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Abstract

We prove that a graph on up to 9 vertices is a unit-distance graph
if and only if it does not contain one of 74 so-called minimal forbidden
graphs. This extends the work of Chilakamarri and Mahoney (1995),
who provide a similar classification for unit-distance graphs on up to
7 vertices.

1 Introduction

A graph G on vertices V is said to be unit-distance if there exists an
embedding ϕ : V → R2 such that for every pair of adjacent vertices v, w ∈ V ,
we have |ϕ(v)− ϕ(w)| = 1; here and throughout we use | · | to denote the
usual Euclidean norm. Several long-standing open problems concern unit-
distance graphs. For instance, Erdős’ unit-distance problem asks for the
maximum number of edges u(n) over all unit-distance graphs on n vertices.
The lower bound of u(n) ≥ n1+

c
log log n for some fixed c > 0 has not been

improved since the 1946 paper of Erdős [6], and it is suspected to be close to
the truth. Spencer, Szemerédi and Trotter [13] established the upper bound
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Figure 1: We will see that one of these two graphs is unit-distance (see
Figure 5), while the other is forbidden (see Lemma 32).

of u(n) ≤ Cn4/3 for some fixed C > 0. While this has not been improved,
there are now several distinct proofs of the same upper bound; see [14] for a
particularly elegant argument and a more thorough overview. Erdős also
popularized the Hadwiger–Nelson problem, which asks for the chromatic
number χ(R2) of the infinite unit-distance graph with vertex set R2 and
an edge between v, w ∈ R2 exactly when |v − w| = 1. The history of the
problem is carefully documented by Soifer [12]; he credits Nelson with the
lower bound of χ(R2) ≥ 4 and Isbell with the upper bound of χ(R2) ≤ 7.
These bounds remained best known for over half a century, but recently
de Grey [4] proved χ(R2) ≥ 5 by providing a 5-chromatic unit-distance
graph on 1581 vertices. A smaller 5-chromatic unit-distance graph with
only 553 vertices has been produced by Heule [9].

When a graph is not unit-distance, we call it forbidden. Unit-distance
graphs can be frustrating to study in part because it is typically difficult
to determine if a given graph is unit-distance or forbidden. For instance,
it was conjectured by Chvátal [2] that the so-called Heawood graph on 14
vertices was forbidden. Decades later, Gerbracht [7] refuted this conjecture
by providing several unit-distance embeddings of the Heawood graph. More
generally, Schaefer [11] has shown that deciding whether a given graph is
unit-distance has the same complexity as deciding the truth of sentences in
the existential theory of the real numbers; this is known to be NP-hard. To
get a feeling for the problem, consider the two graphs on 9 vertices and 15
edges depicted in Figure 1. We will show that one of these is unit-distance
(see Figure 5), while the other is forbidden (see Lemma 32).

The goal of this article is to better understand unit-distance graphs by
studying small obstructions. We say that a forbidden graph is minimal
when each of its proper subgraphs is unit-distance. It is easy to see that both
the complete graph K4 and the complete bipartite graph K2,3 are minimal
forbidden graphs. In fact, every graph on up to 5 vertices is unit-distance if
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and only if it does not contain either K4 or K2,3 as a subgraph. Chilakamarri
and Mahoney [1] extended this observation by proving that a set of six
graphs, which we denote by F≤7 and depict in Figure 2, is the complete
set of minimal forbidden graphs on up to 7 vertices. In other words, every
graph on up to 7 vertices is forbidden if and only if it contains a subgraph
isomorphic to an element of F≤7. Here we will extend their result to provide
the complete list of minimal forbidden graphs on up to 9 vertices. Let F≤9
denote the set of 74 graphs depicted in Appendix A of the arXiv version
of this paper [8], which consists of F≤7, 13 graphs on 8 vertices, and 55
graphs on 9 vertices. We follow the notation of Chilakamarri and Mahoney
and label these graphs F (n,m, i), where n indicates number of vertices, m
indicates number of edges, and the last index i indicates only the order of
appearance within this article. Our main result is:

Theorem 1. A graph on at most 9 vertices is forbidden if and only if it
contains a subgraph isomorphic to an element of F≤9.

We will begin in the next section by introducing terminology and conventions
that we will use throughout. In Section 3, we will prove Theorem 9, which
classifies the minimal forbidden graphs on 8 vertices. In Section 4, we
will prove Theorem 33, which classifies the minimal forbidden graphs on
9 vertices. Theorem 1 follows by combining the classification of F≤7 with
Theorems 9 and 33. The arXiv version of this paper [8] contains two useful
appendices. In Appendix A, we collect the set of minimal forbidden graphs
on up to 9 vertices, and in Appendix B, we report coordinates for embedded
unit-distance graphs that we use in the proofs of Theorems 9 and 33.
Our approach relies heavily on the freely available computational tools
nauty [10] (to generate graphs) and SageMath [15] (to work with them). In
the proof of Theorem 33, we found it necessary to use the implementation of
cylindrical algebraic decomposition [3] within Mathematica [16] to generate
embeddings for the two unit-distance graphs depicted in Figure 5. We
intend for our computations to be readily reproducible, and we have made
our code available with the arXiv version of this paper [8].

