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Abstract

We introduce a generalization of edge-magic total (EMT) label-
ing which allows multiple labels on the vertices or edges of a graph.
Then we use this new labeling as a tool to construct face-magic label-
ings of some infinite families of graphs. We take the following novel
approach to investigating face-magic labelings. Given a graph G, we
ask: For which a, b, c ∈ {0, 1} does G admit a face-magic labeling of
type (a, b, c)? We completely answer this question for two families of
chained cycles, ladders and subdivided ladders, fans and subdivided
fans, and wheels and subdivided wheels.

1 Introduction

Let G = (V,E) be a simple graph and f : V ∪E → {1, 2, . . . , |V |+ |E|} be a
bijection. If there exists an integer k such that f(u)+ f(uv)+ f(v) = k for
every edge uv ∈ E, then f is an edge-magic total labeling (EMT) of G. If in
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addition, f(v) ∈ {1, 2, . . . , |V |} for all v ∈ V, we call f an super edge-magic
total labeling (SEMT). If a graph G admits an (S)EMT labeling, we say
the graph is an (S)EMT graph.

The notion of edge-magic total labelings was first introduced 50 years ago
by Kotzig and Rosa in [7]. See Chapter 2 in [10] for more information on
these labelings, and [5] for a survey of results including open problems.

We introduce the following variation of edge-magic total labeling. Let
G = (V,E) be a simple graph, α and β be nonnegative integers, and
f : V ∪ E → {1, 2, . . . , α|V | + β|E|} be an assignment such that every
vertex receives exactly α labels, every edge receives exactly β labels, and
no label is repeated. For every edge uv ∈ E, define the weight, w(uv) of the
edge as the sum of all the labels in f(u)∪f(uv)∪f(v). If there exists an in-
teger k, called the magic constant, such that w(e) = k for every edge e ∈ E,
then we say that f is an edge-magic labeling of type (α, β) (EMT(α, β)) of
G. As with EMT labelings, if f(v) ⊆ {1, 2, . . . , α|V |} for all v ∈ V, we call
f a super edge-magic labeling of type (α, β) (SEMT(α, β)). If a graph G
admits an (S)EMT(α, β) labeling, we say the graph is an (S)EMT(α, β)
graph.

In Sections 3 and 4, we will generalize the following three results in terms
of (super) edge-magic type (α, β) labelings.

Theorem 1.1. [2] The path Pn has an super edge-magic total labeling if
n ≥ 2.

Theorem 1.2. [7] The cycle Cn has an edge-magic total labeling if n ≥ 3.

Theorem 1.3. [4] The cycle Cn has a super edge-magic total labeling if
and only if n ≥ 3 is odd.

Some 20 years after the introduction of edge-magic total labelings, a magic-
type labeling in which one sums over the faces of a graph was introduced
by Lih [8]. Let G = (V,E, F ) be a graph and a, b, c ∈ {0, 1}. An assignment
f of the labels {1, 2, . . . , a|V |+ b|E|+ c|F |} to the vertices, edges, and faces
of the graph that gives exactly a labels to every vertex, exactly b labels to
every edge, exactly c labels to every face, and no label is repeated is called
a labeling of type (a, b, c). Define the weight of a face as the sum of the label
of the face itself (when present), along with the labels of the vertices and
edges surrounding that face (when present). If the weight of every s-sided
face is equal to the same number µ(s) called the magic constant, we call f
a face-magic labeling of type (a, b, c). If f(v) ≤ a|V | for all v ∈ V, we call f
a super face-magic labeling of type (a, b, c).
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In Section 5, we use edge-magic type (α, β) labelings to solve some open
problems in face-magic labeling. Given a graph G, the spectrum question
for face-magic labeling of type (a, b, c) asks: For which a, b, c ∈ {0, 1} does
G admit a face-magic labeling of type (a, b, c)? To our knowledge, this
problem has not yet been explored for any class of graphs. We completely
answer the spectrum question for ladders and subdivided ladders, fans and
subdivided fans, wheels and subdivided wheels, and a family of chained
cycles.

Partitioning a set into subsets in which the sum of the elements in each sub-
set is equal to the same fixed constant for every subset plays an important
role in the aforementioned magic-type labelings. Let n1+n2+ · · ·+np = n
be a partition of the number n, and S = {1, 2, . . . , n}. If S can be parti-
tioned into sets Ai for i ∈ {1, 2, . . . , p} such that S =

⋃
Ai, |Ai| = ni, and∑

a∈Ai
a = µ for some fixed constant µ, then we call

⋃
Ai a constant sum

partition of S. For partitions of equal size, Miller et al. proved the following
in [11], though it was done in the context of graph labeling.

Theorem 1.4. [11] Let n = pm and S = {1, 2, . . . , n}. There exists a
constant sum partition of S into p sets of size m if and only if m is even
or both m and p are odd.

A (p, q) graph is a simple graph with p vertices and q edges. For any integer
n, we denote the set S = {1, 2, . . . , n} by S = [1, n]. For any integer k and
set S, by S + k, we mean the set S + k = {s+ k|s ∈ S}.

2 General results

The first two results in this section are corollaries of Theorem 1.4. The first
deals with n disjoint copies of P2 (a 1-factor), while the second deals with
labeling only edges.

Observation 2.1. The graph G ∼= nP2 admits an EMT(α, β) if and only
if β is even or both β and n are odd.

Proof. Clearly G admits an EMT(α, β) if and only if a constant sum parti-
tion of [1, n(2α+ β)] into n sets of size 2α+ β exists. Therefore, the result
follows from Theorem 1.4.
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Observation 2.2. A (p, q) graph G admits an EMT(0, β) labeling if and
only if β is even or β ≥ 3 and q are both odd.

