Editors-in-Chief:

Marco Buratti, Donald Kreher, Ortrud Oellermann, Tran van Trung

Boca Raton, FL, U.S.A.
ISSN: 2689-0674 [Online] ISSN: 1183-1278 [Print]

Uniformly resolvable decompositions of K_{n} into 1-factors and P_{k}-factors

M. Ilayaraja ${ }^{1}$, A. Shanmuga Vadivu ${ }^{2}$ and
A. Muthusamy*2
${ }^{1}$ Sona college of arts and science, Salem, Tamil Nadu, India ilaya@yahoo.com
${ }^{2}$ Periyar University, Salem, Tamil Nadu, India
avshanmugaa@yahoo.com AND ambdu@yahoo.com

Abstract

Let P_{n} and K_{n} respectively denote a path and a complete graph on n vertices. In this paper, it is shown that the necessary conditions are sufficient for the existence of uniformly resolvable decomposition of K_{n} into r parallel classes containing K_{2}-factors and s parallel classes containing P_{k}-factors for any even $k \geq 4$ and $r, s \geq 0$.

1 Introduction

In this paper, the vertex set and edge set of graph G are denoted by $V(G)$ and $E(G)$ respectively. Let P_{n}, K_{n} and I_{n} respectively denote a path, a
${ }^{*}$ Corresponding author.
AMS (MOS) Subject Classifications: 05B30, 05C38.
Key words and phrases: Parallel class, Path, Resolvable decomposition.
complete graph and an independent set on n vertices. Given a collection of graphs \mathcal{H}, an \mathcal{H}-decomposition of a graph G is a set of subgraphs (blocks) of G whose edge sets partition $E(G)$, and each subgraph is isomorphic to a graph from \mathcal{H}. A parallel class of a graph G is a set of subgraphs whose vertex sets partition $V(G)$. A parallel class is called uniform if each blocks of the parallel class is isomorphic to the same graph. An \mathcal{H}-decomposition of a graph G is called (uniformly) resolvable if the blocks can be partitioned into (uniform) parallel classes. A resolvable \mathcal{H}-decomposition of G is also referred as \mathcal{H}-factorization of G. We write $G=H_{1} \oplus H_{2} \oplus \ldots \oplus H_{k}$, if $H_{1}, H_{2}, \ldots, H_{k}$ are edge-disjoint subgraphs of G and $E(G)=E\left(H_{1}\right) \cup$ $E\left(H_{2}\right) \cup \ldots \cup E\left(H_{k}\right)$.

For two graphs G and H their wreath product $G \otimes H$ has the vertex set $V(G) \times V(H)$ and their edge set $E(G \otimes H)=\left\{\left((g, h),\left(g^{\prime}, h^{\prime}\right)\right) \mid\left(g, g^{\prime}\right) \in\right.$ $E(G)$ or $g=g^{\prime}$, and $\left.\left(h, h^{\prime}\right) \in E(H)\right\}$. An r-factor of G is an r-regular spanning subgraph of G. A near 1-factor of G is a 1-regular subgraph which contains all but one vertex of G. Let $K_{k, k}$ be the complete bipartite graph with bipartition (X, Y), where $X=Y=\{0,1, \ldots, k-1\}$. The 1factor of distance t consists of the edges $\{(i, i+t): 0 \leq i \leq k-1\}$, where the addition is taken modulo k.

Rees [16], obtained the necessary and sufficient conditions for the existence of uniformly resolvable (K_{2}, K_{3})-designs of order n. Horton [10], has proved the existence of resolvable P_{k}-designs of order n for $k=3$ and Bermond et.al [2], have proved it for $k \geq 4$. Many other results on uniformly resolvable decomposition of K_{n} into distinct subgraphs have been obtained in [4, 3, $13,17,5,8,15,11,12]$. Recently [6, 7] Mario Gionfriddo and Salvatore Milici have investigated the existence of uniformly resolvable \mathcal{H}-designs with $\mathcal{H}=\left\{P_{3}, P_{4}\right\}$ and $\left\{K_{2}, P_{k}\right\}$ for $k=3,4$.

- We denote the existence of uniformly resolvable decomposition of G into r parallel classes consisting of K_{2}-factors and s parallel classes consisting of P_{k}-factors by $\left(K_{2}, P_{k}\right)-U R D(G ; r, s)$.
- Let $I_{1}(n)$ (resp., $I_{2}(n)$) denote the set of possible pairs (r, s) for which $\left(K_{2}, P_{k}\right)-U R D\left(K_{n} ; r, s\right)$ exists when k is even (resp., k is odd).

For all even $k \geq 4$ and $n \equiv 0(\bmod k)$, if $n \equiv 0(\bmod k(k-1))$ we define

$$
\begin{equation*}
I_{1}(n)=\left\{\left(n-1-(k-1) x, \frac{k}{2} x\right): x=0,1, \ldots, \frac{n-(k-1)}{(k-1)}\right\} \tag{1}
\end{equation*}
$$

and if $n \equiv a \quad(\bmod k(k-1))$, when $0 \leq a \equiv 0 \quad(\bmod k) \leq k(k-2)$, we define

$$
\begin{equation*}
I_{1}(n)=\left\{\left(n-1-(k-1) x, \frac{k}{2} x\right): x=0,1, \ldots, \frac{n-\frac{a}{k}}{(k-1)}\right\} \tag{2}
\end{equation*}
$$