F (4, 6, 1) F (5, 6, 1) F (6, 9, 1) F (7, 10, 1) F (7, 11, 1) F (7, 11, 2)

Figure 2: Chilakamarri and Mahoney [1] proved that these six graphs form
the set F≤7 of all minimal forbidden graphs on up to 7 vertices.
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2 Preliminaries

We define an embedding of a unit-distance graph G on vertices V to be an
injection ϕ : V → R2 with the property that every pair of adjacent vertices
v, w ∈ V satisfies |ϕ(v)−ϕ(w)| = 1. We will say that G is rigid if for every
pair of its embeddings ϕ,ψ and every pair of vertices v, w ∈ V , we have
|ϕ(v)− ϕ(w)| = |ψ(v)− ψ(w)|. We will frequently fix coordinates for rigid
subgraphs of a unit-distance graph without impacting the generality of our
arguments.

We will say that a unit-distance graph is embedded when its vertices are
distinct points in R2 and each of its edges are line segments of length 1.
We allow for the possibility that non-adjacent vertices are distance 1 apart.
Elementary geometry ensures that within any embedded unit-distance graph,
every 3-cycle forms an equilateral triangle and every 4-cycle forms a rhombus.
We will use these observations extensively in the following form.

Lemma 2. For any embedded unit-distance graph G, the following hold.

(i) The angle between any two edges of a 3-cycle in G is π/3.

(ii) Opposite edges of a 4-cycle in G are parallel.

We adopt the following conventions when drawing embedded unit-distance
graphs. Black dots and solid line segments represent the vertices and edges,
respectively, of the graph under consideration. White dots will represent
relevant points of R2 that are determined by being distance 1 from other
points pictured. We use dashed edges to represent pairs of points that are
required to be distance 1 apart despite not necessarily corresponding to
adjacent vertices in the graph under consideration. For instance, we will
frequently consider the following unit-distance graph:

y

x

Due to Lemma 2, it must either be the case that |x− y| = 1 or that x lies
exactly distance 1 away from the other common unit-distance neighbor of the
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Figure 3: Each graph depicts a totally unfaithful unit-distance graph, drawn
with solid edges, with non-adjacent vertices that are necessarily distance 1
apart in every embedding, represented with dashed edges. To see that each
graph is totally unfaithful in this fashion, it is enough to apply Lemma 2.

two neighbors of y. We can separate these exhaustive cases by considering
the two following classes of embeddings:

y

x

y

x

Of course, neither embedding pictured is rigid, but we intend for these
illustrations to represent the equivalence class of embeddings with the same
constraints imposed by the solid and dashed unit-distance edges. We do not
require white dots to be distinct from black dots.

Borrowing terminology from Erdős and Simonovits [5], we say that an
embedding of a unit-distance graph G on vertices V is faithful when, for
every pair of vertices v, w ∈ V , |ϕ(v)− ϕ(w)| = 1 if and only if v and w are
adjacent. We say that a unit-distance graph is totally unfaithful when it
does not admit any faithful embedding. In Lemmas 4 and 11, we will prove
that several graphs are forbidden by identifying a subgraph isomorphic
to one of the totally unfaithful unit-distance graphs depicted in Figure 3.
Each of these graphs has at least one pair of non-adjacent vertices that are
necessarily distance 1 apart in every embedding. In particular, a graph
G containing one of the graphs in Figure 3 is unit-distance if and only if
the graph obtained by adding the corresponding dashed edge to G is also
unit-distance.
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3 Forbidden graphs on eight vertices

We first leverage rigid subgraphs to prove that a couple of graphs are
forbidden.

Lemma 3. The following two graphs are forbidden:

F (8, 13, 1) F (8, 13, 2)

Proof. Observe that F (8, 13, 1) contains a subgraph isomorphic to the fol-
lowing rigid unit-distance subgraph:

(0, 0)

(0,
√

3)

(2, 0)

If F (8, 13, 1) were unit-distance, then (0,
√

3) and (2, 0) would share a
common unit-distance neighbor. This is impossible since |(0,

√
3)− (2, 0)| =√

7 > 2.

Similarly, F (8, 13, 2) contains a subgraph isomorphic to the following rigid
unit-distance subgraph:

(0, 0) (3, 0)

If F (8, 13, 2) were unit-distance, then (0, 0) and (3, 0) would share a common
unit-distance neighbor. This is impossible since |(0, 0)− (3, 0)| = 3 > 2.