Proof. It is easy to see that G admits an EMT(0, β) labeling if and only
if there is a constant sum partition of S = [1, qβ] into β sets of size q,
which exists, (by Theorem 1.4) if and only if β is even or β and q are both
odd.

Observation 2.3. A (p, q) graph G admits an SEMT(α, 0) if α is even or
α and p are both odd.

Proof. Partition the set S = [1, pα] into sets Si of size α for i ∈ [1, p] such
that the sum of the elements in each set is equal to the same constant σ.
Then for i ∈ [1, p], give to each vertex the set of labels Si. Clearly the
weight of every edge is 2σ.

To address the case missing from Observation 2.3, we know by Theorem
1.4 that when p is even and α is odd there does not exist a constant sum
partition of the set S = [1, pα] into sets of size α. But if the graph G is
bipartite with bipartition V (G) = X ∪ Y , an EMT(α, 0) labeling would
result from a partition of S into sets of size α such that |X| of the sets have
one constant sum and |Y | of the sets have another constant sum. We show
this can be done next.

Theorem 2.4. Let G be a bipartite (p, q) graph with vertex bipartition
V (G) = X ∪ Y. If at least one of the conditions below are true, then G
admits an SEMT(α, 0) labeling for all α ≥ 2.

• α ≡ 0 (mod 2)

• α ≡ p ≡ 1 (mod 2)

• |X| ≡ |Y | ≡ 1 (mod 2)

• |X| = |Y |

Proof. Let G = (V,E) be a bipartite graph with vertex bipartition V =
X∪Y. If α is even or both α and p are odd, the proof follows from Theorem
1.4. So assume α ≥ 3 is odd and p is even. Then, |X| ≡ |Y | (mod 2). If
|X| and |Y | are both odd, then Theorem 1.4 tells us we can partition
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[1, |X|] and [1, |Y |] into subsets of size α all having constant sum σX and
σY , respectively. Assign each vertex in X all α of the integers in each
respective subset. Add |X| to every integer in the partition of [1, |Y |] and
assign each vertex in Y all α of the integers in each translated subset.
Since every edge of G has the form xy where x ∈ X and y ∈ Y , we have
w(xy) = σX + σY + α|Y |.

Finally, if |X| = |Y |, we can write X = {vi : i = 1, 3, . . . , p − 1} and
Y = {vi : i = 2, 4, . . . , p}. Let α = 2t + 1 and define f : V → [1, 3p] as
follows. For i = 1, 3, . . . , p− 1, let

f(vi) = {
i+ 1

2
,
3p+ 1 + i

2
, 3p− i}

and
f(vi+1) = {

p+ i+ 1

2
,
2p+ 1 + i

2
, 3p+ 1− i}.

We have
∑
u∈f(vi) u = 9p+2

2 and
∑
u′∈f(vi+1)

u′ = 9p+4
2 . If t = 1 we are

done. If t > 1, the remaining numbers from the set [3p + 1, pα] may be
partitioned into pairs {a1, a2} such that a1 + a2 = (α + 3)p+ 1 =: σ. Add
t− 1 of these pairs to the set of labels for each vertex. We have,

w(e) = 9p+ 3 + (t− 1)σ

for every edge e ∈ E, so we have proved the theorem.

Theorem 2.5. Every graph admits an SEMT(2, 2) labeling.

Proof. Let G = (V,E) be a (p, q) graph and let S1 = [1, 2p] and S2 = [2p+
1, 2(p+q)]. Partition S1 into p pairs {s1, s′1} such that s1+s′1 = 2p+1 =: σ1,
and give one such pair to every vertex of G. Then partition S2 into pairs
{s2, s′2} such that s2 + s′2 = 2(2p + q) + 1 =: σ2, and give one such pair
to every edge of G. It is easy to see that the weight of every edge e ∈ E
is w(e) = 2σ1 + σ2, so the labeling described is an SEMT(2, 2) labeling of
G.

Theorem 2.6. If a graph G admits an (S)EMT(α, β) labeling, then G
admits an (S)EMT(α+ 2c, β + 2d) labeling for any integers c and d.

Proof. Let c, d ≥ 0 and G = (V,E) be a (p, q) graph with (S)EMT(α, β)
labeling f having associated magic constant µ. Observe that f(V ∪ E) =
[1, pα+ qβ]. We will define a type (α+ 2c, β + 2d) labeling g as follows.
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Case 1. f is an SEMT(α, β) labeling.
We have f(V ) = [1, pα]. Let S1 = [pα+1, p(α+2c)] and S2 = [pα+qβ+2cp+
1, p(α+2c)+q(β+2d)]. Partition S1 into constant sum pairs {s, s′} such that
s+s′ = 2p(α+c)+1 =: σ1. Let P1 = {{sv,i, s′v,i : v ∈ V, i ∈ [1, c]} be one of
these partitions of S1. Partition S2 into constant sum pairs {t, t′} such that
t+t′ = 2p(α+2c)+2q(b+d)+1 =: σ2. Let P2 = {{te,i, t′e,i : e ∈ E, i ∈ [1, d]}
be one of these partitions of S2.

Then for every vertex v ∈ V, let

g(v) = f(v) ∪ {sv,i, s′v,i : i ∈ [1, c]},

and for every edge e ∈ E, let

g(e) = f(e) + 2cp ∪ {te,i, t′e,i : i ∈ [1, d]}.