For all odd $k \geq 3$ and $n \equiv 0(\bmod 2 k)$, if $n \equiv 0(\bmod 2 k(k-1))$ we define

$$
\begin{equation*}
I_{2}(n)=\left\{((n-1)-2(k-1) x, k x): x=0,1, \ldots, \frac{n-2(k-1)}{2(k-1)}\right\} \tag{3}
\end{equation*}
$$

and if $n \equiv a \quad(\bmod 2 k(k-1))$, when $0 \leq a \equiv 0 \quad(\bmod k) \leq 2 k(k-2)$, we define

$$
\begin{equation*}
I_{2}(n)=\left\{((n-1)-2(k-1) x, k x): x=0,1, \ldots, \frac{n-\frac{a}{k}}{2(k-1)}\right\} \tag{4}
\end{equation*}
$$

In this paper, we prove that the necessary conditions are sufficient for the existence of $\left(K_{2}, P_{k}\right)-U R D\left(K_{n} ; r, s\right)$ for all even $k \geq 4$. Further, we give necessary conditions for the existence of $\left(K_{2}, P_{k}\right)-U R D\left(K_{n} ; r, s\right)$ for all odd $k \geq 3$.

2 Preliminary results

In this section, we present some known results required to prove our main results.

Theorem 2.1. ([1] Walecki's Construction).

1. For all odd $n \geq 3$, the graph K_{n} has a Hamilton cycle decomposition.
2. For all even $n \geq 4$, the graph $K_{n}-I$ has a Hamilton cycle decomposition with prescribed cycles $\left\{C, \sigma(C), \sigma^{2}(C), \ldots, \sigma^{\frac{n-4}{2}}(C)\right\}$. where $\sigma=(0)(12 \ldots n-1)$ is a permutation, $C=(01 \ldots n-1)$ is a Hamilton cycle and $I=\left\{\left(0, \frac{n}{2}\right),(i, n-i) \left\lvert\, 1 \leq i \leq \frac{n}{2}-1\right.\right\}$ is a 1 -factor of K_{n}.

Theorem 2.2. [14, 9]

1. There exist a 1-factorization (resp., a near 1-factorization) of K_{n} if and only if n is even (resp., n is odd).
2. Every regular bipartite graph is 1-factorable.

Theorem 2.3. [18] For all even k, the graph K_{n} has a P_{k}-factorization if and only if $n \equiv k(\bmod k(k-1))$.

Lemma 2.1. [18, 19] If k is even, then the graph $K_{k, k}$ can be decomposed into one 1-factor and $\frac{k}{2} P_{k}$-factors.

3 Necessary conditions

In this section, we give necessary conditions for the existence of

$$
\left(K_{2}, P_{k}\right)-U R D\left(K_{n} ; r, s\right)
$$

for all $k \geq 3$.
Lemma 3.1. For all even $k \geq 4$, if $\left(K_{2}, P_{k}\right)-U R D\left(K_{n} ; r, s\right)$ exists, then $n \equiv 0(\bmod k)$ and $(r, s) \in I_{1}(n)$.

Proof. The condition $n \equiv 0(\bmod k)$ is trivial. Let \mathcal{D} be an arbitrary $\left(K_{2}, P_{k}\right)-U R D\left(K_{n} ; r, s\right)$. By resolvability, we have

$$
r \frac{n}{2}+s \frac{n}{k}(k-1)=\frac{n(n-1)}{2}
$$

Hence

$$
\begin{equation*}
r k+2 s(k-1)=k(n-1) \tag{5}
\end{equation*}
$$

Now (5) gives

$$
\begin{equation*}
r k \equiv k(n-1) \quad(\bmod 2(k-1)) \text { and } 2 s(k-1) \equiv k(n-1) \quad(\bmod k) \tag{6}
\end{equation*}
$$

If k is even, then (6) implies the following:
Now letting $s=\frac{k}{2} x$, Equation (5) gives $r=(n-1)-(k-1) x$. Since r and s cannot be negative, and x is an integer, the value of x must be in the range for $I_{1}(n)$. (See Equations 1 and 2.)

Lemma 3.2. For all odd $k \geq 3$, if $\left(K_{2}, P_{k}\right)-U R D\left(K_{n} ; r, s\right)$ exists, then $n \equiv 0(\bmod 2 k)$ and $(r, s) \in I_{2}(n)$.

Proof. The condition $n \equiv 0(\bmod 2 k)$ is trivial. Let \mathcal{D} be an arbitrary $\left(K_{2}, P_{k}\right)-U R D\left(K_{n} ; r, s\right)$. By resolvability, we have

$$
r \frac{n}{2}+s \frac{n}{k}(k-1)=\frac{n(n-1)}{2}
$$

r	s	n
$(k-2)(\bmod (k-1))$	$0\left(\bmod \frac{k}{2}\right)$	$0(\bmod k(k-1))$
$0(\bmod (k-1))$	$0\left(\bmod \frac{k}{2}\right)$	$k(\bmod k(k-1))$
$1(\bmod (k-1))$	$0\left(\bmod \frac{k}{2}\right)$	$2 k(\bmod k(k-1))$
\cdot	\cdot	\cdot
\cdot	\cdot	\cdot
\cdot	\cdot	\cdot
$(k-3)(\bmod (k-1))$	$0\left(\bmod \frac{k}{2}\right)$	$(k-2) k(\bmod k(k-1))$

