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Abstract

Let Pn and Kn respectively denote a path and a complete graph
on n vertices. In this paper, it is shown that the necessary conditions
are sufficient for the existence of uniformly resolvable decomposition
of Kn into r parallel classes containing K2-factors and s parallel
classes containing Pk-factors for any even k ≥ 4 and r, s ≥ 0.

1 Introduction

In this paper, the vertex set and edge set of graph G are denoted by V (G)
and E(G) respectively. Let Pn,Kn and In respectively denote a path, a
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complete graph and an independent set on n vertices. Given a collection of
graphs H, an H-decomposition of a graph G is a set of subgraphs (blocks)
of G whose edge sets partition E(G), and each subgraph is isomorphic to
a graph from H. A parallel class of a graph G is a set of subgraphs whose
vertex sets partition V (G). A parallel class is called uniform if each blocks
of the parallel class is isomorphic to the same graph. An H-decomposition
of a graph G is called (uniformly) resolvable if the blocks can be partitioned
into (uniform) parallel classes. A resolvable H-decomposition of G is also
referred as H-factorization of G. We write G = H1 ⊕ H2 ⊕ . . . ⊕ Hk,
if H1, H2, . . . ,Hk are edge-disjoint subgraphs of G and E(G) = E(H1) ∪
E(H2) ∪ . . . ∪ E(Hk).

For two graphs G and H their wreath product G ⊗ H has the vertex set
V (G) × V (H) and their edge set E(G ⊗ H) =

{(
(g, h), (g

′
, h
′
)
)∣∣(g, g′) ∈

E(G) or g = g
′
, and (h, h

′
) ∈ E(H)

}
. An r-factor of G is an r-regular

spanning subgraph of G. A near 1-factor of G is a 1-regular subgraph
which contains all but one vertex of G. Let Kk,k be the complete bipartite
graph with bipartition (X,Y ), where X = Y = {0, 1, . . . , k − 1}. The 1-
factor of distance t consists of the edges {(i, i + t) : 0 ≤ i ≤ k − 1}, where
the addition is taken modulo k.

Rees [16], obtained the necessary and sufficient conditions for the existence
of uniformly resolvable (K2,K3)-designs of order n. Horton [10], has proved
the existence of resolvable Pk-designs of order n for k = 3 and Bermond et.al
[2], have proved it for k ≥ 4. Many other results on uniformly resolvable
decomposition of Kn into distinct subgraphs have been obtained in [4, 3,
13, 17, 5, 8, 15, 11, 12]. Recently [6, 7] Mario Gionfriddo and Salvatore
Milici have investigated the existence of uniformly resolvable H-designs
with H = {P3, P4} and {K2, Pk} for k = 3, 4.

• We denote the existence of uniformly resolvable decomposition of G
into r parallel classes consisting of K2-factors and s parallel classes
consisting of Pk-factors by (K2, Pk)-URD(G; r, s).

• Let I1(n) (resp., I2(n)) denote the set of possible pairs (r, s) for which
(K2, Pk)-URD(Kn; r, s) exists when k is even (resp.,k is odd).

For all even k ≥ 4 and n ≡ 0 (mod k), if n ≡ 0 (mod k(k − 1)) we define

I1(n) =

{(
n− 1− (k − 1)x,

k

2
x
)

: x = 0, 1, . . . ,
n− (k − 1)

(k − 1)

}
(1)
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and if n ≡ a (mod k(k − 1)), when 0 ≤ a ≡ 0 (mod k) ≤ k(k − 2), we
define

I1(n) =

{(
n− 1− (k − 1)x,

k

2
x
)

: x = 0, 1, . . . ,
n− a

k

(k − 1)

}
. (2)

For all odd k ≥ 3 and n ≡ 0 (mod 2k), if n ≡ 0 (mod 2k(k− 1)) we define

I2(n) =

{
((n− 1)− 2(k − 1)x, kx) : x = 0, 1, . . . ,

n− 2(k − 1)

2(k − 1)

}
(3)

and if n ≡ a (mod 2k(k − 1)), when 0 ≤ a ≡ 0 (mod k) ≤ 2k(k − 2), we
define

I2(n) =

{
((n− 1)− 2(k − 1)x, kx) : x = 0, 1, . . . ,

n− a
k

2(k − 1)

}
. (4)

In this paper, we prove that the necessary conditions are sufficient for the
existence of (K2, Pk)-URD(Kn; r, s) for all even k ≥ 4. Further, we give
necessary conditions for the existence of (K2, Pk)-URD(Kn; r, s) for all odd
k ≥ 3.

