8 9

- - - - - - 1 1 1 2 2 3 2

1- 3 2 5 3 4 5 5 6 9 5

2- 7 7 6 4 11 5 7 6 9 5

3- 12 6 9 9 9 9 13 7 10 11

4- 15 7 16 8 13 13 12 8 19 10

5- 15 13 15 9 18 13 19 15 15 10

2-edge-Hamiltonian and Hamilton-laceable, was invoked in the proof of
Theorem 2.6. Since the object here is to exhibit instances of bicubics which
possess both properties, isomorphs of bicubics that do are an obvious source
for other cases. Unfortunately, the only cases directly proven to have both
properties are k = 1 [2], k = 2 and 3 [2] and k = b(m−1)/2c in Theorem 2.6,
the latter of which includes the isomorphs of Pm,1 when m is odd. If m ≡ 0
(mod 6) neither k = 2 nor k = 3 has any isomorphs, but each has at least
one for all other values of m. The congruence conditions for the existence
of an isomorphic pair of Pm,k can be particularized for k = 2 and k = 3 as
shown.

k = 2
P2n+1,2

∼= P2n+1,n−1
P3n+1,2

∼= P3n+1,n

P3n+2,2
∼= P3n+2,n

k = 3
P3n+1,3

∼= P3n+1,n−1
P3n+2,3

∼= P3n+2,n+1

P4n+1,3
∼= P4n+1,n

P4n+3,3
∼= P4n+3,n
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In each run of 6 values of m starting on a multiple of 6, there will therefore
be 7 isomorphs for each of k = 2 and k = 3. Conjecture 2 holds for all
the cases in which Pm,k has been shown to be both 2-edge-Hamiltonian
and Hamilton-laceable, i.e. for k = 1, 2 and 3, and their isomorphs just
described, the family of graphs in Theorem 2.6 and for the overlap between
entries in Table 2.1 and a similar tabulation in [2] showing Pk,m is Hamilton-
laceable for m ≤ 21. It is possible to extend the later bound to m ≤ 23,
but not computationally feasible for m > 23. The k isomorphism classes
for m = 22 and 23 are [2]:

m = 22 (2, 7)(3, 6)(4, 8)(5, 9)
m = 23 (1, 11)(2, 7, 10)(3, 5, 8)(4, 6, 9)
m = 24 No isomorphs

Since the isolated cases P22,10 and P23,11 are known to be 2-edge-
Hamiltonian and Hamilton-laceable from Theorem 2.6, to extend the bound
to m ≤ 23 it sufficed to show that P22,4, P22,5 and P23,4 are each Hamilton-
laceable by direct computation. It is computationally hopeless to do the
case m = 24 by direct computation, both because of the 48 vertices involved
and by the complete absence of isomorphs to lessen the computation. It is
disappointing to stop at 46 vertices, because the smallest bicubic known to
be a counter example to Tuttes conjecture is the Georges graph on 50 ver-
tices. It is likely that 50 is the least number of vertices a counter example to
Conjecture 2 could have, but that is just over the horizon of computational
feasibility.

4 Conclusion

Conjecture 1 has the strongest evidence for its validity. It was proven here
that for all m, more than three out of four of the Pm,k are 2-edge-Hamil-
tonian and statistically, more than nine out of ten are. More compelling is
the fact that all Pm,k on 56 or fewer vertices are 2-edge-Hamiltonian. It was
these results that prompted an interest in 2-edge-Hamiltonicity in the first
place since it appeared they might lead to either a proof or progress on an
older conjecture that all Pm,k are Hamilton-laceable [2]. Both are global
properties of the graphs and hence can be frustrated by local behavior
arbitrarily distant from the location of the edge or vertex pairs defining
a specific case. The number of Pm,k known to be Hamilton-laceable was
approximately doubled here, but more significantly every case that is known
to be Hamilton-laceable is also 2-edge-Hamiltonian; hence Conjecture 1.
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There is no a priori reason to expect a connection between there being a
Hamilton path between every permissible pair of endpoints in a 3-connected
bicubic graph and there being a Hamilton cycle on every pair of edges. One
of the most supportive results for the latter is the fact that if a bicubic
graph is edge-stable with respect to Hamilton laceability it is also 2-edge-
Hamiltonian. The proof makes essential use of edge stability. If Conjecture
2 is true this is just an artifact of the proof technique, but thus far no proof
has been found that doesn’t appeal to edge stability. Fortunately many
of the case graphs considered here, even the Tutte 8-cage, are edge-stable
with respect to Hamilton-laceability.

The direct evidence that there is a Hamilton cycle on every pair of edges
in a 3-connected bicubic graph is meager. What has been proven mainly
suggests the polygonal bigraphs possess this dual property: six infinite
families of the Pm,k, the cases k = 1, 2 or 3, the isomorphs to k = 2 and
3 and the case Pm,b(m−1)/2c in Theorem 2.9. A cautionary note though is
that polygonal bigraphs are a vanishingly small fraction of the 3-connected
bicubics since their number grows only linearly with m while the total grows
factorially. For example, of the 13 connected bicubics on 14 vertices, two are
not 3-connected, three are the P7,k polygonal bigraphs shown in Figure 4,
and the remaining eight satisfy Conjecture 2 but are not isomorphic to any
of the polygonal bigraphs nor to each other. This is easily seen by the fact
the polygonal bigraphs host 364 and 504 Hamilton paths on each vertex
(P7,1

∼= P7,3 so they each host 364) and each of the other eight host a unique
number of Hamilton paths: 420, 436, 448, 464, 480, 488, 576 and 592. Still,
the fact that in every case in which Pm,k has been shown to be Hamilton-
laceable it is also 2-edge-Hamiltonian lends credence to Conjecture 2.
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