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Abstract

Peg solitaire is a game in which pegs are placed in every hole but
one and the player jumps over pegs along rows or columns to remove
them. Usually, the goal is to have a single peg remaining. In a 2011
paper, this game is generalized to graphs. In this paper, we consider
a variation in which each peg must be jumped twice in order to be
removed. For this variation, we consider the solvability of several
graph families. For our major results, we characterize solvable joins
of graphs and show that the Cartesian product of solvable graphs is
likewise solvable.

1 Introduction and preliminary results

Peg solitaire is a table game which traditionally begins with “pegs” in every
space except for one which is left empty (in other words, a “hole”). If in
some row or column two adjacent pegs are next to a hole (as in Figure 1),
then the peg in x can jump over the peg in y into the hole in z. In [6], peg
solitaire is generalized to graphs. A graph, G = (V,E), is a set of vertices,
V , and a set of edges, E. If there are pegs in vertices x and y and a hole in
z, then we allow x to jump over y into z, provided that xy, yz ∈ E. Such
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Figure 1: A typical jump in peg solitaire, x·−→
y ·z

a jump will be denoted x·−→
y ·z. Because of the nature of peg solitaire we

assume that all graphs are connected finite graphs with no loops or multiple
edges, unless specified otherwise. For more information on the traditional
game, see [1, 10]. For all undefined graph theory terminology, refer to West
[15].

Since the 2011 paper by Beeler and Hoilman, there have been a number
of papers that consider variations of the original game (see for example
[4, 8, 11, 12, 13]). Building on these papers, we consider a variation in
which the pegs require two (not necessarily consecutive) jumps in order to
remove them. As an analogy, we can think of these pegs as soldiers wearing
armor. The first jump over the peg removes its armor and the second jump
removes the peg. For convenience of exposition, we will refer to pegs that
have not been jumped as 2-pegs and pegs that have been jumped once as
1-pegs. The goal of this paper is to explore the solvability of graphs in this
variation.

Traditionally, the game begins with a starting state S = (S0, S1, S2), where
S0 is the set of vertices with holes, S1 is the set of vertices with 1-pegs, and
S2 is the set of vertices with 2-pegs. In order to mirror the original game,
we will assume that |S0| = 1, S1 = ∅, and S2 = V (G)−S0 unless otherwise
noted. After a sequence of legal moves we will arrive at an associated
terminal state where no further jumps are possible. We denote this terminal
state T = (T0, T1, T2), where the Ti are defined analogously to the Si. Note
that the above definition implies that T1 ∪ T2 is an independent set of
vertices. Our goal is usually to minimize |T1 ∪ T2|. A graph is solvable if
there exists a starting state S and an associated terminal state T such that
|T1 ∪ T2| = 1. If the graph is not solvable, then we say that it is k-solvable,
where k is the minimum value of |T1∪T2| across all possible terminal states
associated with a starting state with one hole and 2-pegs elsewhere.

In the solvable cases, we may be interested in whether the final peg is a
1-peg or a 2-peg. If we can end the game with a single 1-peg, then we
say that the graph is T1-solvable. Likewise, if we can end the game with a
single 2-peg, then we say that the graph is T2-solvable. If a graph is both
T1-solvable and T2-solvable, then we say that it is T1T2-solvable.
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We now present a few preliminary results and observations to aid us in our
main results.

Observation 1.1.

(i) If G is a graph in which there is a move available, then there is a

first move, say s′′·−→
s′ ·s. This jump results in a hole in s′′, a 1-peg

in s′, and 2-pegs elsewhere. If G is solvable from the configuration
S0 = {s}, S1 = ∅, and S2 = V (G)−{s}, then it is also solvable from
the configuration S′

0 = {s′′}, S′
1 = {s′}, and S′

2 = V (G)− {s′, s′′}.

(ii) If G is T1-solvable, then there is a final jump, say t′′·
−→
t′ ·t. Hence, we

can “stop short” of this final jump. This results in a configuration
where T ′

0 = V (G) − {t′, t′′}, T ′
1 = {t′, t′′}, and T ′

2 = ∅.