Therefore, the weight of each edge is w(e) = µ+ 2cpβ + σ1c+ σ2d, so g is
an SEMT(α+ 2c, β + 2d) labeling of G.

Case 2. f is not an SEMT(α, β) labeling.
Similar to the previous case, partition the set S = [pα + qβ + 1, (α +
2c)p + (β + 2d)q] of new labels into c + d pairs {s, s′} such that s + s′ =
2(α+ c)p+ 2(β + d)q + 1 =: σ. Then for every v ∈ V, let

g(v) = f(v) ∪ {si, s′i : si, s′i ∈ S, si + s′i = σ, i ∈ [1, c]}.

and for every edge e ∈ E, let

g(e) = f(e) ∪ {si, s′i : si, s′i ∈ S, si + s′i = σ, i ∈ [c+ 1, c+ d]}.

Therefore, the weight of each edge is w(e) = µ + σ(c + d), so g is an
EMT(α+ 2c, β + 2d) labeling of G.

3 Paths

In this section, we will show that the path Pn is an SEMT(α, β) graph
for any α, β ≥ 1. In addition, we will determine when the path Pn is
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either an SEMT(α, 0) graph or an SEMT(0, β) graph. For the proofs in
this section, assume G = (V,E) ∼= Pn with V = {vi : 1 ≤ i ≤ n} and
E = {vivi+1 : 1 ≤ i ≤ n− 1}. If α = 0 or β = 0, the results of the previous
section can be applied to yield the following two observations.

Observation 3.1. The path Pn admits an EMT(0, β) labeling if and only
if β is even or β ≥ 3 is odd and n is even.

Proof. The proof follows directly from Observation 2.2.

Observation 3.2. The path Pn admits an SEMT(α, 0) for all α, n ≥ 2.

Proof. If n is even, then Pn is a balanced bipartite graph so the proof
follows directly from the fourth condition of Theorem 2.4. If n is odd, the
proof follows from the first or second condition of the same theorem.

It is easy to see that no graph admits an EMT(0, 1) labeling and Pn admits
an EMT(1, 0) labeling if and only if n = 2. Having classified paths for α = 0
or β = 0, we now assume α, β ≥ 1. Due to Theorem 2.6, if α and β are of
different parities it suffices to provide a labeling for (α, β) = (1, 2) or (2, 1).

Lemma 3.3. The path Pn admits an SEMT(1, 2) labeling for any n ≥ 2.

Proof. For i ∈ [1, n], let
f(vi) = i

and
f(vivi+1) = {2n− i, 3n− (i+ 1)}.

The weight of each edge is clearly 5n and f(V (G)) = [1, n] so we have
proved the lemma.

Lemma 3.4. The path Pn admits an SEMT(2, 1) labeling for any n ≥ 2.

Proof. For i ∈ [1, n− 1], let

f(vivi+1) = 3n− i.

If n is even, let

f(vi) =

{
{i, 4n+1−i

2 }, i = 1, 3, . . . , n− 1

{i, 3n+2−i
2 }, i = 2, 4, . . . , n

.
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Otherwise, let

f(vi) =

{
{i, 3n+2−i

2 }, i = 1, 3, . . . , n

{i, 4n+2−i
2 }, i = 2, 4, . . . , n− 1

.

Let e = vivi+1 ∈ E. If n is even, then

w(e) = 2i+ 1 + 7n+2−2i
2 + 3n− i

= 13n+4
2 ,

and when n is odd, we have

w(e) = 2i+ 1 + 7n+3−2i
2 + 3n− i

= 13n+5
2 .

In either case, w(e) is independent of i and f(V (G)) = [1, n] so we have
proved the lemma.

We have now generalized Theorem 1.1 to say the following.

Theorem 3.5. The path Pn admits an SEMT(α, β) for any α, β ≥ 1.

Proof. If α ≡ β (mod 2), the proof follows from Theorems 1.1, 2.5, and
2.6. Otherwise, the proof follows from Lemmas 3.3 and 3.4, and Theorem
2.6.

4 Cycles

We turn our attention to cycles and proceed in much the same way as the
previous section to classify α and β such that the cycle Cn is (S)EMT(α, β).
For the proofs in this section, assume G = (V,E) ∼= Cn where V = {vi :
1 ≤ i ≤ n} and E = {vivi+1 : 1 ≤ i ≤ n}, with arithmetic taken modulo n
in the subscript. We begin with a necessary condition.

Theorem 4.1. If the cycle Cn admits an SEMT(α, β) for some α ≥ 0 and
β ≥ 1, then n is odd or β is even.

Proof. The proof is a simple counting argument. Suppose such a labeling
exists and let S1 = [1, αn] and S2 = [αn+1, (α+β)n]. Because each vertex
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label is counted twice, each edge label only once, and all n edges have the
same weight, we have

w(e) =
∑

s∈S2
s+

∑
t∈S1

t

n

= 2α((α+β)n+1)+β(βn+1)
2 .

Therefore, 2|β or 2|(βn+ 1). Hence, β is even or n is odd.

If α = 0 or β = 0, we obtain the following two results.

Observation 4.2. The cycle, Cn admits an EMT(0, β) labeling if and only
if β is even or β ≥ 3 and n are both odd.

Proof. The proof follows directly from Observation 2.2.

Observation 4.3. The cycle, Cn admits an SEMT(α, 0) for all α, n ≥ 2.

Proof. The proof follows directly from Theorem 2.4.

From now on, we assume α, β ≥ 1.

Lemma 4.4. The cycle Cn admits an SEMT(1, 2) for n ≥ 3.

