BULLETIN OF THE DUME BOUNDED DU

Editors-in-Chief: Marco Buratti, Donald Kreher, Tran van Trung

Boca Raton, FL, U.S.A.

ISSN: 2689-0674 (Online) ISSN: 1183-1278 (Print)

Two related (?) 2-edge-Hamiltonian bigraph conjectures addendum

GUSTAVUS J. SIMMONS gsimmons30@comcast.net

One way of looking at the entries in Table 1 in [1] is that an N represents a $P_{m,k}$ whose 2-edge-Hamiltonicity remains in doubt after Theorem 2.4 has eliminated those cases known to be 2-edge-Hamiltonian because gcd(m + $(1, k+1) \leq 2$. Similarly, although not reflected in the table, Theorem 2.6 eliminates the cases in which gcd(m+1, k+1) = k+1 and Theorem 2.9 those for which $k = \lfloor (m-1)/2 \rfloor$, i.e. the entries on the diagonal in Table 1. The entries that remain in doubt after Theorems 2.4, 2.6 and 2.9 have all been applied are those for which 2 < gcd(m+1, k+1) < k+1. This was noted in [1], but full advantage wasn't taken there of the isomorphisms of the $P_{m,k}$ [2] to eliminate as many of the remaining uncertain cases as possible. The table below shows the rows and columns from Table 1 which contain one or more of the 2 < gcd(m+1, k+1) < k+1 entries, represented by an X to indicate their 2-edge-Hamiltonicity is as yet unproven. The status of most of these can be resolved by two simple appeals to isomorphism. Obviously if k is isomorphic to a k' for which $P'_{m,k}$ is 2-edge-Hamiltonian, then so is $P_{m,k}$. Less obvious is that if k is a member of an isomorphism triple $P_{m,k}$ is 2-edge-Hamilton since that means both the Plus and Minus mappings describe Hamilton cycles which guarantees every edge pair is in a Hamilton cycle. It is worth noting that if m is a prime all isomorphic groupings are triples, but triples can occur for m that are not primes; for example (4, 7, 10) when m = 27.

2-EDGE-HAMILTONIAN BIGRAPH CONJECTURES ADDENDUM

\mathbf{k}^{k}	5	7	8	9	11	13	14
14	Х						
19		\otimes					
20	\otimes		\otimes				
23			Х				
24				\otimes			
26	Х				Х		
27		Х			Х		
29			Х		Х		
32	Х				Х		
34				\otimes		X	Ø

That leaves only five $P_{m,k}$, indicated by the circled X, whose 2-edge-Hamiltonicity remains in doubt after the isomorphic reductions have been made. The three cases for m = 20 and 24 were shown to be 2-edge-Hamiltonian by direct computation in [1]. Neither member of the isomorphic pair $P_{34,9}$ and $P_{34,14}$ is known to be 2-edge-Hamiltonian and m is much too large for direct computation. So, in the absence of some other way of establishing 2-edge-Hamiltonicity, the most that can be said is that all $P_{m,k}$ on 66 or fewer vertices are 2-edge-Hamiltonian, lending further credence to Conjecture 1.

References

- G.J. Simmons, Two related (?) 2-edge-Hamiltonian bigraph conjectures, Bull. Inst. Combin. Appl., 88 (2020), 98–117.
- [2] G.J. Simmons, Hamilton-laceable properties of polygonal bigraphs, Congr. Numer., 226 (2016), 121–138.