Table 1: For even k

Hence

$$
\begin{equation*}
r k+2 s(k-1)=k(n-1) \tag{7}
\end{equation*}
$$

Now (7) gives

$$
\begin{equation*}
r k \equiv k(n-1) \quad(\bmod 2(k-1)) \text { and } 2 s(k-1) \equiv k(n-1) \quad(\bmod k) \tag{8}
\end{equation*}
$$

If k is odd, then (8) implies the following:

r	s	n
$(2 k-3)(\bmod 2(k-1))$	$0(\bmod k)$	$0(\bmod 2 k(k-1))$
$1(\bmod 2(k-1))$	$0(\bmod k)$	$2 k(\bmod 2 k(k-1))$
$3(\bmod 2(k-1))$	$0(\bmod k)$	$4 k(\bmod 2 k(k-1))$
\cdot	\cdot	\cdot
\cdot	\cdot	\cdot
\cdot	\cdot	\cdot
$(2 k-5)(\bmod 2(k-1))$	$0(\bmod k)$	$2 k(k-2)(\bmod 2 k(k-1))$

Now letting $s=k x$, Equation (7) gives $r=(n-1)-2(k-1) x$. Since r and s cannot be negative, and x is an integer, the value of x must be in the range for $I_{2}(n)$. (See Equations 3 and 4.)

4 Base construction

We present some definitions and results which are required to prove our main result.

Definition 4.1. For each Hamilton cycle h_{i} of K_{l}, we define N_{i} to be the graph with vertex set $V\left(N_{i}\right)=V\left(K_{l} \times I_{k}\right)$ and edge set $E\left(N_{i}\right)$, where

$$
\begin{aligned}
V\left(K_{l}\right) & =\{x: 0 \leq x \leq l-1\} \\
V\left(I_{k}\right) & =\{j: 1 \leq j \leq k\} \text { and } \\
E\left(N_{i}\right) & =\left\{((x, j),(y, j+1)):(x, y) \in E\left(h_{i}\right), 1 \leq j \leq k\right\}
\end{aligned}
$$

(Addition taken modulo k,i.e., $1,2, \ldots, k$). See Figure 1.

Figure 1: The graph $N_{i}, i=1,2$.
Definition 4.2. Let M be a graph with $V(M)=V\left(N_{i}\right)$ and the edge set

$$
E(M)=\left\{\begin{array}{l}
\frac{l-1}{2} E\left(N_{i}\right), \text { when } l \text { is odd } \\
\frac{l-2}{2} E\left(N_{i}\right) \cup F, \text { when } l \text { is even }
\end{array}\right.
$$

where F is a 1-factor of M (which correspond to the 1-factor of K_{l}) (see Figure 2) as follows: $F=\left\{\left((0, a),\left(\frac{l}{2}, a+1\right)\right),((i, a),(l-i, a+1)) \mid 0 \leq a \leq\right.$ $\left.k-1,1 \leq i \leq \frac{l}{2}-1\right\}$.

Remark. Clearly the graph M defined in Definition 4.2 has an N-decomposition, $N_{i} \cong N$.

(a) When ℓ is odd

(b) When ℓ is even

Figure 2: The graph M

Definition 4.3. Let $\left(r_{1}, s_{1}\right)$ and $\left(r_{2}, s_{2}\right)$ be two pairs of non-negative integers. Then we define $\left(r_{1}, s_{1}\right)+\left(r_{2}, s_{2}\right)=\left(r_{1}+r_{2}, s_{1}+s_{2}\right)$. Usually positive integers are denoted as \mathbb{Z}_{+}. If $A=\left\{\left(r_{1}, s_{1}\right) \mid r_{1}, s_{1} \in \mathbb{Z}_{+}\right\}$; $B=\left\{\left(r_{2}, s_{2}\right) \mid r_{2}, s_{2} \in \mathbb{Z}_{+}\right\}$and $h \in \mathbb{Z}_{+}$, then $A+B=\left\{\left(r_{1}, s_{1}\right)+\right.$ $\left.\left(r_{2}, s_{2}\right) \mid\left(r_{1}, s_{1}\right) \in A,\left(r_{2}, s_{2}\right) \in B\right\}$ and $h * A$ denotes the set of all pairs of non-negative integers which can be obtained by adding any h elements of A together (repetitions of elements of A are allowed).

Now, let us define the following subgraphs in M for our convenience as follows:

$$
P=\bigcup_{i=1}^{\frac{k}{2}} N_{i}=\frac{k}{2} N \text { and } Q=\bigcup_{i=1}^{k-1} N_{i}=(k-1) N
$$

Lemma 4.1. For all even $k \geq 4$, there exists a $\left(K_{2}, P_{k}\right)-U R D(N ; r, s)$ with $(r, s)=(2,0)$.

Proof. For any $i, 0 \leq i \leq \frac{k-2}{2}$, we define subsets of $V(N)$ as follows: $X_{1}^{i}=\{(x, 2 i) \mid 0 \leq x \leq l-1\}, X_{2}^{i}=\{(x, 2 i+1) \mid 0 \leq x \leq l-1\}, \quad Y_{1}^{i}=$ $\{(x, 2 i+1) \mid 0 \leq x \leq l-1\}$ and $Y_{2}^{i}=\{(x, 2 i+2) \mid 0 \leq x \leq l-1\}$, where the addition is taken modulo k. Then the edges between the vertex sets
X_{1}^{i} and X_{2}^{i} will form one 1-factor in N. Similarly the sets Y_{1}^{i} and Y_{2}^{i} will form one more 1-factor in N. Hence, we obtain the required resolvable decomposition.