By locating totally unfaithful subgraphs, we prove that several more graphs
are forbidden.
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Lemma 4. The following seven graphs are forbidden:

F (8, 12, 1) F (8, 12, 2) F (8, 13, 3) F (8, 13, 4)

F (8, 13, 5) F (8, 13, 6) F (8, 13, 7)

Proof. Suppose, for a contradiction, that F (8, 12, 1) were unit-distance. By
identifying a subgraph isomorphic to one of the totally unfaithful graphs
from Figure 3, we can add a new unit-distance edge to F (8, 12, 1). In
particular, the following graph, consisting of F (8, 12, 1) together with the
dashed edge, must also be unit-distance.

x

y

Then x and y have three common unit-distance neighbors. This would lead
to a unit-distance embedding of the complete bipartite graph K2,3, which we
recall is the forbidden graph F (5, 6, 1). We have arrived at a contradiction,
and so F (8, 12, 1) is forbidden.

Similarly, assuming that any of the remaining graphs is unit-distance allows
us to add a new unit-distance edge corresponding to a dashed edge from
one of the totally unfaithful graphs from Figure 3. For F (8, 12, 2) and
F (8, 13, i) for i ∈ {3, 4, 5, 7}, this results in two points with three common
unit-distance neighbors, a contradiction. For F (8, 13, 6), this results in two
points of distance 2 apart with two common neighbors, a contradiction.
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We individually consider the remaining minimal forbidden graphs on 8
vertices.

Lemma 5. The following graph is forbidden:

(0, 0)

x

y

z

F (8, 12, 3)

Proof. Suppose, for a contradiction, that F (8, 12, 3) were unit-distance.
Without loss of generality, we may fix one vertex at the origin and consider
an embedding labeled as above. Applying Lemma 2 to the rhombus through
{(0, 0), x, y, z} demonstrates that x = y − z. On the other hand, repeatedly
applying Lemma 2(ii) to the remaining three rhombi indicates that x = z−y.
This is only possible if x = (0, 0), so no such embedding is possible.

Lemma 6. The following graph is forbidden:

F (8, 13, 8)

Proof. Observe that F (8, 13, 8) contains a subgraph isomorphic to the fol-
lowing unit-distance subgraph:
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(3/2,−
√

3/2)

(2, 0)(0, 0)

x

If F (8, 13, 8) were unit-distance, then we would be able to position x to
satisfy both |x| =

√
3 and |x − (2, 0)| = 1. The only two such points are

x = (3/2,−
√

3/2), which is already occupied, and x = (3/2,
√

3/2). However,
if x = (3/2,

√
3/2), then x would be distance 1 from (1, 0), leading to three

common unit-distance neighbors between (0, 0) and x, a contradiction.

Lemma 7. The following graph is forbidden:

F (8, 13, 9)

Proof. Fixing some coordinates for a unit-distance subgraph of F (8, 13, 9),
we consider the following two classes of embeddings:

(0, 0)

x

(2, 0) (0, 0)

x′

(2, 0)

(−1/2,
√

3/2)

F (8, 13, 9) is unit-distance only if we can arrange for either x or x′ to be
distance 1 from (2, 0). Since we have |x′ − (−1/2,

√
3/2)| = 1, we see

that |x′ − (2, 0)| > 1. Suppose, for a contradiction, that |x − (2, 0)| = 1.
Together with |x − (1, 0)| = 1, we see that the only two possibilities are
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x = (3/2,
√

3/2), which is occupied, and x = (3/2,−
√

3/2). The latter would
force (1/2,

√
3/2) and (3/2,−

√
3/2), two points of distance 2 apart, to have

two common unit-distance neighbors; this leads to a contradiction.

Lemma 8. The following graph is forbidden:

F (8, 13, 10)

Proof. Fixing some coordinates for a unit-distance subgraph of F (8, 13, 10),
we consider the following two classes of embeddings:

(0, 0)

x

(2, 0) (0, 0)

x′

(2,
√

3)

Observe that F (8, 13, 10) is unit-distance only if we can arrange for either
|x| = 1 or |x′| = 1. Since we have |x′ − (2,

√
3)| = 1, we see that |x′| > 1.

Suppose, for a contradiction, that |x| = 1. This would force (0, 0) and (2, 0),
two points of distance 2 apart, to have two common unit-distance neighbors,
a contradiction.

We are now in a position to classify the forbidden graphs on 8 vertices.

Theorem 9. The set of minimal forbidden graphs on 8 vertices is given by

F8 := {F (8, 12, i) : 1 ≤ i ≤ 3}
⋃
{F (8, 13, i) : 1 ≤ i ≤ 10}.
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Proof. Lemmas 3 through 8 establish that every graph contained in F8 is
forbidden. Moreover, no graph in F8 contains a proper subgraph isomorphic
to any graph in F≤7 or F8, so F8 contains only minimal forbidden graphs.
Set F≤8 := F≤7 ∪ F8. Define a graph to be F≤8-free when it does not
contain any element of F≤8 as a subgraph. To finish the proof, we need only
show that every F≤8-free graph on 8 vertices is unit-distance. Of course,
a disconnected graph is unit-distance if and only if each of its connected
components is unit-distance. Similarly, a connected graph is unit-distance
if and only if each of its biconnected components is unit-distance; this was
observed by Chilakamarri and Mahoney [1]. Hence, we need only verify that
every biconnected F≤8-free graph on 8 vertices is unit-distance.