(iii) If G is T2-solvable, then there is a final jump, say t′′·
−→
t′ ·t. As in (ii),

we can “stop short” of this final jump, resulting in a configuration
where T ′

0 = V (G) − {t′, t′′}, T ′
1 = {t′}, and T ′

2 = {t′′}.

Using Observation 1.1, we can show that most T2-solvable graphs are also
T1-solvable. Whether there are T1-solvable graphs that are not T2-solvable
is unknown at this time. As usual, we let Pn, Cn, and Kn denote the path,
cycle, and complete graph on n vertices, respectively.

Proposition 1.2. Suppose that G is a T2-solvable graph such that the final
jump occurs on the last three vertices of a P4-subgraph or a C3-subgraph.
It follows that G is also T1-solvable.

Proof. Suppose that G is T2-solvable, with the final jump being t′′·−→t′ ·t.
Suppose that these three vertices are the last three vertices of a path on
four vertices, t, t′, t′′, and t′′′, where t′′t′′′ ∈ E(G). To achieve a solution

with a single 1-peg, we solve G but stop before the final jump of t′′·
−→
t′ ·t

(see Observation 1.1 (iii)). We now have a 2-peg in t′′, a 1-peg in t′, and

holes elsewhere. Making the jumps t′·
−→
t′′ ·t′′′ and t′′′·

−→
t′′ ·t′ ends the game

with a single 1-peg in t′.

For the case where the final jump occurs on a C3-subgraph, we let t = t′′′

and repeat the above argument.

As in [6, 12, 13], we can restrict our solution to the edges of a solvable
spanning subgraph. Hence the following proposition is immediate.
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Proposition 1.3. Suppose that H is a spanning subgraph of G and that
H is T1-solvable (T2-solvable). It follows that G is likewise T1-solvable (T2-
solvable).

One of the more important notions for obtaining alternative solvable con-
figurations as well as the fool’s solitaire problem (see [8, 14]) is the notion
of the dual configuration. In the original game, the dual configuration is
obtained by reversing the roles of pegs and holes. The Duality Principle
states that if S is a starting state with associated terminal state T and S′

and T ′ are their respective dual configurations, then T ′ is a starting state
with associated terminal state S′. While the dual was important for the
original variant, so far the analog has yet to prove as valuable. However,
we include it for completeness.

Theorem 1.4. (Analog of the Duality Principle) Let S = (S0, S1, S2) be
a starting state of a graph G. Let T = (T0, T1, T2) be a terminal state
obtained from S via a sequence of moves such that a 1-peg is never used to
jump another peg. Define S′ = (T2, T1, T0) and T ′ = (S2, S1, S0). It follows
that S′ is a starting state of G with associated terminal state T ′.

Proof. Suppose that S = (S0, S1, S2) is a starting state of a graph G. Let
j1,...,jn be a sequence of jumps such that a 1-peg is never used to jump
another peg. This results in a terminal state T = (T0, T1, T2). Using this
sequence of jumps, we transition through a sequence of states I0, I1,...,In,
where I0 = S, In = T , and Ik is obtained from Ik−1 via the jump jk. Note
that we can write each of these states as Ik = (Ik0 , I

k
1 , I

k
2 ), where Ik0 is the

set of vertices at step k that have holes, Ik1 is the set of vertices at step k
that have 1-pegs, and Ik2 is the set of vertices that have 2-pegs at step k.

Define a sequence of configurations I ′0, I
′
1,..., I

′
n by I ′k = (In−k

2 , In−k
1 , In−k

0 ).
Note that I ′n−m = (Im2 , Im1 , Im0 ). Since the choice of state is arbitrary, it
suffices to show that I ′n−m+1 can be obtained from I ′n−m via the jump

jm =a·−→b ·c.

Case 1: Suppose that in Im−1, b ∈ Im−1
1 . Thus, Im0 = (Im−1

0 ∪{a, b})−{c},
Im1 = Im−1

1 − {b}, and Im2 = (Im−1
2 ∪ {c})− {a}. Note that jn = a·−→b ·c is

a legal move from state I ′n−m as c ∈ In−m′

0 = Im2 and a, b ∈ In−m′

2 = Im0 .