2 Preliminary results

In this section, we present some known results required to prove our main
results.

Theorem 2.1. ([1] Walecki’s Construction).

1. For all odd n ≥ 3, the graph Kn has a Hamilton cycle decomposition.

2. For all even n ≥ 4, the graph Kn − I has a Hamilton cycle decom-

position with prescribed cycles {C, σ(C), σ2(C), . . . , σ
n−4
2 (C)}. where

σ = (0)(12 . . . n−1) is a permutation, C = (01 . . . n−1) is a Hamilton

cycle and I =
{(

0, n2
)
,
(
i, n− i

)∣∣1 ≤ i ≤ n
2 − 1

}
is a 1-factor of Kn.

Theorem 2.2. [14, 9]

1. There exist a 1-factorization (resp., a near 1-factorization) of Kn if
and only if n is even (resp., n is odd).
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2. Every regular bipartite graph is 1-factorable.

Theorem 2.3. [18] For all even k, the graph Kn has a Pk-factorization if
and only if n ≡ k (mod k(k − 1)).

Lemma 2.1. [18, 19] If k is even, then the graph Kk,k can be decomposed
into one 1-factor and k

2Pk-factors.

3 Necessary conditions

In this section, we give necessary conditions for the existence of

(K2, Pk)-URD(Kn; r, s)

for all k ≥ 3.

Lemma 3.1. For all even k ≥ 4, if (K2, Pk)-URD(Kn; r, s) exists, then
n ≡ 0 (mod k) and (r, s) ∈ I1(n).

Proof. The condition n ≡ 0 (mod k) is trivial. Let D be an arbitrary
(K2, Pk)-URD(Kn; r, s). By resolvability, we have

r
n

2
+ s

n

k
(k − 1) =

n(n− 1)

2
Hence

rk + 2s(k − 1) = k(n− 1) (5)

Now (5) gives

rk ≡ k(n− 1) (mod 2(k − 1)) and 2s(k − 1) ≡ k(n− 1) (mod k) (6)

If k is even, then (6) implies the following:
Now letting s = k

2x, Equation (5) gives r = (n − 1) − (k − 1)x. Since r
and s cannot be negative, and x is an integer, the value of x must be in the
range for I1(n). (See Equations 1 and 2.)

Lemma 3.2. For all odd k ≥ 3, if (K2, Pk)-URD(Kn; r, s) exists, then
n ≡ 0 (mod 2k) and (r, s) ∈ I2(n).

Proof. The condition n ≡ 0 (mod 2k) is trivial. Let D be an arbitrary
(K2, Pk)-URD(Kn; r, s). By resolvability, we have

r
n

2
+ s

n

k
(k − 1) =

n(n− 1)

2
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r s n

(k − 2) (mod (k − 1)) 0 (mod k
2 ) 0 (mod k(k − 1))

0 (mod (k − 1)) 0 (mod k
2 ) k (mod k(k − 1))

1 (mod (k − 1)) 0 (mod k
2 ) 2k (mod k(k − 1))

. . .

. . .

. . .
(k − 3) (mod (k − 1)) 0 (mod k

2 ) (k − 2)k (mod k(k − 1))

Table 1: For even k

Hence
rk + 2s(k − 1) = k(n− 1) (7)

Now (7) gives

rk ≡ k(n− 1) (mod 2(k − 1)) and 2s(k − 1) ≡ k(n− 1) (mod k) (8)

If k is odd, then (8) implies the following:

r s n

(2k − 3) (mod 2(k − 1)) 0 (mod k) 0 (mod 2k(k − 1))
1 (mod 2(k − 1)) 0 (mod k) 2k (mod 2k(k − 1))
3 (mod 2(k − 1)) 0 (mod k) 4k (mod 2k(k − 1))

. . .

. . .

. . .
(2k − 5) (mod 2(k − 1)) 0 (mod k) 2k(k − 2) (mod 2k(k − 1))

Now letting s = kx, Equation (7) gives r = (n − 1) − 2(k − 1)x. Since r
and s cannot be negative, and x is an integer, the value of x must be in the
range for I2(n). (See Equations 3 and 4.)