We use nauty to generate the set of all 7123 biconnected graphs on 8 vertices.
SageMath computes that only 366 of these graphs are F≤8-free. Moreover,
each of these 366 are subgraphs of the embedded unit-distance graph G27

portrayed in Figure 4 with coordinates given in Table 1 in Appendix B of

G27

Figure 4: The embedded unit-distance graph G27 contains as a subgraph
an isomorphic copy of every biconnected unit-distance graph on 8 vertices.
Exact coordinates for the vertices of G27 are reported in Table 1 in Appendix
B of the arXiv version of this paper [8].
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the arXiv version of this paper [8]. We constructed G27 as follows. First,
we explicitly computed coordinates for several of the 366 graphs that we
were attempting to embed. Next, we focused on those graphs with a vertex
of degree 2 that had not yet been embedded. When we could successfully
embed the subgraph without this degree-2 vertex into our set of already
computed coordinates, we attempted to solve for new coordinates for this
degree-2 vertex. If we succeeded, we added this new vertex to our set of
coordinates. Iterating this procedure yielded a unit-distance graph which
contained as a subgraph each of the 366 graphs being considered. We finally
produced G27 by eliminating several unnecessary vertices.

4 Forbidden graphs on nine vertices

As in the previous section, we begin by considering rigid and totally un-
faithful subgraphs.

Lemma 10. The following four graphs are forbidden:

F (9, 14, 1) F (9, 14, 2) F (9, 15, 1) F (9, 15, 2)

Proof. As in Lemma 3, each of these is forbidden due to containing a
subgraph isomorphic to a rigid unit-distance. By applying Lemma 2, we see
that F (9, 14, 1) is unit-distance if and only if two points of distance 2 apart
share 2 common neighbors, which is impossible. To see that F (9, 14, 2) is
forbidden, observe that there is a unique path along three unit-distance line
segments between any two points of distance 3 apart. To see that each of
F (9, 15, 1) and F (9, 15, 2) is forbidden, recall that two points of distance
greater than 2 apart share no common unit-distance neighbor.
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Lemma 11. The following 29 graphs are forbidden:

F (9, 13, 1) F (9, 14, 3) F (9, 14, 4) F (9, 14, 5) F (9, 14, 6)

F (9, 14, 7) F (9, 14, 8) F (9, 14, 9) F (9, 14, 10) F (9, 14, 11)

F (9, 14, 12) F (9, 14, 13) F (9, 14, 14) F (9, 14, 15) F (9, 14, 16)

F (9, 15, 3) F (9, 15, 4) F (9, 15, 5) F (9, 15, 6) F (9, 15, 7)

F (9, 15, 8) F (9, 15, 9) F (9, 15, 10) F (9, 15, 11) F (9, 15, 12)

F (9, 15, 13) F (9, 15, 14) F (9, 15, 15) F (9, 15, 16)

Proof. As in Lemma 4, each of these is forbidden due to containing a
subgraph isomorphic to one of the totally unfaithful graphs depicted in
Figure 3. For each graph, we include the additional edge that must appear in
every embedding of its totally unfaithful subgraph. We then use SageMath

to verify that the resulting graph contains one of the graphs from F≤8
already known to be forbidden.
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Lemma 12. The following two graphs are forbidden:

x

y x y

F (9, 13, 2) F (9, 14, 17)

Proof. Suppose, for a contradiction, that either graph were unit-distance and
consider an embedding labeled as above. Repeatedly applying Lemma 2(ii)
shows that the directed edges from the common neighbor of x and y to each
of x and y are equal as unit vectors. In either graph, this implies x = y, so
no such embedding is possible.

Lemma 13. The following graph is forbidden:

F (9, 14, 18)

Proof. F (9, 14, 18) contains a subgraph isomorphic to the following unit-
distance graph:

(0, 0)

(3/2,
√

3/2)x

y

By Lemma 2(ii), |x− y| =
√

3. For F (9, 14, 18) to be unit-distance, there
would need to be a common unit-distance neighbor x′ of x and (3/2,

√
3/2)

and a common unit-distance neighbor y′ of y and (0, 0) with both x′ and y′

distinct from the points already depicted. Since the parallelogram between
the four labeled points has side lengths 1 and

√
3, the parallelogram law
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tells us that |y|2 + |x− (3/2,
√

3)|2 = 8. Together with the restrictions of
|y| ≤ 2 and |x − (3/2,

√
3)| ≤ 2 required for x′ and y′ to exist, we must

have |y| = 2, forcing either y = (2, 0) or y = (1,
√

3). In either case, y has a
unique common unit-distance neighbor with (0, 0) which is already depicted,
so it is impossible to include the point y′.