Lemma 4.2. For all even $k \geq 4$, there exists a $\left(K_{2}, P_{k}\right)-U R D(P ; r, s)$ with each $(r, s) \in\left\{\left(1, \frac{k}{2}\right),(k, 0)\right\}$.

Proof. We prove in two cases.
Case 1. (1, $\frac{k}{2}$).
We first construct one P_{k}-factor from each $N_{j}, 1 \leq j \leq \frac{k}{2}$ as follows: For any fixed $j, 1 \leq j \leq \frac{k}{2}$, we define the subsets of $V\left(N_{j}\right)$ as $X^{j}=$ $\{(x, 2(j-1)) \mid 0 \leq x \leq l-1\}$ and $Y^{j}=\{(x, 2(j-1)+1) \mid 0 \leq x \leq l-1\}$, where the addition is taken modulo k. Now keep the edges between the subsets X^{j} and Y^{j} for future purpose. The remaining graph will form one P_{k}-factor in N_{j}. By repeating the process for each N_{j}, we obtain $\frac{k}{2} P_{k}$-factors in P. Now the edges between the sets X^{j} and Y^{j} from each N_{j} together gives one 1-factor in P. Therefore, we get the required uniform resolvable decomposition.

Case 2. $(k, 0)$.
Each $N_{j}, 1 \leq j \leq \frac{k}{2}$ can be decomposed into two 1-factors, by Lemma 4.1. Hence, we obtain the required resolvable decomposition of P.

Lemma 4.3. For all even $k \geq 4$, there exists a $\left(K_{2}, P_{k}\right)-U R D(Q ; r, s)$ with each $(r, s) \in\left\{(2(k-1), 0),\left(k-1, \frac{k}{2}\right),(0, k)\right\}$.

Proof. We prove in three cases.
Case 1. $(2(k-1), 0)$.
Clearly the graph $Q=(k-1) N$ has a $2(k-1)$ 1-factors, by Lemma 4.1.
Case 2. $\left(k-1, \frac{k}{2}\right)$.
Take $Q=(k-1) N=\left(\frac{k-2}{2}\right) N+\left(\frac{k}{2}\right) N=X+Y$. By Lemmas 4.1 and 4.2, the graphs X and Y have $(k-2)$ 1-factors and one 1-factor and $\frac{k}{2} P_{k}$-factors respectively. Hence, we obtain $(k-1)$ 1-factors and $\frac{k}{2} P_{k}$-factors in Q.

Case 3. $(0, k)$.
We first construct one P_{k}-factor from each $N_{j}, 1 \leq j \leq k-1$ as follows: For any fixed $j, 1 \leq j \leq k-1$, we define the subsets of $V\left(N_{j}\right)$ as $X^{j}=$ $\{(x, j-1) \mid 0 \leq x \leq l-1\}$ and $Y^{j}=\{(x, j) \mid 0 \leq x \leq l-1\}$. Now keep the edges between the subsets X^{j} and Y^{j} for future purpose. The remaining
graph will form one P_{k}-factor in N_{j}. By repeating the process for each N_{j}, we obtain $(k-1) P_{k}$-factors in Q. Now the edges between the sets X^{j} and Y^{j} from each N_{j} which were kept aside together gives one P_{k}-factor in Q. Therefore, we get the required resolvable decomposition.

The order (number of vertices) of the graph M (defined in Definition 4.2) be denoted as Θ. For all even $k \geq 4$ and $\Theta \equiv 0(\bmod k)$, if $\Theta \equiv 0$ $(\bmod k(k-1))$, we define

$$
\begin{equation*}
I(\Theta)=\left\{\left(l-1-(k-1) x, \frac{k}{2} x\right): x=0,1, \ldots, \frac{l-(k-1)}{(k-1)}\right\} \tag{9}
\end{equation*}
$$

and if $\Theta \equiv a \quad(\bmod k(k-1))$, when $0<a \equiv 0 \quad(\bmod k) \leq k(k-2)$, we define

$$
\begin{equation*}
I(\Theta)=\left\{\left(l-1-(k-1) x, \frac{k}{2} x\right): x=0,1, \ldots, \frac{l-\frac{a}{k}}{(k-1)}\right\} \tag{10}
\end{equation*}
$$

Lemma 4.4. For all even $k \geq 4$, if $\left(K_{2}, P_{k}\right)-U R D(M ; r, s)$ exists, then $\Theta \equiv 0(\bmod k)$ and $(r, s) \in I(\Theta)$.

Proof. The condition $\Theta \equiv 0(\bmod k)$ is trivial and hence $\Theta=k l, l \in \mathbb{Z}_{+}$. Let \mathcal{D} be an arbitrary $\left(K_{2}, P_{k}\right)-U R D(M ; r, s)$. By resolvability, we have

$$
r \frac{k l}{2}+s \frac{k l}{k}(k-1)=\frac{k l(l-1)}{2}
$$

Hence

$$
\begin{equation*}
r k+2 s(k-1)=k(l-1) \tag{11}
\end{equation*}
$$

Letting $s=\frac{k}{2} x$, Equation (11) gives $r=(l-1)-(k-1) x$. Since r and s cannot be negative, and x is an integer, the value of x must be in the range for $I(\Theta)$. (See Equations 9 and 10.)