4 Base construction

We present some definitions and results which are required to prove our
main result.
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Definition 4.1. For each Hamilton cycle hi of Kl, we define Ni to be the
graph with vertex set V (Ni) = V (Kl × Ik) and edge set E(Ni), where

V (Kl) = {x : 0 ≤ x ≤ l − 1},
V (Ik) = {j : 1 ≤ j ≤ k} and

E(Ni) = {
(
(x, j), (y, j + 1)

)
: (x, y) ∈ E(hi), 1 ≤ j ≤ k}.

(Addition taken modulo k ,i.e., 1, 2, . . . , k). See Figure 1.

(a) N1 (b) N2

Figure 1: The graph Ni, i = 1, 2.

Definition 4.2. Let M be a graph with V (M) = V (Ni) and the edge set

E(M) =





l−1
2⋃

i=1

E(Ni), when l is odd

l−2
2⋃

i=1

E(Ni)
⋃
F, when l is even

where F is a 1-factor of M (which correspond to the 1-factor of Kl) (see

Figure 2) as follows: F =
{(

(0, a), ( l
2 , a+ 1)

)
,
(
(i, a), (l− i, a+ 1)

)∣∣0 ≤ a ≤
k − 1, 1 ≤ i ≤ l

2 − 1
}

.

Remark. Clearly the graphM defined in Definition 4.2 has anN -decompo-
sition, Ni

∼= N .
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(a) When ` is odd (b) When ` is even

Figure 2: The graph M

Definition 4.3. Let (r1, s1) and (r2, s2) be two pairs of non-negative
integers. Then we define (r1, s1) + (r2, s2) = (r1 + r2, s1 + s2) . Usu-
ally positive integers are denoted as Z+. If A = {(r1, s1)| r1, s1 ∈ Z+};
B = {(r2, s2)| r2, s2 ∈ Z+} and h ∈ Z+, then A + B = {(r1, s1) +
(r2, s2)|(r1, s1) ∈ A, (r2, s2) ∈ B} and h ∗ A denotes the set of all pairs of
non-negative integers which can be obtained by adding any h elements of A
together (repetitions of elements of A are allowed).

Now, let us define the following subgraphs in M for our convenience as
follows:

P =

k
2⋃

i=1

Ni =
k

2
N and Q =

k−1⋃

i=1

Ni = (k − 1)N

Lemma 4.1. For all even k ≥ 4, there exists a (K2, Pk)-URD(N ; r, s) with
(r, s) = (2, 0).

Proof. For any i, 0 ≤ i ≤ k−2
2 , we define subsets of V (N) as follows:

Xi
1 = {(x, 2i)| 0 ≤ x ≤ l − 1}, Xi

2 = {(x, 2i + 1)| 0 ≤ x ≤ l − 1}, Y i
1 =

{(x, 2i + 1)| 0 ≤ x ≤ l − 1} and Y i
2 = {(x, 2i + 2)| 0 ≤ x ≤ l − 1}, where

the addition is taken modulo k. Then the edges between the vertex sets
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Xi
1 and Xi

2 will form one 1-factor in N . Similarly the sets Y i
1 and Y i

2 will
form one more 1-factor in N . Hence, we obtain the required resolvable
decomposition.

Lemma 4.2. For all even k ≥ 4, there exists a (K2, Pk)-URD(P ; r, s) with
each (r, s) ∈

{
(1, k2 ), (k, 0)

}
.

Proof. We prove in two cases.

Case 1. (1, k2 ).

We first construct one Pk-factor from each Nj , 1 ≤ j ≤ k
2 as follows:

For any fixed j, 1 ≤ j ≤ k
2 , we define the subsets of V (Nj) as Xj ={(

x, 2(j − 1)
)
| 0 ≤ x ≤ l− 1

}
and Y j =

{(
x, 2(j − 1) + 1

)
| 0 ≤ x ≤ l− 1

}
,

where the addition is taken modulo k. Now keep the edges between the
subsets Xj and Y j for future purpose. The remaining graph will form
one Pk-factor in Nj . By repeating the process for each Nj , we obtain
k
2 Pk-factors in P . Now the edges between the sets Xj and Y j from each
Nj together gives one 1-factor in P . Therefore, we get the required uniform
resolvable decomposition.

Case 2. (k, 0).
Each Nj , 1 ≤ j ≤ k

2 can be decomposed into two 1-factors, by Lemma 4.1.
Hence, we obtain the required resolvable decomposition of P .