Lemma 14. The following graph is forbidden:

F (9, 14, 19)

Proof. Observe that F (9, 14, 19) contains the following unit-distance graph:

x z y

It is not hard to see that in any embedding of this unit-distance graph,
x, y and z are collinear; we fix an embedding with x = (a, 0) with a < 0,
z = (0, 0), and y = (b, 0) with b > 0. With basic trigonometry we can solve
for

a = b/2−
√

3− 3b2/4.

For F (9, 14, 19) to be unit-distance, there must exist x′ = (x1, x2) and
y′ = (y1, y2) with |x′ − x| = |x′ − y| = 1 and |y′ − x′| = |y′| = 1 distinct
from the points already depicted. In particular, we require y1 6∈ {a/2, b/2},
since the four corresponding unit-distance neighbors of the origin of the
form (a/2, ·) or (b/2, ·) are already occupied. With a as above, we set up
the system of equations

(x1 − a)2 + x22 = 1

(x1 − b)2 + x22 = 1

(y1 − x1)2 + (y2 − x2)2 = 1

y21 + y22 = 1
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The only solution to the system above with y1 6∈ {a/2, b/2} has both a = −1
and b = 1. Hence, if F (9, 14, 19) were unit-distance, then the points (−1, 0)
and (1, 0) would have two unit-distance neighbors; a contradiction.

Lemma 15. The following graph is forbidden:

F (9, 15, 17)

Proof. Fixing some coordinates for a unit-distance subgraph of F (9, 15, 17),
we consider the following two classes of embeddings:

(0, 0)

x
(5/2,

√
3/2)

x′

(5/2,
√

3/2)

Observe that F (9, 15, 17) is unit-distance only if we can arrange for either
x or x′ to be distance 1 from the point (5/2,

√
3/2). Notice that |x −

(5/2,
√

3/2)| = 1 would lead to two points with three common unit-distance
neighbors, which is impossible. Moreover, since |x′ − (−1/2,

√
3/2)| = 1, we

see that |x′ − (5/2,
√

3/2)| > 1. In any case, F (9, 15, 17) is forbidden.

Lemma 16. The following graph is forbidden:

F (9, 15, 18)
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Proof. Fixing some coordinates for a unit-distance subgraph of F (9, 15, 18),
we consider the following two classes of embeddings:

(0, 0)

x

(5/2,
√

3/2)

(0, 0)

x′

(5/2,
√

3/2)

Observe that F (9, 15, 18) is unit-distance only if we can arrange for either
|x| = 1 or |x′| = 1. If |x| = 1, then we would have two distinct common
unit-distance neighbors between the origin and (2, 0), which is impossi-
ble. Moreover, since |x′ − (2,

√
3)| = 1, it must be that |x′| > 1. Hence,

F (9, 15, 18) is forbidden.

Lemma 17. The following graph is forbidden:

F (9, 15, 19)

Proof. Fixing some coordinates for a unit-distance subgraph of F (9, 15, 19),
we consider the following embedding:

(0, 0)

(1/2,−
√

3/2)

(2, 0)

x
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Observe that F (9, 15, 19) is unit-distance if and only if we can arrange for
|x − (2, 0)| = 1. However, in any embedding of the unit-distance graph
depicted above, we either have |x− (−1/2,−

√
3/2)| = 1 or |x− (1, 0)| = 1.

In the first case, it is impossible for |x− (2, 0)| = 1 since |(−1/2,−
√

3/2)−
(2, 0)| =

√
7 > 2. For the second case, suppose that |x − (1, 0)| = 1

and |x − (2, 0)| = 1. Then since (3/2,
√

3/2) is occupied, we must have
x = (3/2,−

√
3/2). But this leads to x and (0, 0) having three common

unit-distance neighbors, a contradiction.

Lemma 18. The following graph is forbidden:

z

x

y

F (9, 15, 20)

Proof. Suppose, for a contradiction, that F (9, 15, 20) were unit-distance.
Then {x, y, z} form the vertices of an equilateral triangle of side length√

3, and we may as well assume x = (0, 0), y = (
√

3/2, 3/2), and z =
(
√

3, 0). These three points have a common unit-distance neighbor, namely,
(
√

3/2, 1/2). As the two common unit-distance neighbors of x and y are
already pictured, one of these must also lie distance 1 from z. However,
adding either edge results in two points with three common unit-distance
neighbors, a contradiction.