This move results in a state with In−m+1′

0 = (In−m′

0 ∪ {a})− {c} = Im−1
2 ,

In−m+1′

1 = In−m′

1 ∪ {b} = Im−1
1 , and In−m+1′

2 = (In−m′

2 ∪ {c})− {a, b} =
Im−1
0 . Hence proving the claim.

Peg solitaire

83



Case 2: Suppose that in Im−1, b ∈ Im−1
2 . Thus, Im0 = (Im−1

0 ∪{a})−{c},
Im1 = Im−1

0 ∪ {b}, and Im2 = (Im−1
2 ∪ {c})− {a, b}. Note that jm =a·−→b ·c

is a legal move from state I ′n−m as c ∈ In−m′

0 = Im2 , b ∈ In−m′

1 = Im1 , and

a ∈ In−m′
2 = Im0 . This move results in a state with In−m+1′

0 = (In−m′
0 ∪

{a, b}) − {c} = Im−1
2 , In−m+1′

1 = In−m′
1 − {b} = Im−1

1 , and In−m+1′
2 =

(In−m′
2 ∪ {c})− {a} = Im−1

0 . Hence proving the claim.

To see why the restriction on making jumps using only the 2-pegs is nec-
essary, consider the graph G with V (G) = {a, b, c, d, e, f} and E(G) =
{ab, bc, bd, ce, de, ef}. Beginning with the hole in d, the jumps f ·−→e ·d,
c·−→e ·f , a·−→b ·c, b·−→c ·e, e·−→d ·b, and d·−→

b ·a result in a terminal state with
T0 = {b, d, e}, T1 = {a, c}, and T2 = {f}. The dual of this terminal con-
figuration has S′

0 = {f}, S′
1 = {a, c}, and S′

2 = {b, d, e}. Beginning with
this starting state and reversing the above sequence of jumps immediately
results in an attempt to jump into vertex a, which contains a 1-peg. As
this is an illegal move, the sequence of moves cannot be reversed.

2 Graph families

Theorem 2.1. For n ∈ {2, 3}, the path on n vertices is T2-solvable, but
not T1-solvable. For n ≥ 4, the path on n vertices is T1T2-solvable.

Proof. Assume that the vertices of Pn are v0, v1,..., vn−1, where the labels
are assigned in the obvious way. For n = 2, no moves are available and the
result is trivial.

For n = 3, suppose that the hole is in v1. Clearly, no moves are possible.
Thus, we can assume without loss of generality that the initial hole is in
v0. The moves v2·−→

v1 ·v0 and v0·−→v1 ·v2 are then forced. This ends the game
with the final 2-peg in v2.

Suppose that n ≥ 4. Place the initial hole in v0. For i = 1, ..., n− 2, jump
vi+1·−→vi ·vi−1 and vi−1·−→vi ·vi+1. This ends with the final 2-peg in vn−1. As
this is the end vertex of a P4-subgraph, the graph is also T1-solvable by
Proposition 1.2.

Corollary 2.2. For n ≥ 3, the cycle and the complete graph on n vertices
are T1T2-solvable, regardless of the placement of the initial hole.
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Proof. Note that Cn and Kn have Pn as a spanning subgraph. Hence their
solvability follows from Proposition 1.2, Proposition 1.3, and Theorem 2.1.
Since Cn and Kn are vertex transitive, this is true regardless of where the
initial hole is placed.

The star is the graph on vertices u, v1,...,vn, where uvi is an edge for
i = 1, ..., n. This graph is denoted K1,n.

Proposition 2.3. For n ∈ {1, 2}, the star K1,n is T2-solvable, but not
T1-solvable. For n ≥ 3, the star K1,n is (n− 1)-solvable.

Proof. Note that K1,1 and K1,2 are isomorphic to P2 and P3, respectively.
Hence the result follows from Theorem 2.1.

For n ≥ 3, only the peg in the center vertex u can be removed. This is
accomplished by placing the initial hole in v1 and jumping v2·−→

u ·v1 and
v1·−→

u ·v2. As these are the only available moves, the game ends with n− 1
2-pegs on the graph.

The double star is the tree with vertex set V = {x, y, x1, ..., xn, y1, ..., ym}
and edge set E = {xy, xxi, yyj : 1 ≤ i ≤ n, 1 ≤ j ≤ m}. This graph is
denoted Sn,m. Without loss of generality, we will assume that n ≥ m ≥ 1.