Lemma 4.3. For all even k ≥ 4, there exists a (K2, Pk)-URD(Q; r, s) with
each (r, s) ∈

{
(2(k − 1), 0), (k − 1, k2 ), (0, k)

}
.

Proof. We prove in three cases.

Case 1. (2(k − 1), 0).
Clearly the graph Q = (k − 1)N has a 2(k − 1) 1-factors, by Lemma 4.1.

Case 2. (k − 1, k2 ).

Take Q = (k− 1)N =
(
k−2
2

)
N +

(
k
2

)
N = X + Y . By Lemmas 4.1 and 4.2,

the graphs X and Y have (k−2) 1-factors and one 1-factor and k
2 Pk-factors

respectively. Hence, we obtain (k − 1) 1-factors and k
2 Pk-factors in Q.

Case 3. (0, k).
We first construct one Pk-factor from each Nj , 1 ≤ j ≤ k − 1 as follows:
For any fixed j, 1 ≤ j ≤ k − 1, we define the subsets of V (Nj) as Xj =
{(x, j − 1)|0 ≤ x ≤ l − 1} and Y j = {(x, j)|0 ≤ x ≤ l − 1}. Now keep the
edges between the subsets Xj and Y j for future purpose. The remaining
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graph will form one Pk-factor in Nj . By repeating the process for each Nj ,
we obtain (k− 1) Pk-factors in Q. Now the edges between the sets Xj and
Y j from each Nj which were kept aside together gives one Pk-factor in Q.
Therefore, we get the required resolvable decomposition.

The order (number of vertices) of the graph M (defined in Definition 4.2)
be denoted as Θ. For all even k ≥ 4 and Θ ≡ 0 (mod k), if Θ ≡ 0
(mod k(k − 1)), we define

I(Θ) =

{(
l − 1− (k − 1)x,

k

2
x
)

: x = 0, 1, . . . ,
l − (k − 1)

(k − 1)

}
(9)

and if Θ ≡ a (mod k(k − 1)), when 0 < a ≡ 0 (mod k) ≤ k(k − 2), we
define

I(Θ) =

{(
l − 1− (k − 1)x,

k

2
x
)

: x = 0, 1, . . . ,
l − a

k

(k − 1)

}
. (10)

Lemma 4.4. For all even k ≥ 4, if (K2, Pk)-URD(M ; r, s) exists, then
Θ ≡ 0 (mod k) and (r, s) ∈ I(Θ).

Proof. The condition Θ ≡ 0 (mod k) is trivial and hence Θ = kl, l ∈ Z+.
Let D be an arbitrary (K2, Pk)-URD(M ; r, s). By resolvability, we have

r
kl

2
+ s

kl

k
(k − 1) =

kl(l − 1)

2

Hence
rk + 2s(k − 1) = k(l − 1) (11)

Letting s = k
2x, Equation (11) gives r = (l − 1) − (k − 1)x. Since r and s

cannot be negative, and x is an integer, the value of x must be in the range
for I(Θ). (See Equations 9 and 10.)

Lemma 4.5. For any Θ ≡ 0 (mod 4), there exists (K2, P4)-URD(M ; r, s).

Proof. Let Θ ≡ 0 (mod 4), we have a Θ ≡ a (mod 12) with a = 0, 4, 8. We
prove in three cases.

Case 1. For Θ ≡ 0 (mod 12), we have a Θ = 12x = 4(3x), where x ≥ 1.

Subcase 1. If x is odd, then the graph

M =
(3x− 1

2

)
N =

(3x− 3

2

)
N ∪N =

(x− 1

2

)
Q ∪N.
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Hence, by Lemmas 4.1 and 4.3, we get the required URDs.

Subcase 2. If x is even, then the graph

M =
(3x− 2

2

)
N ∪ F =

(3x− 6

2

)
N ∪ 2N ∪ F =

(x− 2

2

)
Q ∪ P ∪ F.

Hence, by Lemmas 4.2 and 4.3 along with F , we get the required URDs.

Case 2. For Θ ≡ 4 (mod 12), we have a Θ = 12x+ 4 = 4(3x+ 1), where
x ≥ 0.

Subcase 1. If x is odd, then the graph

M =
(3x− 1

2

)
N ∪ F =

(3x− 3

2

)
N ∪N ∪ F =

(x− 1

2

)
Q ∪N ∪ F.

Hence, by Lemmas 4.1 and 4.3 along with F , we get the required URDs.