Proof. We prove the theorem by constructing a type (1, 2) labeling f as
follows. For convenience, we let vn+1 = v1. For i ∈ [2, n], let

f(vi) = i− 1
f(vivi+1) = {2n+ 2− i, 3n+ 1− i},

and define f(v1) = n and f(v1v2) = {n+ 1, 3n}. If e = vivi+1 ∈ E, then

w(e) = 5n+ 2.

Since f(V ) = [1, n] and w(e) is independent of i, we have completed the
proof.

Lemma 4.5. The cycle Cn admits an SEMT(2, 1) for any odd n ≥ 3.
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Proof. We prove the theorem by constructing a type (2, 1) labeling f as
follows. For i ∈ [1, n], let

ti =

{
3n+2−i

2 , if i is odd
4n+2−i

2 , if i is even
,

f(vi) = {i, ti},
and

f(vivi+1) = 3n− i.
Define f(vnv1) = 3n. If e = vivi+1 ∈ E, then

w(e) =
13n+ 5

2
,

so we have completed the proof.

Lemma 4.6. The cycle Cn admits an EMT(2, 1) for any even n ≥ 4.

Proof. We construct a type (2, 1) labeling f as follows.

Case 1. n ≡ 0 (mod 4).
Let

f(vivi+1) =





2i for i = 1, 2

4(i− 1) for i = 3, 4, . . . , n2 + 1

4(n− i) + 6 for i = n
2 + 2, . . . , n

.

Then label the vertices as follows. Let f(v1) = { 5n2 , 3n} and

f(vi) =





{ 5n2 + 2− i, 3n+ 2− i} for i = 3, 5, . . . , n2 + 1

{i+ 3n
2 − 1, i+ 2n− 1} for i = n

2 + 3, n2 + 5, . . . , n− 1

{n2 + 3− i, 2n+ 1− i} for i = 2, 4, . . . , n2 + 2

{i− 1, i− 3 + n
2 } for i = n

2 + 4, n2 + 6, . . . , n

.

For any edge vivi+1 = e, it is straight forward to check that w(e) = 8n+2.

Case 2. n ≡ 2 (mod 4).
Let f(v1v2) = 2, f(vn

2 +1vn
2 +2) = 3n− 4, and

f(vivi+1) =

{
6i− 8 for i = 2, 3, . . . , n2
6(n+ 1− i) for i = n

2 + 2, . . . , n
.
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Then label the vertices as follows. Let f(v1) = { 3n2 + 2, 3n − 2}, f(v2) =
{3, 3n− 1}, f(v3) = { 3n2 − 2, 3n}, and

f(vi) =





{3n+ 14− 6i, 3n2 − 7 + 3i} for i = 5, 7, . . . , n2
{6i− 3n− 4, 9n2 + 1− 3i} for i = n

2 + 2, . . . , n− 1

{3n+ 15− 6i, 3i− 7} for i = 4, 6, . . . , n2 + 1

{6i− 3n− 3, 3n+ 1− 3i} for i = n
2 + 3, . . . , n

.

It is again straightforward to check that for any edge vivi+1 = e, we have
w(e) = 15n

2 + 4. Therefore, we have proved the claim.

Figure 1 (a) shows an EMT(2, 1) labeling of C8. We can now conclude the
following about edge-magic type (α, β) labelings of cycles.

Theorem 4.7. Suppose α ≥ 1, β ≥ 0, and n ≥ 3 are integers. Then the
cycle Cn admits an SEMT(α, β) labeling if and only if n is odd or β is even.
Otherwise, Cn admits an EMT(α, β) labeling.

Proof. Theorem 4.1 provides the necessary conditions for the SEMT(α, β)
labeling. If n is odd, the proof follows from Theorem 1.3 and Lemmas 4.4
and 4.5 and Theorem 2.6. If β is even and α is odd, the proof follows from
Lemma 4.4 and Theorem 2.6. If α and β are both even, the proof follows
from Theorems 2.5 and 2.6. Otherwise, Lemma 4.4 and Theorems 1.2 and
2.6 complete the proof.

5 Application to face-magic labelings

Figure 1 illustrates how elegantly the labeling introduced in the previous
section translates to a face-magic type labeling of a related graph; the
weight carried by an edge in Figure 1(a) corresponds to the weight carried
by a face (minus the hub’s label) in Figure 1(b). In this section, we use
edge-magic type (α, β) labelings to find new results for face-magic labelings
of type (a, b, c).

Let G = (V,E) be a graph and H a subgraph of G such that every edge
of G is contained in a subgraph isomorphic to H. A bijection f : V ∪
E → {1, 2, . . . , |V |+ |E|} is called H-magic if there exists a constant k(f)
such that

∑
v∈V ′ f(v) +

∑
e∈E′ f(e) = k(f) for every H ′ = (V ′, E′) ∼= H

[5]. Clearly, cycle-magic labelings and face-magic labelings of type (1, 1, 0)
are close relatives. The distinction between the two is the relationship

Face-magic labelings

91



7
9

20
24

5
15

19
23

3
13

17
21

1
11

18
22

6
66

2
66

4 66

8
66

12
66

16
66

1466

10
66

(a)

7 20
24

5

19

3
17
17

1

18

6
91 2

91

491

8
91

12
9116

91

14 91

10
91

25

9 24

15

23

1321

11

22

(b)

Figure 1: Weights (shown in red) of (a) an edge-magic type (2, 1) labeling
of C8 and (b) a corresponding type (1, 1, 0) face-magic labeling of the wheel
graph W8.

to the embedding of G; an H-magic labeling of G is independent of this
embedding, while a type (a, b, c) face-magic labeling of G is not. Still,
many cycle-magic labelings are indeed face-magic type (1, 1, 0) labelings.
For example, a C3-magic labeling of the wheel Wn is a face-magic type
(1, 1, 0) labeling. However, it need not be the case that a C4-magic labeling
of an n-prism (n 6= 4) is a face-magic labeling of type (1, 1, 0) since an n-
prism contains two n-sided faces in addition to the 4-sided faces, assuming
the natural embedding in the plane.