Theorem 2.4. For the double star Sn,m:

(i) If m = 1, then Sn,m is T1T2-solvable if n = 1, T2-solvable if n = 2,
and (n− 1)-solvable if n ≥ 3.

(ii) If m ≥ 2, then Sn,m is T1T2-solvable if n ≤ 2m, T2-solvable if n =
2m+ 1, and (n− 2m)-solvable if n ≥ 2m+ 2.

Proof. We begin with the case of m = 1. If n = 1, then the graph is
isomorphic to P4, and the result follows from Theorem 2.1. If n ≥ 2, then
we prove the result by case analysis. If the hole is in y, then the initial
jump xn·−→x ·y is forced. Noting that y·−→x ·xn ends the game, we instead
jump x1·−→

x ·xn and y1·−→y ·x. The jump x·−→
y ·y1 ends the game, so instead

we jump xn·−→x ·x1. The next jump from this configuration will result n− 1
2-pegs and a 1-peg. If the hole is in x, then the jumps y1·−→y ·x and x·−→

y ·y1
are forced, leaving us with no available moves. If the initial hole is in y1,
then the jumps x·−→

y ·y1, y1·−→
y ·x, and xn·−→

x ·y are forced. A jump over x
will end the game, so we instead jump x·−→

y ·y1, y1·−→
y ·x, and x1·−→x ·xn. The
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game ends with 2-pegs in x2,...,xn. Note that this proves that S2,1 is T2-
solvable. Finally, suppose that the initial hole is in xn. If we jump x1·−→x ·xn,
then this results in a hole in x1, a 1-peg in x, and 2-pegs elsewhere. Up to
automorphism on the vertices, this is the configuration obtained when the
initial hole is in y and the (forced) jump x1·−→

x ·y has been made. So we
instead jump y·−→x ·xn followed by x1·−→x ·y and y1·−→y ·x. If we jump y·−→x ·x1,
then the next jump ends the game with one 1-peg and n− 1 2-pegs. If we
jump x·−→

y ·y1, then we end the game with n 2-pegs. So we instead jump
xn·−→x ·x1. Any further jump ends the game with one 1-peg and n − 1 2-
pegs. As all possibilities have been examined, the minimum of n− 2 2-pegs
is achieved by beginning with the initial hole in y1. Further, the graph is
not T1-solvable.

We address the case of m ≥ 2 by first establishing necessary conditions.
Consider how we can remove a peg from the set X = {x1, ..., xn}. To
remove a peg from X , we must first have a peg in x. If that peg is not
there, we must place it there with the jump yi·−→

y ·x. Further, once a 2-peg is
in x, two 2-pegs fromX may jump over it and out ofX before another jump
of the form yi·−→

y ·x is required to place an additional peg in x. Hence each
2-peg in y1, ..., ym can “exchange” with two 2-pegs inX . Therefore, n ≤ 2m
is necessary for the graph to be T1T2-solvable. Moreover, if n ≥ 2m + 1,
then, at best, n− 2m 2-pegs remain in the graph.

We now show that the conditions described above are sufficient whenm ≥ 2.
We begin by showing that Sn,m is T1T2-solvable if n = m. Begin with the

initial hole in x. For i = 1,...,m − 1, jump ym·−→
y ·x, yi·−→

y ·ym, xm·−→x ·y,
and xi·−→

x ·xm. Then jump ym·−→y ·y1, y1·−→y ·x, xm·−→
x ·y, and y·−→x ·xm. The

game ends with a 2-peg in xm. As this is the end vertex of the P4-subgraph
induced by the vertices ym, y, x, and xm, the graph is also T1-solvable by
Proposition 1.2.

Assume that m ≥ 2 and n ≥ m+ 1. Begin with the initial hole in xn and
jump y·−→x ·xn and xn·−→x ·y. If n = m + 1, then this reduces the graph to
the initial state of the n = m case. If n ≥ m + 2, then continue the game
by jumping y1·−→y ·x and ym·−→y ·y1. Next, for i = 1,...,min{m− 1, n−m−
1}, jump xn−2i+1·−→

x ·y, y1·−→
y ·ym, ym·−→

y ·y1, xn−2i·−→x ·y, ym−i·−→
y ·ym, and

ym·−→y ·x. Then jump x1·−→
x ·y.