Lemma 4.5. For any $\Theta \equiv 0(\bmod 4)$, there exists $\left(K_{2}, P_{4}\right)-U R D(M ; r, s)$.

Proof. Let $\Theta \equiv 0(\bmod 4)$, we have a $\Theta \equiv a(\bmod 12)$ with $a=0,4,8$. We prove in three cases.

Case 1. For $\Theta \equiv 0(\bmod 12)$, we have a $\Theta=12 x=4(3 x)$, where $x \geq 1$.
Subcase 1. If x is odd, then the graph

$$
M=\left(\frac{3 x-1}{2}\right) N=\left(\frac{3 x-3}{2}\right) N \cup N=\left(\frac{x-1}{2}\right) Q \cup N
$$

Hence, by Lemmas 4.1 and 4.3, we get the required URDs.
Subcase 2. If x is even, then the graph

$$
M=\left(\frac{3 x-2}{2}\right) N \cup F=\left(\frac{3 x-6}{2}\right) N \cup 2 N \cup F=\left(\frac{x-2}{2}\right) Q \cup P \cup F .
$$

Hence, by Lemmas 4.2 and 4.3 along with F, we get the required URDs.
Case 2. For $\Theta \equiv 4(\bmod 12)$, we have a $\Theta=12 x+4=4(3 x+1)$, where $x \geq 0$.

Subcase 1. If x is odd, then the graph

$$
M=\left(\frac{3 x-1}{2}\right) N \cup F=\left(\frac{3 x-3}{2}\right) N \cup N \cup F=\left(\frac{x-1}{2}\right) Q \cup N \cup F
$$

Hence, by Lemmas 4.1 and 4.3 along with F, we get the required URDs.
Subcase 2. If x is even, then the graph

$$
M=\left(\frac{3 x}{2}\right) N=\left(\frac{x}{2}\right) Q
$$

Hence, by Lemma 4.3, we get the required URDs.
Case 3. For $\Theta \equiv 8(\bmod 12)$, we have a $\Theta=12 x+8=4(3 x+2)$, where $x \geq 0$.

Subcase 1. If x is odd, then the graph

$$
M=\left(\frac{3 x+1}{2}\right) N=\left(\frac{3 x-3}{2}\right) N \cup 2 N=\left(\frac{x-1}{2}\right) Q \cup P .
$$

Hence, by Lemmas 4.2 and 4.3 , we get the required URDs.
Subcase 2. If x is even, then the graph

$$
M=\left(\frac{3 x}{2}\right) N \cup F=\left(\frac{x}{2}\right) Q \cup F
$$

Hence, by Lemma 4.3 along with F, we get the required URDs.
Lemma 4.6. For even $k \geq 6$ and $\Theta \equiv 0(\bmod k),\left(K_{2}, P_{k}\right)-U R D(M ; r, s)$ exists.

Proof. Let $\Theta \equiv 0(\bmod k)$, we have a $\Theta \equiv a(\bmod k(k-1))$ with $0 \leq a \equiv 0$ $(\bmod k) \leq k(k-2)$. We prove in six cases.

Case 1. For $\Theta \equiv 0(\bmod k(k-1))$, we have a $\Theta=k(k-1) x$, where $x \geq 1$.
Subcase 1. If x is odd, then the graph

$$
\begin{aligned}
M=\left(\frac{(k-1) x-1}{2}\right) N & =\left(\frac{(k-1) x-(k-2)-1}{2}\right) N \cup\left(\frac{k-2}{2}\right) N \\
& =\left(\frac{x-1}{2}\right) Q \cup\left(\frac{k-2}{2}\right) N .
\end{aligned}
$$

Hence, by Lemmas 4.1 and 4.3, we get the required URDs.
Subcase 2. If x is even, then the graph

$$
\begin{aligned}
M=\left(\frac{(k-1) x-2}{2}\right) N \cup F & =\left(\frac{(k-1)(x-2)}{2}\right) N \cup(k-2) N \cup F \\
& =\left(\frac{x}{2}\right) Q \cup P \cup N \cup F
\end{aligned}
$$

Hence, by Lemmas 4.1 to 4.3 along with F, we get the required URDs.
Case 2. For $\Theta \equiv k(\bmod k(k-1))$, we have a $\Theta=k(k-1) x+k=$ $k((k-1) x+1)$, where $x \geq 0$.

Subcase 1. If x is odd, then the graph

$$
\begin{aligned}
M=\left(\frac{(k-1) x-1}{2}\right) N \cup F & =\left(\frac{(k-2)(x-1)-1}{2}\right) N \cup\left(\frac{k-2}{2}\right) N \cup F \\
& =\left(\frac{x-1}{2}\right) Q \cup\left(\frac{k-2}{2}\right) N \cup F
\end{aligned}
$$

Hence, by Lemmas 4.1 and 4.3 along with F, we get the required URDs.
Subcase 2. If x is even, then the graph

$$
M=\left(\frac{(k-1) x}{2}\right) N=\left(\frac{x}{2}\right) Q
$$

Hence, by Lemma 4.3, we get the required URDs.
Case 3. For $\Theta \equiv 2 k(\bmod k(k-1))$, we have a $\Theta=k(k-1) x+2 k=$ $k((k-1) x+2)$, where $x \geq 0$.