In general, the process of subdividing a graph is the replacement of its edges
with paths of a given length. In this section, we demonstrate how edge-
magic type (α, β) labelings of paths and cycles can be used to completely
answer the type (a, b, c) face-magic spectrum question for some families of
subdivided graphs.

Rizvi et al. defined the following in [13]. An edge is good if it belongs to
exactly one subgraph isomorphic toH. Let S be the collection of good edges
obtained from taking s ≥ 1 good edges from every subgraph isomorphic to
H. The uniform subdivided graph is the graph obtained by subdividing every
edge in S with k ≥ 1 vertices. A non-uniform subdivided graph is obtained
by subdividing every edge of E \ S. They proved the following.
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Theorem 5.1. [13] Let G be a Cn-supermagic graph. Then its uniform
subdivided graph is Cn+sk-magic for s, k ≥ 1.

They provide some cycle-magic labelings for non-uniformly divided fans
and triangular ladders and pose the open problem: If a graph has a cycle-
(super) magic labeling, determine whether its non-uniform subdivided graph
has a cycle-(super) magic labeling. Our results in this section answer this
question for chains, ladders, and wheels.

Many of the labelings we will describe call for an arbitrary bijection between
elements of two sets. For two sets A and B of the same cardinality, we will
use a phrase such as, “let f(A) = B” to denote any such bijection f : A→ B.
Also, for any set S, let 1S = S and 0S = ∅.

5.1 Chains

Consider the graph consisting of k copies of Cn such that the ith and i+1st

copies of Cn are connected by a bridge for i = 1, 2, . . . , k − 1. Contracting
every bridge results in a graph Ngurah et al. call a kCn-path [12]. Let
v1, v2, . . . , vk−1 be the cut-vertices of kCn, and let di be the distance vi to
vi+1 for 1 ≤ i ≤ k − 2. We call (d1, d2, . . . , dk−2) the string of kCn. Since
we only consider face-magic labelings of type (a, b, c) on kCn, the results
of this section are independent of the string of kCn. See Figure 2 for an
example of a 4C5-path. Ngurah et al. proved the following.

Theorem 5.2. [12] For any integers k ≥ 2 and n ≥ 3, the kCn-path admits
a super face-magic labeling of type (1, 1, 0).

We will use EMT(α, β) labelings of paths to answer the type (a, b, c) face-
magic spectrum question for these graphs next. We include the type (1, 1, 0)
in our result for completeness and because our proof of that case is shorter
than the proof in [12].

Theorem 5.3. For any integers a, b, c ∈ {0, 1}, k ≥ 2, and n ≥ 3, the kCn-
path admits a face-magic labeling of type (a, b, c), except in the following
cases.

• a = b = 0.
• a = c = 0, b = 1; n is odd and k is even.
• a = 0, b = c = 1; n and k are even.

Face-magic labelings

93



Proof. Since it is obvious that no graph admits a face-magic labeling of
type (0, 0, 1), we may assume that (a, b) 6= (0, 0). Let G = (V,E, F ) be
a kCn-path embedded in the plane in the natural way and denote the k
Cn-components by Bi for i ∈ [1, k]. Let vi be the shared vertex of Bi and
Bi+1 for i ∈ [1, k − 1], and let v0 6= v1 and vk 6= vk−1 be any vertex in B1

and Bk, respectively. Let F∞ be the exterior face. We denote the path Pm
by x0, x1, . . . , xm−1. For each triple (a, b, c), we describe a bijective labeling
f(a,b,c) : aV ∪ bE ∪ cF → [1, a|V |+ b|E|+ c|F |] as follows.

Case 1. Type (1, 0, 0).
Let λ1 be an EMT(1, n − 2) labeling of Pk+1 with magic constant µ1.
Define f(1,0,0)(vi) = λ(xi) for i ∈ [0, k], and let f(1,0,0)(V (Bi \ {vi ∪ v0}) =
λ1(xi−1xi) for i ∈ [1, k].

Case 2. Type (0, 1, 0).
Let λ2 be an EMT(0, n) labeling of Pk+1 with magic constant µ2. Define
f(0,1,0)(E(Bi)) = λ2(xi−1xi) for i ∈ [1, k].

Case 3. Type (0, 1, 1).
Let λ3 be an EMT(0, n + 1) labeling of Pk+1 with magic constant µ3.
Let f(0,1,1)(E(Bi) ∪ F (Bi)) = λ3(xi−1xi) for i ∈ [1, k] and f(0,1,1)(F∞) =
|E|+ |F |.

Case 4. Type (1, 1, 0).
Let λ4 be an EMT(1, 2n− 2) labeling of Pk+1 with magic constant µ4. Let
f(1,1,0)(vi) = λ(xi) for i ∈ [0, k], and f(1,1,0)(E(Bi) ∪ V (Bi \ {vi ∪ v0}) =
λ4(xi−1xi) for i ∈ [1, k].

Case 5. Type (1, 0, 1).
Let λ5 be an EMT(1, n − 1) labeling of Pk+1 with magic constant µ5. Let
f(1,0,1)(vi) = λ(xi) for i ∈ [0, k], and f(1,0,1)(F (Bi) ∪ V (Bi \ {vi ∪ v0})) =
λ5(xi−1xi) for i ∈ [1, k]. Then let f(1,0,1)(F∞) = |V |+ |F |.