If n ≤ 2m − 1, then jump x2m−n+1·−→x ·x1. This reduces the graph to the
initial state of the n = m case. Thus, it is T1T2-solvable.
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If n = 2m, then we instead jump y·−→x ·x1 to end the game with a 2-peg in
x1. As this is the end vertex of the P4-subgraph induced by the vertices
x1, x, y, and y1, the graph is also T1-solvable by Proposition 1.2.

If n ≥ 2m + 1, then jump x·−→
y ·y1, y1·−→

y ·x, and x2·−→x ·y. If n = 2m + 1,
then this ends the game with a 2-peg in y. If n ≥ 2m + 2, then this ends
the game with a total of n− 2m 2-pegs in x3, ..., xn−2m+1, y.

It is worth noting that P2n+1 (where n ≥ 2), C2n+1 (where n ≥ 2), and
Sn,m (wherem+2 ≤ n ≤ 2m+2) are solvable in this double jump variation,
but unsolvable in the original single jump variation (see for example [6, 7]).
Whether there is a graph that is solvable in the single jump variation but
unsolvable in the double jump variation is unknown at this time.

3 Joins of graphs

In this section, we characterize when the join of two graphs is solvable.
The join of graphs G and H , denoted G ∨H , is the graph with vertex set
V (G ∨H) = V (G) ∪ V (H) and edge set E(G ∨H) = E(G) ∪E(H) ∪ {gh :
g ∈ V (G), h ∈ V (H)}. Note that in this section, our component graphs
may be disconnected graphs. However, the resulting join will be connected.
We first show that if both graphs have at least two vertices each, then the
join is solvable.

Theorem 3.1. If |V (G)| ≥ 2 and |V (H)| ≥ 2, then the join G ∨ H is
T1T2-solvable.

Proof. Let V (G) = {g1, ..., gn} and V (H) = {h1, ..., hm}. Begin with the

hole in gn. For i = 1, ...,m−1, jump g1·
−→
hi ·gn and gn·

−→
hi ·g1. This results in

2-pegs in g1,...,gn−1 and hm with holes in all other vertices. For j = 1, ..., n−
1, jump hm·−→

gj ·h1 and h1·−→gj ·hm. This results in a single 2-peg in hm. This
is the end vertex of the P4-subgraph with vertex set {gn, h1, g1, hm}. Hence
it is also T1-solvable by Proposition 1.2.

Note that the complete bipartite graphKn,m is the join of the complements
of Kn and Km. Hence the following result is immediate.

Corollary 3.2. The complete bipartite graph Kn,m is T1T2-solvable if n ≥ 2
and m ≥ 2.
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Note that the star K1,n is the join of K1 with the complement of Kn. So
not all joins are solvable (see Proposition 2.3). In our next theorem, we
show that the remaining joins are solvable.

Theorem 3.3. If G is a graph with at least one edge, then G ∨ K1 is
T1T2-solvable.

Proof. Let the vertex of K1 be denoted u. Let two vertices of G that
share an edge be denoted b1 and b2. Let all other vertices of G be de-
noted p1, ..., pk. Begin with the initial hole in u. For i = 1, ..., ⌊k/3⌋,
jump b1·

−→
b2 ·u, pk−3i+2·−→

u ·b1, pk−3i+3·−→u ·pk−3i+2, b1·
−→
b2 ·u, pk−3i+2·−→u ·b1,

and pk−3i+1·−→u ·b2. Then jump b1·
−→
b2 ·u.

If k ≡ 0 (mod 3), then jump u·−→b2 ·b1 to end the game.

Otherwise, we follow with the jumps b2·−→u ·b1, p1·−→u ·b2, and b2·
−→
b1 ·u. If

k ≡ 1 (mod 3), then this ends the game. If k ≡ 2 (mod 3), then we follow
with the jumps p2·−→

u ·b2 and b2·−→u ·b1 to end the game.

Note that in all of the above cases, the game ends with a 2-peg jumping
over a 1-peg on the C3 subgraph induced by u, b1, and b2. Thus the graph
is also T1-solvable by Proposition 1.2.