Lemma 19. The following graph is forbidden:

v

w

F (9, 15, 21)
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Proof. Suppose, for a contradiction, that F (9, 15, 21) were unit-distance.
By Lemma 2, the edges v and w must be parallel. As the two diamond
subgraphs share a vertex, we can assume without loss of generality that
a unit-distance embedding of F (9, 15, 21) contains one of the following
subgraphs:

(0, 0)

(1/2,
√

3/2)

(−1/2, 3
√

3/2)

(0, 0)

(1/2,
√

3/2)

(−2,
√

3)

Any such embedding of F (9, 15, 21) must contain a new vertex not already
pictured above that is one of the following: (i) a common unit-distance
neighbor of (−1/2, 3

√
3/2) and (1/2,

√
3/2), (ii) a common unit-distance

neighbor of (−1/2, 3
√

3/2) and (0, 0), (iii) a common unit-distance neighbor
of (−2,

√
3) and (0, 0), or (iv) a common unit-distance neighbor of (−2,

√
3)

and (1/2,
√

3). Case (i) leads to two points of distance 2 apart sharing two
common unit-distance neighbors, while the cases (ii) – (iv) each require
two points of distance greater than 2 to share a common unit-distance
neighbor. Each case results in a contradiction, so F (9, 15, 21) is forbidden
as desired.

Lemma 20. The following graph is forbidden:

F (9, 15, 22)

Proof. Fixing some coordinates for a unit-distance subgraph of F (9, 15, 22),
we consider the following two classes of embeddings:
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(0, 0)

(−1/2,−
√

3/2)

x (0, 0)

(−1/2,−
√

3/2)

x′

Observe that F (9, 15, 22) is unit-distance only if we can arrange for ei-
ther |x| = 1 or |x′| = 1. But since |x − (−5/2,−

√
3/2)| = 1 and |x′ −

(−5/2,
√

3/2)| = 1, we see both |x| > 1 and |x′| > 1. Hence, F (9, 15, 22) is
not unit-distance.

Lemma 21. The following graph is forbidden:

F (9, 15, 23)

Proof. Fixing some coordinates for a unit-distance subgraph of F (9, 15, 23),
we consider the following two classes of embeddings:

(0, 0)

x

(0, 0)

x′

Observe that F (9, 15, 23) is unit-distance only if we can arrange for either
|x| = 2 or |x′| = 2; of course, we already know |x| = 1. Suppose that |x′| = 2.
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Together with |x′ − (−3/2,−
√

3/2)| = 1, we must have either x′ = (−1,
√

3)
or x′ = (−2, 0). The first case results in two distinct vertices overlapping
at (−1/2,

√
3/2), while the second case results in two distinct vertices

overlapping at (−1, 0). Neither allows for an embedding of F (9, 15, 23), so
it cannot be unit-distance.

Lemma 22. The following graph is forbidden:

v

w

F (9, 15, 24)

Proof. Suppose, for a contradiction, that F (9, 15, 24) were unit-distance. By
Lemma 2(ii), the edges v and w must be parallel. Without loss of generality,
then, we can assume that a unit-distance embedding of F (9, 15, 24) contains
the following unit-distance subgraph:

(0, 0)

(5/2,−
√

3/2)

(3, 0)

Observe, then, that F (9, 15, 24) is unit-distance only if either (3, 0) or
(5/2,−

√
3/2) share a common unit-distance neighbor with the origin. Of

course, both lie at distance greater than 2 from the origin, so neither is
possible and F (9, 15, 24) must be forbidden.

Lemma 23. The following graph is forbidden:
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F (9, 15, 25)

Proof. Fixing some coordinates for a unit-distance subgraph of F (9, 15, 25),
we consider the following two classes of embeddings:

(−2, 0) (0, 0)

x

(−2, 0) (0, 0)

x′

Observe that F (9, 15, 25) is unit-distance only if we can arrange for |x| = 1
or |x′| = 1. If |x| = 1, then x and (−1, 0) would have three common unit-
distance neighbors, a contradiction. Moreover, since |x′ − (−2,

√
3)| = 1, we

see |x′| > 1. In any case, F (9, 15, 25) is forbidden.

Lemma 24. The following graph is forbidden:

F (9, 15, 26)

Proof. Fixing some coordinates for a unit-distance subgraph of F (9, 15, 26),
we consider the following two classes of embeddings:
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(0, 0)
x

(0, 0)

x′

Observe that F (9, 15, 26) is unit-distance only if we can arrange for |x| = 1 or
|x′| = 1. As |x′ − (−3, 0)| = 1, we see |x′| > 1. Suppose, for a contradiction,
that |x| = 1. Then x is a common unit-distance neighbor of (−3/2,−

√
3/2)

distinct from (−1, 0), in which case x = (−1/2,−
√

3/2). This leads to
several vertices occupying the same location, violating our assumption that
this drawing is an embedding. Hence, F (9, 15, 26) is forbidden.