Case 6. Type (1, 1, 1).
Let λ6 be an EMT(1, 2n − 1) labeling of Pk+1 with magic constant µ6.
Let f(1,1,1)(vi) = λ(xi) for i ∈ [0, k], and f(1,1,1)(E(Bi) ∪ F (Bi) ∪ V (Bi \
{vi−1, vi})) = λ6(xi−1xi) for i ∈ [1, k]. Then let f(1,1,1)(F∞) = |V |+ |E|+
|F |.
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Since λ1, λ4, λ5, and λ6 exist by Theorem 3.5, and Observation 2.2 provides
the necessary and sufficient conditions for the existence of λ2 and λ3, the
weight of every n-sided face of G under f(a,b,c) is µi, and the weight of the
external face is irrelevant (since k ≥ 2), we have described a face-magic
labeling of G in every case.
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Figure 2: A type (1, 1, 1) face-magic labeling of the 4C5-path

The natural next step is to chain the cycles together in a cycle. Consider
the graph consisting of k copies of Cn such that the ith and i + 1st copies
of Cn are connected by a bridge for i = 1, 2, . . . , k, with i taken modulo k.
Contracting every bridge results in a graph we will call a kCn-cycle.

Theorem 5.4. For any integers a, b, c ∈ {0, 1}, n, k ≥ 3, the kCn-cycle
admits a face-magic labeling of type (a, b, c), except in the following cases.

• a = b = 0.
• a = c = 0, b = 1; n and k are both odd.
• a = 0, b = c = 1; n even and k is odd.

Proof. Since k ≥ 2, we may assume that (a, b) 6= (0, 0). Let G = (V,E, F )
be a kCn-cycle embedded in the plane in the natural way and denote the k
Cn-components by Bi for i ∈ [1, k]. Let vi be the shared vertex of Bi and
Bi+1 for i ∈ [1, k], with arithmetic in the subscript taken modulo k. Denote
the cycle Cm by x0, x1, . . . , xm−1, x0. The rest of the proof follows in the
same way as the proof of Theorem 5.3 with the only exception of replacing
each EMT(α, β) labeling λi of the path Pk+1 with an EMT(α, β) labeling
of the cycle Ck. Since these labelings exist by Theorem 4.7, we omit further
details.
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5.2 Ladders and subdivided ladders

Let G ∼= Ln ∼= P2�Pn be the ladder graph with V (G) = {ui, vi : i ∈ [1, n]}
and E(G) = S ∪R where S = {uiui+1, vivi+1 : i ∈ [1, n− 1]} are the sides
of the ladder and R = {uivi : i ∈ [1, n]} is the set of rungs. Embed G in
the plane in accordance with its namesake and denote by F1, F2, . . . , Fn−1,
the (n−1) 4-sided faces in the natural order and F∞, the exterior 2n-sided
face.

Bac̆a (type (1, 1, 1)) and Ngurah (type (1, 1, 0)) investigated face-magic la-
belings of type (a, b, c) for ladders in [3] and [12], respectively. Their results
follow.

Theorem 5.5. [3] The ladder Ln ∼= P2�Pn admits super face-magic label-
ings of types (1, 0, 0) and (1, 1, 1) for all even n ≥ 2.

Theorem 5.6. [12] The ladder Ln ∼= P2�Pn admits a super face-magic
labeling of type (1, 1, 0) for all n ≥ 2.

The subdivided ladder graph Ln(r, s) is the graph that results from subdi-
viding every rung with r ≥ 0 vertices and every side with s ≥ 0 vertices.
Due to Theorems 5.1 and 5.6, a face-magic labeling of type (1, 1, 0) can be
found for the graph that results from subdividing the exterior edges (all of
the sides and the first and last rung) of Ln with k ≥ 1 vertices for n ≥ 2.

Our next result shows how one can use an EMT(α, β) labeling of Pn to
obtain face-magic labelings of all types for every subdivided ladder. We
emphasize that since we allow r = s = 0, the next theorem provides new
results for ladders Ln as well.

Theorem 5.7. Let a, b, c ∈ {0, 1}. The subdivided ladder graph Ln(r, s)
admits a face-magic labeling of type (a, b, c) for all n ≥ 2, and r, s ≥ 0,
unless a = b = 0.

Proof. Obviously no graph admits a type (0, 0, 1) face-magic labeling, so
assume a and b are not both 0. Let G ∼= Ln(r, s) = (V,E, F ) be embedded
in the plane in the natural way. If n = 2, the labeling is trivial, so we
may assume n ≥ 3. For i ∈ [1, n], let Ri ∼= Pr+2 denote the ith rung
and for j ∈ [1, n − 1], let Sj ∼= 2Ps+2 denote the pair of jth sides. For
the purposes of the labelings that follow, a vertex v that belongs to both
a rung Ri and a side, we make the convention that {v} ∈ Ri only. So,
|V (Ri)| = r+2 and |V (Sj)| = 2s. Furthermore, |V | = n(r+2)+2s(n− 1),
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|E| = n(r+1)+2(s+1)(n−1), and F (G) contains n−1 (2s+2r+4)-sided
faces, and one external [2(r+1)+2(s+1)(n−1)]-sided face. We proceed by
describing a bijective labeling f(a,b,c) : aV ∪bE∪cF → [1, a|V |+b|E|+c|F |]
for each type. We will denote the path Pn by x1, x2, . . . , xn.