Subcase 2. If x is even, then the graph

M =
(3x

2

)
N =

(x
2

)
Q.

Hence, by Lemma 4.3, we get the required URDs.

Case 3. For Θ ≡ 8 (mod 12), we have a Θ = 12x+ 8 = 4(3x+ 2), where
x ≥ 0.

Subcase 1. If x is odd, then the graph

M =
(3x+ 1

2

)
N =

(3x− 3

2

)
N ∪ 2N =

(x− 1

2

)
Q ∪ P.

Hence, by Lemmas 4.2 and 4.3, we get the required URDs.

Subcase 2. If x is even, then the graph

M =
(3x

2

)
N ∪ F =

(x
2

)
Q ∪ F.

Hence, by Lemma 4.3 along with F , we get the required URDs.

Lemma 4.6. For even k ≥ 6 and Θ ≡ 0 (mod k), (K2, Pk)-URD(M ; r, s)
exists.

Proof. Let Θ ≡ 0 (mod k), we have a Θ ≡ a (mod k(k−1)) with 0 ≤ a ≡ 0
(mod k) ≤ k(k − 2). We prove in six cases.
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Case 1. For Θ ≡ 0 (mod k(k−1)), we have a Θ = k(k−1)x, where x ≥ 1.

Subcase 1. If x is odd, then the graph

M =
( (k − 1)x− 1

2

)
N =

( (k − 1)x− (k − 2)− 1

2

)
N ∪

(k − 2

2

)
N

=
(x− 1

2

)
Q ∪

(k − 2

2

)
N.

Hence, by Lemmas 4.1 and 4.3, we get the required URDs.

Subcase 2. If x is even, then the graph

M =
( (k − 1)x− 2

2

)
N ∪ F =

( (k − 1)(x− 2)

2

)
N ∪ (k − 2)N ∪ F

=
(x

2

)
Q ∪ P ∪N ∪ F.

Hence, by Lemmas 4.1 to 4.3 along with F , we get the required URDs.

Case 2. For Θ ≡ k (mod k(k − 1)), we have a Θ = k(k − 1)x + k =
k
(
(k − 1)x+ 1

)
, where x ≥ 0.

Subcase 1. If x is odd, then the graph

M =
( (k − 1)x− 1

2

)
N ∪ F =

( (k − 2)(x− 1)− 1

2

)
N ∪

(k − 2

2

)
N ∪ F

=
(x− 1

2

)
Q ∪

(k − 2

2

)
N ∪ F.

Hence, by Lemmas 4.1 and 4.3 along with F , we get the required URDs.

Subcase 2. If x is even, then the graph

M =
( (k − 1)x

2

)
N =

(x
2

)
Q.

Hence, by Lemma 4.3, we get the required URDs.

Case 3. For Θ ≡ 2k (mod k(k − 1)), we have a Θ = k(k − 1)x + 2k =
k
(
(k − 1)x+ 2

)
, where x ≥ 0.

Subcase 1. If x is odd, then the graph

M =
( (k − 1)x+ 1

2

)
N =

( (k − 1)x+ 1− k
2

)
N ∪

(k
2

)
N

=
(x− 1

2

)
Q ∪ P.
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Hence, by Lemmas 4.2 and 4.3, we get the required URDs.

Subcase 2. If x is even, then the graph

M =
( (k − 1)x

2

)
N ∪ F =

(x
2

)
Q ∪ F.

Hence, by Lemma 4.3 along with F , we get the required URDs.

Case 4. For Θ ≡ 3k (mod k(k − 1)), we have a Θ = k(k − 1)x + 3k =
k
(
(k − 1)x+ 3

)
, where x ≥ 0.

Subcase 1. If x is odd, then the graph

M =
( (k − 1)x+ 1

2

)
N ∪ F =

( (k − 1)x+ 1− k
2

)
N ∪

(k
2

)
N ∪ F

=
(x− 1

2

)
Q ∪ P ∪ F.

Hence, by Lemmas 4.2 and 4.3 along with F , we get the required URDs.

Subcase 2. If x is even, then the graph

M =
( (k − 1)x+ 2

2

)
N =

( (k − 1)x+ 1

2

)
N ∪N

=
(x

2

)
Q ∪N.

Hence, by Lemmas 4.1 and 4.3, we get the required URDs.