Lemma 25. The following graph is forbidden:

F (9, 15, 27)

Proof. Fix some coordinates for the following rigid unit-distance subgraph
of F (9, 15, 27):

(0, 0) (2, 0)

(1,
√

3)

Then F (9, 15, 27) is unit-distance only if we can find three points

(x1, x2), (y1, y2), (z1, z2) ∈ R2,
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distinct from the vertices depicted above, satisfying the following system of
equations:

x21 + x22 = 1

y21 + y22 = 1

z21 + z22 = 1

(x1 + y1 − 2)2 + (x2 + y2)2 = 1

(x1 + z1 − 1)2 + (x2 + z2 −
√

3)2 = 1

(y1 − z1)2 + (y2 − z2)2 = 1

There are no solutions to this system except for those involving the occupied
points (1, 0), (1/2,

√
3/2), and (3/2,

√
3/2). Hence, F (9, 15, 27) is forbidden.

Lemma 26. The following graph is forbidden:

F (9, 15, 28)

Proof. Consider the following unit-distance subgraph of F (9, 15, 28):

(0, 0) (1, 0)

x

y

By Lemma 2, the edge from x to y must be parallel to either the edge from
(0, 0) to (1/2,

√
3/2) or the edge from (1, 0) to (1/2,

√
3/2). It follows that

F (9, 15, 28) is unit-distance only if we can arrange for |x| = 1 and either
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y = x+ (1/2,−
√

3/2) or y = x+ (1/2,
√

3/2). Suppose that |x| = 1. Since
|y− (3/2,

√
3/2)| = 1, we see that F (9, 15, 28) is unit-distance only if we can

further arrange for either |x− (1,
√

3)| = 1 or |x− (1, 0)| = 1. As the origin
and (1,

√
3) have a unique unit-distance neighbor that already appears, the

first case is impossible. On the other hand, suppose for a contradiction that
|x− (1, 0)| = 1. This can only be an embedding if x = (1/2,−

√
3/2), which

leads to two common unit-distance neighbors between x and (3/2,
√

3/2),
namely (1, 0) and y. But |x− (3/2,

√
3/2)| = 2, so this results in the desired

contradiction.

Lemma 27. The following graph is forbidden:

F (9, 15, 29)

Proof. Fixing some coordinates for a unit-distance subgraph of F (9, 15, 29),
we consider the following two classes of embeddings:

(0, 0)

x

(3/2,
√

3/2)

(0, 0)

x′

(3/2,
√

3/2)

Then F (9, 15, 29) is unit-distance only if we can arrange for either |x| =
√

3
or |x′| =

√
3. Suppose, for a contradiction, that |x| =

√
3. Together with

|x− (1, 0)| = 1, this can only be an embedding if x = (3/2,−
√

3/2). This
would lead to two points of distance 2 apart, namely x and (1/2,

√
3/2),

with two common unit-distance neighbors, a contradiction. Suppose instead
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that |x′| =
√

3. Arguing similarly, this forces x′ = (0,
√

3), leading to three
common neighbors between x′ and (3/2,

√
3/2), again a contradiction. In

any case, we see F (9, 15, 29) is forbidden.

Lemma 28. The following graph is forbidden:

F (9, 15, 30)

Proof. Observe that F (9, 15, 30) contains the following unit-distance graph:

x z y

As in Lemma 14, we can fix an embedding with x = (a, 0) with a <
0, z = (0, 0), and y = (b, 0) with b > 0, where a = b/2 −

√
3− 3b2/4.

Then F (9, 15, 30) is unit-distance only if we can arrange for b− a = b/2 +√
3− 3b2/4 =

√
3. The two solutions of this equation occur only when

b = 0 or when a = 0, but neither of these are consistent with our setup. It
follows that F (9, 15, 30) is forbidden.

Lemma 29. The following graph is forbidden:

x z

y

F (9, 15, 31)
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Proof. Suppose, for a contradiction, that F (9, 15, 31) were unit-distance.
By considering the equilateral triangle on vertices {x, y, z}, we can assume
that the directed edge from z → y can be obtained from the directed edge
z → x by a rotation of π/3. On the other hand, by considering the angles
between the edges of the three rhombi, we see that z → y can be obtained
from z → x by a rotation of ±π/3 followed by another rotation of ±π/3.
As rotation by π/3 is not equivalent to rotation by any of −2π/3, 0 or 2π/3,
we have arrived at the desired contradiction.

Lemma 30. The following graph is forbidden:

F (9, 15, 32)

Proof. Fixing some coordinates for a unit-distance subgraph of F (9, 15, 32),
we consider the following two classes of embeddings:

(0, 0)

(3/2,
√

3/2)

y z

x

(0, 0)

(3/2,
√

3/2)

y z

x′

Then F (9, 15, 32) is unit-distance only if we can arrange for |x−y| = |x−z| =
1 or |x′−y| = |x′−z| = 1. Observe that any common unit-distance neighbor
of y and z must also lie distance 1 from either (1/2,

√
3/2) or (1/2,−

√
3/2).