Subcase 1. If x is odd, then the graph

$$
\begin{aligned}
M=\left(\frac{(k-1) x+1}{2}\right) N & =\left(\frac{(k-1) x+1-k}{2}\right) N \cup\left(\frac{k}{2}\right) N \\
& =\left(\frac{x-1}{2}\right) Q \cup P
\end{aligned}
$$

Hence, by Lemmas 4.2 and 4.3, we get the required URDs.
Subcase 2. If x is even, then the graph

$$
M=\left(\frac{(k-1) x}{2}\right) N \cup F=\left(\frac{x}{2}\right) Q \cup F
$$

Hence, by Lemma 4.3 along with F, we get the required URDs.
Case 4. For $\Theta \equiv 3 k(\bmod k(k-1))$, we have a $\Theta=k(k-1) x+3 k=$ $k((k-1) x+3)$, where $x \geq 0$.

Subcase 1. If x is odd, then the graph

$$
\begin{aligned}
M=\left(\frac{(k-1) x+1}{2}\right) N \cup F & =\left(\frac{(k-1) x+1-k}{2}\right) N \cup\left(\frac{k}{2}\right) N \cup F \\
& =\left(\frac{x-1}{2}\right) Q \cup P \cup F
\end{aligned}
$$

Hence, by Lemmas 4.2 and 4.3 along with F, we get the required URDs.
Subcase 2. If x is even, then the graph

$$
\begin{aligned}
M=\left(\frac{(k-1) x+2}{2}\right) N & =\left(\frac{(k-1) x+1}{2}\right) N \cup N \\
& =\left(\frac{x}{2}\right) Q \cup N .
\end{aligned}
$$

Hence, by Lemmas 4.1 and 4.3, we get the required URDs.
Case 5. For $\Theta \equiv a(\bmod k(k-1))$ with $3 k<a \equiv 0(\bmod k)<k(k-2)$, we have a $\Theta=k(k-1) y+a=k(k-1) y+k x=k((k-1) y+x)$, where $y \geq 0$ and $4 \leq x \leq k-3$.

Subcase 1. Let $x=2 z+2$, where $1 \leq z \leq \frac{k-6}{2}$ and even $y \geq 0$, then the graph

$$
\begin{aligned}
M=\left(\frac{(k-1) y+x-2}{2}\right) N \cup F & =\left(\frac{(k-1) y+2 z}{2}\right) N \cup F \\
& =\left(\frac{(k-1) y}{2}\right) N \cup z N \cup F \\
& =\left(\frac{y}{2}\right) Q \cup z N \cup F
\end{aligned}
$$

Hence, by Lemmas 4.1 and 4.3 along with F, we get the required URDs.

Subcase 2. Let $x=2 z+2$, where $1 \leq z \leq \frac{k-6}{2}$ and odd $y \geq 1$, then the graph

$$
\begin{aligned}
M=\left(\frac{(k-1) y+x-1}{2}\right) N & =\left(\frac{(k-1) y+2 z+1}{2}\right) N \\
& =\left(\frac{(k-1) y-k+1}{2}\right) N \cup\left(\frac{k}{2}\right) N \cup z N \\
& =\left(\frac{y-1}{2}\right) Q \cup P \cup z N
\end{aligned}
$$

Hence, by Lemmas 4.1 to 4.3, we get the required URDs.
Subcase 3. Let $x=2 z+3$, where $1 \leq z \leq \frac{k-6}{2}$ and odd $y \geq 1$, then the graph

$$
\begin{aligned}
M=\left(\frac{(k-1) y+x-2}{2}\right) N \cup F & =\left(\frac{(k-1) y+2 z+1}{2}\right) N \cup F \\
& =\left(\frac{(k-1) y-k+1}{2}\right) N \cup\left(\frac{k}{2}\right) N \cup z N \cup F \\
& =\left(\frac{y-1}{2}\right) Q \cup P \cup z N \cup F
\end{aligned}
$$

Hence, by Lemmas 4.1 to 4.3 along with F, we get the required URDs.
Subcase 4. Let $x=2 z+3$, where $1 \leq z \leq \frac{k-6}{2}$ and even $y \geq 0$, then the graph

$$
\begin{aligned}
M=\left(\frac{(k-1) y+x-1}{2}\right) N & =\left(\frac{(k-1) y+2 z+2}{2}\right) N \\
& =\left(\frac{(k-1) y}{2}\right) N \cup(z+1) N \\
& =\left(\frac{y}{2}\right) Q \cup(z+1) N
\end{aligned}
$$

Hence, by Lemmas 4.1 and 4.3, we get the required URDs.
Case 6. For $\Theta \equiv k(k-2)(\bmod k(k-1))$, we have a $\Theta=k(k-1) x+$ $k(k-2)=k((k-1) x+(k-2))$, where $x \geq 0$.

Subcase 1. If x is odd, then the graph

$$
\begin{aligned}
M=\left(\frac{(k-1) x+k-3}{2}\right) N & =\left(\frac{(x-1)-k+1}{2}\right) N \cup(k-2) N \\
& =\left(\frac{x-1}{2}\right) Q \cup\left(\frac{k}{2}\right) N \cup\left(\frac{k-4}{2}\right) N \\
& =\left(\frac{x-1}{2}\right) Q \cup P \cup\left(\frac{k-4}{2}\right) N
\end{aligned}
$$

Hence, by Lemmas 4.1 to 4.3, we get the required URDs.
Subcase 2. If x is even, then the graph

$$
\begin{aligned}
M=\left(\frac{(k-1) x+k-4}{2}\right) N \cup F & =\left(\frac{(k-1) x}{2}\right) N \cup\left(\frac{k-4}{2}\right) N \cup F \\
& =\left(\frac{x}{2}\right) Q \cup\left(\frac{k-4}{2}\right) N \cup F
\end{aligned}
$$

Hence, by Lemmas 4.1 and 4.3 along with F, we get the required URDs.
Theorem 4.1. For all even $k \geq 4$, if $\left(K_{2}, P_{k}\right)-U R D(M ; r, s)$ if and only if $\Theta \equiv 0(\bmod k)$ and $(r, s) \in I(\Theta)$.