Note that Corollary 2.2, Proposition 2.3, Theorem 3.1, and Theorem 3.3
characterize the solvability of all joins. This is summarized in the following
corollary.

Corollary 3.4. Let G and H be graphs with at least one vertex each.
The join G ∨ H is T1T2-solvable if and only if min{|V (G)|, |V (H)|} ≥ 2
or min{|E(G)|, |E(H)|} ≥ 1. The join G ∨ H is T2-solvable, but not T1-
solvable, if and only if |V (G)| + |V (H)| = 3 and |E(G)| = |E(H)| = 0.
The join G ∨H is not solvable if and only if |V (G)| = 1, |V (H)| ≥ 3, and
|E(H)| = 0.

In [3], the question of how much any single edge addition can improve
the solvability of a graph is explored in the single jump variation. If the
addition of any edge changes the solvability of the graph, then we say that
the graph is edge-critical. Note that in this double jump variation, the star
is an edge-critical graph. Further, the addition of any edge to K1,n changes
the number of remaining pegs from n− 1 2-pegs to either a single 2-peg or
a single 1-peg. Ergo, the number of pegs can be reduced by an arbitrarily
large amount by the addition of a single edge.
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4 Cartesian products

In this section, we give results on the Cartesian product of two solvable
graphs. For graphs G and H , the Cartesian product of G and H is denoted
G✷H [15]. For g ∈ V (G) and h ∈ V (H), let (g, h) ∈ V (G✷H) denote the
vertex in the Cartesian product induced by those vertices. We define Gh

to be the copy of G induced by the vertex h ∈ V (H). Per the notation
used in Observation 1.1, we will also assume that G is solvable with the

initial jump being g′′s ·
−→
g′s ·gs. In the case where G is solvable, the final jump

is denoted g′′t ·
−→
g′t ·gt. Analogous definitions will be used for H .

Theorem 4.1. If G is T1-solvable, then the Cartesian product G✷P2 is
T1-solvable. If G is T2-solvable, then the Cartesian product G✷P2 is T1T2-
solvable.

Proof. If G is isomorphic to P2, then G✷P2 is isomorphic to C4 which is
T1T2-solvable by Corollary 2.2. We only consider connected graphs and (up
to isomorphism) P2 is the only connected graph on two vertices. Thus we
may assume that |V (G)| ≥ 3.

Let V (P2) = {h0, h1}. Place the initial hole in (gs, h0) and make the

jumps (g′s, h1)·
−→

(gs, h1)·(gs, h0) and (gs, h0)·
−→

(gs, h1)·(g′s, h1). As both Gh0 and
Gh1 have holes in gs and 2-pegs elsewhere, we solve them independently
with the final pegs in (gt, h0) and (gt, h1). If G is T1-solvable, we jump

(gt, h1)·
−→

(gt, h0)·(g′t, h0) to solve. If G is T2-solvable, then we make the addi-

tional jump (g′t, h0)·
−→

(gt, h0)·(gt, h1). As this final jump is on the P4-subgraph
with vertex set {(gt, h0), (g

′
t, h0), (g

′
t, h1), (gt, h1)}, it follows that this is also

T1-solvable by Proposition 1.2.

Theorem 4.2. If G and H are both T2-solvable, then the Cartesian product
G✷H is T1T2-solvable.

Proof. Place the initial hole in (gs, hs) and solve Hgs ending with the fi-

nal 2-peg in (gs, ht). We then make the jumps (g′s, ht)·
−→

(gs, ht)·(gs, h′
t) and

(gs, h
′
t)·

−→
(gs, ht)·(g′s, ht). Now all copies of G have a hole in gs and 2-pegs

elsewhere. For h /∈ {h′
s, h

′′
s}, we solve these copies, ending with the final 2-

peg in gt. For Gh′
s
, and Gh′′

s
we stop before making the final jump, leaving

a 1-peg in g′t, a 2-peg g′′t , and holes elsewhere. We then make the jumps

(g′t, h
′
s)·

−→
(g′t, h

′′
s )·(gt, h′′

s ), (g′′t , h
′′
s )·

−→
(g′′t , h

′
s)·(g′t, h′

s), (g′′t , h
′
s)·

−→
(g′t, h

′
s)·(gt, h′

s),

(gt, h
′
s)·

−→
(gt, h′′

s )·(g′t, h′′
s ), and (g′t, h

′′
s )·

−→
(g′t, h

′
s)·(gt, h′

s). All of the remaining

Peg solitaire

89



pegs are on the subgraph Hgt . This subgraph has a hole in h′′
s , a 1-peg

in h′
s, and 2-pegs elsewhere. Thus it is solvable by Observation 1.1 with

the final 2-peg in (gt, ht). As this peg is the end vertex of the P4-subgraph
with vertex set {(gt, h′