Notice that |x−(1/2,
√

3/2)| 6= 1. Otherwise, we would have two points with
three common unit-distance neighbors. Suppose, for a contradiction, that
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|x− (1/2,−
√

3/2)| = 1. Together with |x− (1, 0)| = 1, this can only be an
embedding provided x = (3/2,−

√
3/2). But this leads to two common unit-

distance neighbors between (1/2,
√

3/2) and x despite |x− (1/2,
√

3/2)| = 2;
a contradiction. Hence, there is no embedding with |x− y| = |x− z| = 1.

Now, |x′− (1,
√

3)| = 1, so we see that |x′− (1/2,−
√

3/2)| > 1. For the last
remaining case, we suppose |x′−(1/2,

√
3/2)| = 1. As |x′−(1,

√
3)| = 1, this

can only be an embedding if x′ = (0,
√

3). However, this is impossible since
it would lead to two points, namely x′ and (3/2,

√
3/2), with three common

unit-distance neighbors. Hence, there is no embedding with |x′ − y| =
|x′ − z| = 1, and we conclude that F (9, 15, 32) is forbidden.

Lemma 31. The following graph is forbidden:

0

F (9, 15, 33)

Proof. Fixing some coordinates for a unit-distance subgraph of F (9, 15, 33),
we consider the following class of embeddings:

(0, 0)

(3/2,
√

3/2)

x y

Then F (9, 15, 33) is unit-distance only if we can arrange for |x− (2, 0)| = 1
and |y| = 1. From Lemma 2, we see that y = x+(1, 0), so we are considering
whether it is possible for both |y| = 1 and |y−(3, 0)| = 1. Since the origin and
(3, 0) share no common unit-distance neighbors, it follows that F (9, 15, 33)
is forbidden.
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Lemma 32. The following graph is forbidden:

F (9, 15, 34)

Proof. Fixing some coordinates for a unit-distance subgraph of F (9, 15, 34),
we consider the following two classes of embeddings:

(0, 0)

(3/2,
√

3/2)

x

y

(0, 0) (1, 0)

x′

y′

Then F (9, 15, 34) is unit-distance only if we can arrange for |x| = |y| = 1
or |x′| = |y′| = 1. From Lemma 2, observe that y = x+ (1/2,−

√
3/2) and

y′ = x′ + (1/2,
√

3/2), respectively.

If we suppose |x| = 1 and |x+ (1/2,−
√

3/2)| = 1, the only way for this to
be an embedding is with x = (−1, 0). However, in this case, it would be
impossible for x to share a common unit-distance neighbor with (1,

√
3).

If we suppose instead |x′| = 1 and |x′+(1/2,
√

3/2)|, then either x′ = (−1, 0)
or x′ = (1/2,−

√
3/2). Observe that x′ 6= (−1, 0), since otherwise (−1, 0) and

(1, 0) would be distance 2 apart with two common unit-distance neighbors.
Similarly, x′ 6= (1/2,−

√
3/2) since y′ and (1, 0) must be distinct. In any case,

we see that F (9, 15, 34) is forbidden. Note that F (9, 15, 34) also appears on
the right in Figure 1.
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H1 H2

Figure 5: H1 and H2 are the last two graphs that we verify to be unit-
distance; H2 also appears on the left in Figure 1. Exact coordinates for
the vertices of the pictured embeddings are reported in Tables 3 and 4 in
Appendix B of the arXiv version of this paper [8].

Theorem 33. The set of minimal forbidden graphs on 9 vertices is given
by

F9 :={F (9, 13, i) : 1 ≤ i ≤ 2} ∪ {F (9, 14, i) : 1 ≤ i ≤ 19}
∪ {F (9, 15, i) : 1 ≤ i ≤ 34}.

Proof. Lemmas 10 through 32 establish that every graph contained in F9 is
forbidden. Moreover, no graph in F9 contains a proper subgraph isomorphic
to any graph in F≤8 or F9. Setting F≤9 := F≤8 ∪ F9, it suffices to show
that every F≤9-free biconnected graph on 9 vertices is unit-distance.

We use nauty to generate the set of all 194,066 biconnected graphs on 9
vertices. SageMath computes that only 2984 of these graphs are F≤9-free,
and all but 275 of these are subgraphs of the unit-distance graph G27 that
we constructed for the proof of Theorem 9. For some of these remaining
275 graphs, we explicitly compute several coordinates. We proceed to add
new vertices to G27 using the same procedure described in the proof of
Theorem 9 that we used to construct G27. In total, we add 91 vertices to G27

to construct an embedded unit-distance graph G118, and we report these
additional vertices in Table 2 of Appendix B of the arXiv version of this
paper [8]. SageMath verifies that there are exactly two F≤9-free biconnected
graphs on 9 vertices, which we label H1 and H2 and depict in Figure 5, that
are not subgraphs of G118. We were unable to produce exact coordinates
for H1 and H2 using SageMath. However, using the implementation of
cylindrical algebraic decomposition [3] within Mathematica, we found exact
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coordinates for these graphs and report them in Tables 3 and 4 in Appendix
B of the arXiv version of this paper [8].
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