Case 1. Type (1, 0, 0).
Let λ1 be an EMT(r + 2, 2s) labeling of Pn with magic constant µ1. Let
f(1,0,0)(V (Ri)) = λ1(xi) for i ∈ [1, n], and f(1,0,0)(V (Si)) = λ1(xixi+1) for
i ∈ [1, n− 1].

Case 2. Type (0, 1, 0).
Let λ2 be an EMT(r+1, 2s+2) labeling of Pn with magic constant µ2. Let
f(0,1,0)(E(Ri)) = λ2(xi) for i ∈ [1, n], and f(0,1,0)(E(Sj)) = λ2(xjxj+1) for
j ∈ [1, n− 1].

Case 3. Type (0, 1, 1).
Let λ3 be an EMT(r+1, 2s+3) labeling of Pn with magic constant µ3. Let
f(0,1,1)(E(Ri)) = λ3(xi) for i ∈ [1, n]. and f(0,1,1)(E(Sj)∪Fj) = λ3(xjxj+1)
for j ∈ [1, n − 1]. Then give the external face the largest label by defining
f(0,1,1)(F∞) = |E|+ |F |.

Case 4. Type (1, 0, 1).
Let λ4 be an EMT(r + 2, 2s + 1) labeling of Pn with magic constant µ4.
Let f(1,0,1)(V (Ri)) = λ4(xi) and f(1,0,1)(V (Sj) ∪ Fj) = λ4(xjxj+1) for j ∈
[1, n− 1]. Then define f(1,0,1)(F∞) = |V |+ |F |.

Since for i ∈ [1, 4], λi exists by Theorem 3.5 (or Observation 2.3 in Case 1
when s = 0), the weight of interior face of G under f(a,b,c) is µi, and the
weight of the external face is irrelevant (since 2(r + 1) + 2(s+ 1)(n− 1) >
2s + 2r + 4), we have described a type (a, b, c) face-magic labeling of G
in every case above. Since a translation of the labels preserves the equal
weight property, the remaining cases, types (1, 1, 0) and (1, 1, 1), follow from
Cases 1 and 2, and Cases 2 and 4, respectively.

Figure 3 shows a type (1, 0, 0) face-magic labeling of L5(1, 1).
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Figure 3: Type (1, 0, 0) face-magic labeling of L5(1, 1)

5.3 Fans and subdivided fans

Let G ∼= Fn the fan graph Pn + K1 with V (G) = {vi : i ∈ [1, n]} ∪ {h},
where {h} is called the hub, and E(G) = S ∪R where S = {hvi : i ∈ [1, n]}
are called spoke edges and R = {vivi+1 : i ∈ [1, n−1]} are called rim edges.

Bac̆a proved the following in 1987 [3].

Theorem 5.8. [3] The fan Fn admits a face-magic labeling of type (1, 1, 1)
for n ≥ 2.

Twenty-five years later, Jeyanthi et al. showed fans are also type (1, 1, 0)
super face-magic [6].

Theorem 5.9. [6] The fan Fn admits a super face-magic labeling of type
(1, 1, 0) for n ≥ 2.

The subdivided fan graph Fn(r, s) is the graph that results from subdividing
every rim edge of Fn with r ≥ 0 vertices and every spoke edge with s ≥ 0
vertices. Of course, Fn(0, 0) ∼= Fn. Rizvi et al. investigated type (1, 1, 0)
labelings for two special cases of subdivided fans [13]. They proved the
following.

Theorem 5.10. [13] Let n ≥ 3. The subdivided fan graph Fn(r, s) admits
a face-magic labeling of type (1, 1, 0) if r = s ≥ 1 or r = 0.

Since we allow r = s = 0, our next result completely answers the face-magic
type (a, b, c) spectrum question for fans and subdivided fans.

Theorem 5.11. Let a, b, c ∈ {0, 1} and r, s ≥ 0. The subdivided fan Fn(r, s)
admits a face-magic labeling of type (a, b, c) for any n ≥ 3 unless a = b = 0.
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Proof. Obviously no graph admits a face-magic labeling of type (0, 0, 1),
we may assume (a, b) 6= (0, 0). Let G = (V,E, F ) ∼= Fn(r, s) be embedded
in the plane in the natural way. We have |V | = sn + r(n − 1) + n + 1,
|E| = n(s+1)+(n−1)(r+1), and there are n−1 interior (2s+r+3)-sided
faces and one exterior (2(s + 1) + (n − 1)(r + 1))-sided face. Since n ≥ 3,
we may ignore the weight of the external face. Let V si ⊆ V \ {h} , Esi ⊆ E
be the set of vertices, edges, respectively, associated with the spoke hvi
in E(Fn). Similarly, let V ri ⊆ V , Eri ⊆ E be the set of vertices, edges,
respectively, associated with the rim vivi+1 in E(Fn). For a vertex v on a
spoke and on a rim, we include v in the set V si only. For i ∈ [1, n − 1],
denote by Bi the interior face corresponding to the face of Fn bounded
by the edges hvi, vivi+1, and hvi+1, and denote the exterior face B∞. For
each triple, (a, b, c), we will describe a bijective labeling f(a,b,c) : aV ∪ bE ∪
cF → [1, a|V | + b|E| + c|F |] based on an EMT(α, β) labeling of the path
Pn ∼= x1, x2, . . . , xn.

Case 1. Type (0, 1, 0).
Let λ1 be an EMT(s+1, r+1) labeling of Pn with magic constant µ1. For
i ∈ [1, n], let f(0,1,0)(Esi ) = λ1(xi) and for i ∈ [1, n − 1], let f(0,1,0)(Eri ) =
λ1(xixi+1). Clearly the weight of every triangular face is µ1.