Proof. Follows from Lemmas 4.4 to 4.6.

5 Sufficient conditions

In this section, we prove that the necessary conditions are sufficient for the existence of uniformly resolvable decomposition of K_{n} into r parallel classes containing K_{2}-factors and s parallel classes containing P_{k}-factors for any even $k \geq 4$ and $r, s \geq 0$.

Lemma 5.1. For all even $k \geq 4$ and $n \equiv 0(\bmod k)$, there exists

$$
\left(K_{2}, P_{k}\right)-U R D(M ; r, s)
$$

Proof. As $n \equiv 0(\bmod k)$, let $n=k l, l \in \mathbb{Z}_{+}$.
Case 1. l is odd. For $l=1$, there exists a required uniform resolvable decomposition, by Theorems 2.2 and 2.3. For $l \geq 3$, let $V\left(K_{k l}\right)=$ $\bigcup_{x=0}^{l-1} A_{x}$, where $A_{x}=\{(x, k x+i): 0 \leq i \leq k-1$ and the addition is taken modulo $k\}$. We obtain a new graph A from $K_{k l}$, by identifying each A_{x} with a single vertex a_{x} and joint a_{x} and a_{y} if there exists a complete bipartite graph $K_{\left|A_{x}\right|,\left|A_{y}\right|}$ between A_{x} and A_{y} in $K_{k l}$. Then the new graph $A \cong K_{l}$. By Theorem 2.2, the graph K_{l} has l near 1-factors say $F_{x}, 0 \leq x \leq l-1$ with the missing vertex x. Corresponding to each F_{x} with a missing vertex x of K_{l}, we have a $\left(\frac{l-1}{2}\right) K_{k, k}$ in $K_{k l}$ and corresponding to A_{x} in $K_{k l}$, we have a $K_{\left|A_{x}\right|} \cong K_{k}$. By Theorem 2.2, the graphs $K_{k, k}, K_{k}$ have $k,(k-1)$ 1-factors, respectively and by Lemma 2.1, the graph $K_{k, k}$ has a one 1-factor and $\frac{k}{2} P_{k}$-factors. Also by Theorem 2.3, the graph K_{k} has a $\frac{k}{2} P_{k}$-factors.

First we use $(k-1)$ 1-factors corresponding to each F_{x} from each $K_{k, k}$ and K_{k} to get $(r, s)=(k-1,0)$. Finally, we are left with a 1-factor in each $K_{k, k}$ and k isolated vertices in each K_{k}. Similarly when we use $\frac{k}{2} P_{k}$-factors we get $(r, s)=\left(0, \frac{k}{2}\right)$. By repeating this process for all l near 1-factors of K_{l}, we obtain $(r, s) \in l *\left\{(k-1,0),\left(0, \frac{k}{2}\right)\right\}$ and a new graph M (defined in Definition 4.2) in which there is only one 1-factor between each pair of A_{x} and A_{y} in $K_{k l}$. By Theorem 4.1, the graph M has a $\left(K_{2}, P_{k}\right)-U R D(r, s)$ with $(r, s) \in I(\Theta)$. Therefore, it is easy to see that

$$
I_{1}(n) \subseteq l *\left\{(k-1,0),\left(0, \frac{k}{2}\right)\right\}+I(\Theta)
$$

Case 2. l is even. For $l=2$, we have $K_{2 k} \equiv K_{k, k} \oplus 2 K_{k}$. Applying Theorems 2.2 and 2.3 and Lemma 2.1, it is easy to obtain $\left\{(k, 0),\left(1, \frac{k}{2}\right)\right\}+$ $\left\{(k-1,0),\left(0, \frac{k}{2}\right)\right\} \supseteq I_{1}(2 k)$. For $l \geq 4$, we have

$$
\begin{aligned}
K_{k l} & \equiv\left(K_{l} \otimes I_{k}\right) \oplus l K_{k} \\
& =\left(\left(F_{0} \oplus F_{1} \oplus \cdots \oplus F_{l-2}\right) \otimes I_{k}\right) \oplus l K_{k} \\
& =\left(\left(F_{0} \otimes I_{k}\right) \oplus\left(F_{1} \otimes I_{k}\right) \oplus \cdots \oplus\left(F_{l-2} \otimes I_{k}\right)\right) \oplus l K_{k}
\end{aligned}
$$