t), (g
′
t, h

′
t), (g

′
t, ht), (gt, ht)}, it follows that this is also

T1-solvable by Proposition 1.2.

A similar technique yields our next result.

Theorem 4.3. If G is T2-solvable and H is T1-solvable, then the Cartesian
product G✷H is T1-solvable.

Proof. Begin with the initial hole in (gs, hs). Solve Hgs ending with the

final 1-peg in (gs, ht). We then jump (g′s, ht)·
−→

(gs, ht)·(gs, h′
t) followed by

(g′′s , h
′
t)·

−→
(g′s, h

′
t)·(g′s, ht). With the exception of Gh′

t
, all copies of G have

a hole in gs and 2-pegs elsewhere. As for Gh′
t
, it has a hole in g′′s , a 1-

peg in g′s, and 2-pegs elsewhere. By Observation 1.1, we solve each copy

of G leaving the final 2-peg in gt. Now jump (gt, h
′
s)·

−→
(gt, hs)·(g′t, hs) and

(g′t, hs)·
−→

(gt, hs)·(gt, h′
s). Since Hgt has a hole in hs and 2-pegs elsewhere, it

is T1-solvable with the final 1-peg in (gt, ht).

A natural question is when the Cartesian product of two T1-solvable graphs
is also solvable. For this, we need an additional hypothesis regarding the
solvability of one of our graphs in the original “single jump” variation. In
order to keep the different levels of abstraction sufficiently clear, we will
assume that if a graph H is solvable in the single jump variation, then the

first jump is s′′·−→s′ ·s and the final jump is t′′·−→t′ ·t. Another useful concept
is when a graph is distance 2-solvable in the single jump variation. A graph
is distance 2-solvable if the final two pegs are located in vertices t1 and
t3 which share a mutually adjacent vertex t2. There have been a number
of papers determining the solvability of various graphs in the single jump
variation. For these results, the interested reader is referred to [2, 5, 6, 7, 9].

Theorem 4.4. Suppose that G is T1-solvable. Suppose that H is T1-
solvable and that H is either solvable or distance 2-solvable in the single
jump variation. It follows that the Cartesian product G✷H is T1-solvable.

Proof. As usual, we begin with the initial hole in (gs, hs). Solve Hgs , end-

ing with the final 1-peg in ht. Jump (g′s, ht)·
−→

(gs, ht)·(gs, h′
t) followed by

(g′′s , h
′
t)·

−→
(g′s, h

′
t)·(g′s, ht). With the exception of Gh′

t
, each copy of G has
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a hole in gs and 2-pegs elsewhere. As for Gh′
t
, it has a hole in g′′s , a

1-peg in g′s, and 2-pegs elsewhere. Per Observation 1.1, we can solve
each of these copies of G independently, ending with the final 1-pegs in

g′t and g′′t . We then jump (g′t, s
′′)· −→

(g′t, s
′)·(gt, s′), (g′′t , s)·

−→
(g′t, s)·(gt, s), and

(gt, s
′)· −→

(gt, s)·(g′t, s). Note that Hg′′
t
has a hole in s and 1-pegs elsewhere.

Further note that Hg′
t
has holes in s′ and s′′ and 1-pegs elsewhere. Hence

they are solvable or distance 2-solvable by the analog of Observation 1.1.

Suppose that H is solvable in the single jump variation. We solve both
copies of H independently, ending with the final 1-pegs in (g′′t , t) and (g′t, t).

The jump (g′′t , t)·
−→

(g′t, t)·(gt, t) completes the solution.