Case 5. For Θ ≡ a (mod k(k − 1)) with 3k < a ≡ 0 (mod k) < k(k − 2),
we have a Θ = k(k − 1)y + a = k(k − 1)y + kx = k

(
(k − 1)y + x

)
, where

y ≥ 0 and 4 ≤ x ≤ k − 3.

Subcase 1. Let x = 2z + 2, where 1 ≤ z ≤ k−6
2 and even y ≥ 0, then the

graph

M =
( (k − 1)y + x− 2

2

)
N ∪ F =

( (k − 1)y + 2z

2

)
N ∪ F

=
( (k − 1)y

2

)
N ∪ zN ∪ F

=
(y

2

)
Q ∪ zN ∪ F.

Hence, by Lemmas 4.1 and 4.3 along with F , we get the required URDs.

Uniformly resolvable decompositions

137



Subcase 2. Let x = 2z + 2, where 1 ≤ z ≤ k−6
2 and odd y ≥ 1, then the

graph

M =
( (k − 1)y + x− 1

2

)
N =

( (k − 1)y + 2z + 1

2

)
N

=
( (k − 1)y − k + 1

2

)
N ∪

(k
2

)
N ∪ zN

=
(y − 1

2

)
Q ∪ P ∪ zN.

Hence, by Lemmas 4.1 to 4.3, we get the required URDs.

Subcase 3. Let x = 2z + 3, where 1 ≤ z ≤ k−6
2 and odd y ≥ 1, then the

graph

M =
( (k − 1)y + x− 2

2

)
N ∪ F =

( (k − 1)y + 2z + 1

2

)
N ∪ F

=
( (k − 1)y − k + 1

2

)
N∪

(k
2

)
N∪zN∪F

=
(y − 1

2

)
Q ∪ P ∪ zN ∪ F.

Hence, by Lemmas 4.1 to 4.3 along with F , we get the required URDs.

Subcase 4. Let x = 2z + 3, where 1 ≤ z ≤ k−6
2 and even y ≥ 0, then the

graph

M =
( (k − 1)y + x− 1

2

)
N =

( (k − 1)y + 2z + 2

2

)
N

=
( (k − 1)y

2

)
N ∪ (z + 1)N

=
(y

2

)
Q ∪ (z + 1)N.

Hence, by Lemmas 4.1 and 4.3, we get the required URDs.

Case 6. For Θ ≡ k(k − 2) (mod k(k − 1)), we have a Θ = k(k − 1)x +
k(k − 2) = k

(
(k − 1)x+ (k − 2)

)
, where x ≥ 0.

Subcase 1. If x is odd, then the graph

M =
( (k − 1)x+ k − 3

2

)
N =

( (x− 1)− k + 1

2

)
N ∪ (k − 2)N

=
(x− 1

2

)
Q ∪

(k
2

)
N ∪

(k − 4

2

)
N

=
(x− 1

2

)
Q ∪ P ∪

(k − 4

2

)
N.
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Hence, by Lemmas 4.1 to 4.3, we get the required URDs.

Subcase 2. If x is even, then the graph

M =
( (k − 1)x+ k − 4

2

)
N ∪ F =

( (k − 1)x

2

)
N ∪

(k − 4

2

)
N ∪ F

=
(x

2

)
Q ∪

(k − 4

2

)
N ∪ F.

Hence, by Lemmas 4.1 and 4.3 along with F, we get the required URDs.

Theorem 4.1. For all even k ≥ 4, if (K2, Pk)-URD(M ; r, s) if and only
if Θ ≡ 0 (mod k) and (r, s) ∈ I(Θ).

Proof. Follows from Lemmas 4.4 to 4.6.

5 Sufficient conditions

In this section, we prove that the necessary conditions are sufficient for the
existence of uniformly resolvable decomposition of Kn into r parallel classes
containing K2-factors and s parallel classes containing Pk-factors for any
even k ≥ 4 and r, s ≥ 0.

Lemma 5.1. For all even k ≥ 4 and n ≡ 0 (mod k), there exists

(K2, Pk)-URD(M ; r, s).