By Theorem 2.2, K_{l} has a $(l-1)$ 1-factors say $F_{x}, 0 \leq x \leq l-2$. Each F_{x} of K_{l} will gives rise to $\frac{l}{2} K_{k, k}$ in $K_{k l}$. By Theorem 2.2 and Lemma 2.1, the graph $K_{k, k}$ has a $k 1$-factors, and a 1 -factor and $\frac{k}{2} P_{k}$-factors respectively. First we use $(k-1)$ 1-factors corresponding to each F_{x} from each $K_{k, k}$ to get $(r, s)=(k-1,0)$. Similarly we use $\frac{k}{2} P_{k}$-factors to get $(r, s)=\left(0, \frac{k}{2}\right)$. Finally, we are left with a 1 -factor in each $K_{k, k}$. Repeating this process for all $(l-1)$ 1-factors of K_{l}, we obtain $(r, s) \in(l-1) *\left\{(k-1,0),\left(0, \frac{k}{2}\right)\right\}$ and a new graph M (defined in Definition 4.2) which is a subgraph of $K_{l} \otimes I_{k}$. By Theorems 2.2 and 2.3, the graph K_{k} has a $(k-1) 1$-factor and $\frac{k}{2} P_{k}$-factors. Hence $l K_{k}$ has a $\left(K_{2}, P_{k}\right)-U R D(r, s)$ with $(r, s) \in\left\{(k-1,0),\left(0, \frac{k}{2}\right)\right\}$. Therefore, it is easy to see that

$$
I_{1}(n) \subseteq(l-1) *\left\{(k-1,0),\left(0, \frac{k}{2}\right)\right\}+I(\Theta)+\left\{(k-1,0),\left(0, \frac{k}{2}\right)\right\}
$$

6 Main result

Lemmas 3.1 and 5.1 together give our main result.

Theorem 6.1. For all even $k \geq 4$, there exists a $\left(K_{2}, P_{k}\right)-U R D\left(K_{n} ; r, s\right)$ if and only if $n \equiv 0(\bmod k)$ and $(r, s) \in I_{1}(n)$.

Remark. In this paper, we completely solved the existence of a uniformly resolvable decomposition of K_{n} into r classes containing only copies of K_{2}-factors and s classes containing only copies of P_{k}-factors when k is even. Further we proved that the necessary conditions for odd k. Finding sufficient conditions for odd k is still open.

Acknowledgments

Authors thank the University Grant Commission, Government of India, New Delhi for its support through the Grant No.F.510/7/DRS-I/2016(SAPI). The second author thank the Department of Atomic Energy, Government of India, Mumbai for its support through the Grant No.DAE No.2/40(22)/2016/R\&D-11/15245.

References

[1] B. Alspach, J.C. Bermond and D. Sotteau, Decomposition into cycles I: Hamilton decompositions, in: "Cycles and Rays", Hahn, Gena, Sabidussi, Gert, Woodrow and Robert, Eds., Kluwer Academic Publisher, 1990.
[2] J.C. Bermond, K. Heinrich and M.L. Yu, Existence of resolvable path designs, Europ. J. Combin., 11 (1990), 205-211.
[3] F. Chen and H. Cao, Uniformly resolvable decompositions of K_{n} into K_{2} and $K_{1,3}$ graphs, Discrete Math., 339 (2016), 2056-2062.
[4] J.H. Dinitz, A.C.H. Ling and P. Danziger, Maximum uniformly resolvable designs with block sizes 2 and 4, Discrete Math., 309 (2009) 47164721.
[5] M. Gionfriddo and S. Milici, On the existence of uniformly resolvable decompositions of K_{n} and into paths and kites, Discrete Math., 313 (2013), 2830-2834.
[6] M. Gionfriddo and S. Milici, Uniformly resolvable \mathcal{H}-designs with $\left\{P_{3}, P_{4}\right\}$, Australas J. Combin., 60 (2014), 325-332.
[7] M. Gionfriddo and S. Milici, On uniformly resolvable $\left\{K_{2}, P_{k}\right\}$-designs with $k=3,4$, Contr. Discrete Math., 10 (2015), 126-133.
[8] M. Gionfriddo, S. Kucukcifci, S. Milici and E. Yazici, Uniformly resolvable $\left(C_{4}, K_{1,3}\right)$-designs of index 2, Contr. Discrete Math., 13 (2018), 23-34.
[9] F. Harary, Graph Theory, Addison-Wesley, 1969.
[10] J.D. Horton, Resolvable path designs, J. Combin. Theory Ser. A, 39 (1985), 117-131.
[11] S. Kucukcifci, G. Lo Faro, S. Milici and A. Tripodi, Resolvable 3-star designs, Discrete Math., 338 (2014), 608-614.
[12] S. Kucukcifci, S. Milici and Z. Tuza, Maximum uniformly resolvable decompositions of K_{n} and $K_{n}-I$ into 3 -stars and 3-cycles, Discrete Math., 338 (2015), 1667-1673.
[13] G. Lo Faro, S. Milici and A. Tripodi, Uniformly resolvable decompositions of K_{n} into paths on two, three and four vertices, Discrete Math., 338 (2015), 2212-2219.
[14] E. Mendelsohn and A. Rosa, One-Factorizations of the complete graph a survey, J. Graph Theory, 9 (1985), 43-65.
[15] S. Milici and Z. Tuza, Uniformly resolvable decompositions of K_{n} into P_{3} and K_{3} graphs, Discrete Math., 331 (2014), 137-141.
[16] R. Rees, Uniformly resolvable pairwise balanced designs with block sizes two and three, J. Combin. Theory Ser. A, 45 (1987), 207-225.
[17] H. Wei and G. Ge, Some more uniformly resolvable designs with block sizes 2 and 4, Discrete Math., 340 (2017), 2243-2249.
[18] M.L. Yu, Resolvable path designs of complete graphs, B.Sc. Thesis, Simon Fraser University, 1987.
[19] M.L. Yu, On path factorizations of complete multipartite graphs, Discrete Math., 122 (1993), 325-333.