Suppose that H is distance 2-solvable in the single jump variation. Distance
2-solve both copies of H independently, ending with the final 1-pegs in
(g′′t , t1), (g

′′
t , t3), (g

′
t, t1), and (g′t, t3). To complete the solution, we make

the following three jumps (g′′t , t1)·
−→

(g′t, t1)·(g′t, t2), (g′t, t3)·
−→

(g′′t , t3)·(g′′t , t2), and
(g′′t , t2)·

−→
(g′t, t2)·(gt, t2).

5 Additional open problems

In this final section, we present additional problems as possible avenues for
future research.

In [8, 14], the problem of maximizing the number of pegs on the graph
(under the caveat that the player makes a jump whenever possible) is ex-
plored. This is called the fool’s solitaire problem. In this variation, there
are two natural analogs to the fool’s solitaire problem. The first is to try
and maximize |T1 ∪ T2|. The second is to maximize the “weight” of the
pegs, i.e., maximize |T1|+ 2|T2|.

A natural extension is to consider k-jump peg solitaire on graphs. However,
the solvability of many of these cases would be implied by smaller values
of k. For example, any graph solvable in the single jump variation would
also be solvable in the triple jump variant. To see this, replace any jump
of the form a·−→b ·c with the jumps a·−→b ·c, c·−→

b ·a, and a·−→b ·c. Therefore,
it is of interest to find graphs that are solvable in triple jump that are not
solvable in single jump.
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To continue on with this thread, we may also consider an arbitrary starting
state S = (S0, S1, ..., Sk), where S0 is the set of vertices with holes and Si is
the set of vertices with i-pegs. Given a graph G and an initial configuration
S on the vertices of G, is the graph solvable from this configuration?

Finally, we could consider a variation in which 1-pegs are allowed to jump
into other 1-pegs, creating a 2-peg. We could also consider a variation in
which the “top peg” of a 2-peg is allowed to jump, leaving a 1-peg behind.

References

[1] John D. Beasley, The ins and outs of peg solitaire, Oxford University
Press, 1985.

[2] Robert A. Beeler and Aaron D. Gray, Peg solitaire on graphs with
seven vertices or less, Congr. Numer., 211 (2012), 151–159.

[3] Robert A. Beeler and Aaron D. Gray, Extremal results for peg solitaire
on graphs, Bull. Inst. Combin. Appl., 77 (2016), 30–42.

[4] Robert A. Beeler and Aaron D. Gray, An introduction to peg duotaire
on graphs, J. Combin. Math. Combin. Comput., 104 (2018), 171–186.

[5] Robert A. Beeler, Hannah Green, and Russell T. Harper, Peg solitaire
on caterpillars, Integers, 17 (2017), #G1.

[6] Robert A. Beeler and D. Paul Hoilman, Peg solitaire on graphs, Dis-
crete Math., 311(20) (2011), 2198–2202.

[7] Robert A. Beeler and D. Paul Hoilman, Peg solitaire on the windmill
and the double star, Australas. J. Combin., 52 (2012), 127–134.

[8] Robert A. Beeler and Tony K. Rodriguez, Fool’s solitaire on graphs,
Involve, 5(4) (2012), 473–480.

[9] Robert A. Beeler and Clayton A. Walvoort, Peg solitaire on trees with
diameter four, Australas. J. Combin., 63 (2015), 321–332.

[10] Elwyn R. Berlekamp, John H. Conway, and Richard K. Guy, Winning
ways for your mathematical plays. Vol. 2, A K Peters Ltd., Natick,
MA, second edition, 2003.

[11] Grady D. Bullington, Peg solitaire: Burn two bridges, build one,
Congr. Numer., 223 (2015), 187–191.

Beeler and Gray

92



[12] John Engbers and Christopher Stocker, Reversible peg solitaire on
graphs, Discrete Math., 338(11) (2015), 2014–2019.

[13] John Engbers and Ryan Weber, Merging peg solitaire on graphs, In-
volve, 11(1) (2018), 53–66.

[14] Sarah Loeb and Jennifer Wise, Fool’s solitaire on joins and Cartesian
products of graphs, Discrete Math., 338(3) (2015), 66–71.

[15] Douglas B. West, Introduction to graph theory, Prentice Hall Inc.,
Upper Saddle River, NJ, 1996.

Peg solitaire

93