Case 2. Type (0, 1, 1).
Let λ2 be an EMT(s+1, r+2) labeling of Pn with magic constant µ2. For
i ∈ [1, n], let f(0,1,1)(Esi ) = λ2(xi) and for i ∈ [1, n − 1], let f(0,1,1)(Eri ∪
Bi) = λ2(xixi+1). Label the exterior face the largest label, f(0,1,1)(B∞) =
|E|+ |F |. The weight of every interior face is µ2 + |E|+ |F |.

Case 3. Type (1, 0, 0).
Let λ3 be an EMT(s + 1, r) labeling of Pn with magic constant µ3. For
i ∈ [1, n], let f(1,0,0)(V si ) = λ3(xi) and for i ∈ [1, n − 1], let f(1,0,0)(V ri ) =
λ3(xixi+1). Label the hub the largest label f(1,0,0)(h) = |V |. The weight of
every interior face is µ3 + |V |.

Case 4. Type (1, 0, 1).
Let λ4 be an EMT(s+1, r+1) labeling of Pn with magic constant µ4. For
i ∈ [1, n], let f(1,0,1)(V si ) = λ4(xi) and for i ∈ [1, n−1], let f(1,0,1)(V ri ∪Bi) =
λ4(xixi+1). Label the hub f(1,0,1)(h) = |V | + |F | − 1 and the exterior face
f(1,0,1)(Bn) = |V | + |F |. The weight of every interior face is µ4 + 2(|V | +
|F |)− 1.
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Since for i ∈ [1, 4], λi exists by Theorem 3.5 (or Observation 3.2 in Case
3 when r = 0), we have described a face-magic labeling of G in every case
above. Since a translation of the labels preserves the equal weight property,
the remaining cases, types (1, 1, 0) and (1, 1, 1), follow from Cases 1,3, and
4.

5.4 Wheels and subdivided wheels

Let G ∼= Wn the wheel graph Cn +K1 with V (G) = {vi : i ∈ [1, n]} ∪ {h},
where {h} is called the hub, and E(G) = S ∪R where S = {hvi : i ∈ [1, n]}
are called spoke edges and R = {vivi+1 : i ∈ [1, n]} (with arithmetic in the
subscript modulo n) are called rim edges.

In the first paper published on face-magic labelings of type (a, b, c), Lih [8]
proved the following in 1983.

Theorem 5.12. [8] The wheel Wn admits a face-supermagic labeling of
type (1, 1, 0) if n 6≡ 2 (mod 4).

In 2007, Lladó and Moragas proved Wn admits a face-supermagic labeling
of this type for n ≥ 5 odd [9]. Six years later, Ali et al. obtained the
following results [1].

Theorem 5.13. [1] The wheel Wn admits a face-magic labeling of the fol-
lowing types.

• (1, 1, 1), n ≥ 3
• (0, 1, 1), n ≥ 3
• (0, 1, 0), n ≥ 3 odd.

Later that year, Roswitha et al. complemented the partial result of Lladó
and Moragas by providing a face-supermagic labeling of type (1, 1, 0) for
Wn with n even [14]. The two results are combined in the next theorem.

Theorem 5.14. [9, 14] The wheel Wn admits a face-supermagic labeling
of type (1, 1, 0) if n ≥ 4.

These results leave open the following cases; type (1, 0, 0), type (1, 0, 1), and
type (0, 1, 0) (partially open). We close these cases and more in Theorem
5.16. But first, we define an encompassing family of graphs and review the
corresponding known results.
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The subdivided wheel graph Wn(r, s) is the graph that results from sub-
dividing every rim edge of Wn with r ≥ 0 vertices and every spoke edge
with s ≥ 0 vertices. Not only do wheels Wn belong to this family, but so
too does the family of generalized Jahangir graphs. The generalized Ja-
hangir graph Jn,d is a graph on nd + 1 vertices consisting of a cycle Cnd
and one additional vertex that is adjacent to a set of n vertices on Cnd all
of which are a distance d apart [14]. Notice that Jn,2 is the gear graph and
Jn,d ∼=Wn(d− 1, 0).

Roswitha et al. proved the following in [14].

Theorem 5.15. [14] The generalized Jahangir graph Jn,d admits a face-
magic type (1, 1, 0) labeling if n is odd.

Our next result answers the face-magic type (a, b, c) spectrum question for
wheels and subdivided wheels. See Figure 4 for a type (1, 0, 1) face-magic
labeling of W6(1, 3).

Theorem 5.16. Let a, b, c ∈ {0, 1} and r, s ≥ 0. The subdivided wheel
Wn(r, s) admits a face-magic labeling of type (a, b, c) for any n ≥ 3 unless
a = b = 0.

Proof. The proof is essentially the same as the proof of Theorem 5.11 after
replacing every EMT(α, β) labeling of Pn in that proof with an EMT(α, β)
labeling of Cn. Since these labelings exist by Theorem 4.7, we omit further
details.
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Figure 4: A type (1, 0, 0) face-magic labeling of W6(1, 3).
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6 Conclusion

We have introduced a generalization of edge-magic total labelings and con-
structed such labelings for paths and cycles. We applied these results to
answer the spectrum question for face-magic labelings of type (a, b, c) for
some infinite families of graphs. An answer to the problem below would
yield face-magic labelings of type (a, b, c) for more families of graphs using
similar techniques as ours.

Open Problem. For what integers α, β, k, n does an EMT(α, β) labeling
of kPn or kCn exist?
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