Proof. As n ≡ 0 (mod k), let n = kl, l ∈ Z+.
Case 1. l is odd. For l = 1, there exists a required uniform resolv-
able decomposition, by Theorems 2.2 and 2.3. For l ≥ 3, let V (Kkl) =⋃l−1

x=0Ax, where Ax = {(x, kx+ i) : 0 ≤ i ≤ k−1 and the addition is taken
modulo k}. We obtain a new graph A from Kkl, by identifying each Ax with
a single vertex ax and joint ax and ay if there exists a complete bipartite
graph K|Ax|,|Ay| between Ax and Ay in Kkl. Then the new graph A ∼= Kl.
By Theorem 2.2, the graph Kl has l near 1-factors say Fx, 0 ≤ x ≤ l − 1
with the missing vertex x. Corresponding to each Fx with a missing vertex
x of Kl, we have a

(
l−1
2

)
Kk,k in Kkl and corresponding to Ax in Kkl, we

have a K|Ax|
∼= Kk. By Theorem 2.2, the graphs Kk,k,Kk have k, (k − 1)

1-factors, respectively and by Lemma 2.1, the graph Kk,k has a one 1-factor
and k

2 Pk-factors. Also by Theorem 2.3, the graph Kk has a k
2 Pk-factors.
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First we use (k− 1) 1-factors corresponding to each Fx from each Kk,k and
Kk to get (r, s) = (k−1, 0). Finally, we are left with a 1-factor in each Kk,k

and k isolated vertices in each Kk. Similarly when we use k
2 Pk-factors we

get (r, s) = (0, k2 ). By repeating this process for all l near 1-factors of Kl,

we obtain (r, s) ∈ l ∗
{

(k − 1, 0),
(

0, k2

)}
and a new graph M (defined in

Definition 4.2) in which there is only one 1-factor between each pair of Ax

and Ay in Kkl. By Theorem 4.1, the graph M has a (K2, Pk)-URD(r, s)
with (r, s) ∈ I(Θ). Therefore, it is easy to see that

I1(n) ⊆ l ∗
{

(k − 1, 0),
(

0,
k

2

)}
+ I(Θ).

Case 2. l is even. For l = 2, we have K2k ≡ Kk,k ⊕ 2Kk. Applying

Theorems 2.2 and 2.3 and Lemma 2.1, it is easy to obtain
{

(k, 0),
(

1, k2

)}
+

{
(k − 1, 0),

(
0, k2

)}
⊇ I1(2k). For l ≥ 4, we have

Kkl ≡ (Kl ⊗ Ik)⊕ l Kk

=
(
(F0 ⊕ F1 ⊕ · · · ⊕ Fl−2)⊗ Ik

)
⊕ l Kk

=
(
(F0 ⊗ Ik)⊕ (F1 ⊗ Ik)⊕ · · · ⊕ (Fl−2 ⊗ Ik)

)
⊕ l Kk.

By Theorem 2.2, Kl has a (l− 1) 1-factors say Fx, 0 ≤ x ≤ l− 2 . Each Fx

of Kl will gives rise to l
2Kk,k in Kkl. By Theorem 2.2 and Lemma 2.1, the

graph Kk,k has a k 1-factors, and a 1-factor and k
2 Pk-factors respectively.

First we use (k − 1) 1-factors corresponding to each Fx from each Kk,k to
get (r, s) = (k − 1, 0). Similarly we use k

2 Pk-factors to get (r, s) = (0, k2 ).
Finally, we are left with a 1-factor in each Kk,k. Repeating this process for

all (l−1) 1-factors of Kl, we obtain (r, s) ∈ (l−1)∗
{

(k−1, 0),
(

0, k2

)}
and a

new graph M (defined in Definition 4.2) which is a subgraph of Kl⊗Ik. By
Theorems 2.2 and 2.3, the graph Kk has a (k−1) 1-factor and k

2 Pk-factors.

Hence lKk has a (K2, Pk)-URD(r, s) with (r, s) ∈
{

(k − 1, 0),
(

0, k2

)}
.

Therefore, it is easy to see that

I1(n) ⊆ (l − 1) ∗
{

(k − 1, 0),
(

0,
k

2

)}
+ I(Θ) +

{
(k − 1, 0),

(
0,
k

2

)}
.

6 Main result

Lemmas 3.1 and 5.1 together give our main result.
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Theorem 6.1. For all even k ≥ 4, there exists a (K2, Pk)-URD(Kn; r, s)
if and only if n ≡ 0 (mod k) and (r, s) ∈ I1(n).

Remark. In this paper, we completely solved the existence of a uniformly
resolvable decomposition of Kn into r classes containing only copies of
K2-factors and s classes containing only copies of Pk-factors when k is
even. Further we proved that the necessary conditions for odd k. Finding
sufficient conditions for odd k is still open.
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