BULLETIN OF The Country of the Country of Co

Editors-in-Chief:

Marco Buratti, Donald Kreher, Ortrud Oellermann, Tran van Trung

Boca Raton, FL, U.S.A.

ISSN: 2689-0674 (Online) ISSN: 1183-1278 (Print)

Uniformly resolvable decompositions of K_n into 1-factors and P_k -factors

M. Ilayaraja¹, A. Shanmuga Vadivu² and A. Muthusamy^{*2}

¹Sona college of arts and science, Salem, Tamil Nadu, India ilaya@yahoo.com ²Periyar University, Salem, Tamil Nadu, India avshanmugaa@yahoo.com and ambdu@yahoo.com

Abstract

Let P_n and K_n respectively denote a path and a complete graph on *n* vertices. In this paper, it is shown that the necessary conditions are sufficient for the existence of uniformly resolvable decomposition of K_n into *r* parallel classes containing K_2 -factors and *s* parallel classes containing P_k -factors for any even $k \ge 4$ and $r, s \ge 0$.

1 Introduction

In this paper, the vertex set and edge set of graph G are denoted by V(G)and E(G) respectively. Let P_n, K_n and I_n respectively denote a path, a

*Corresponding author.

AMS (MOS) Subject Classifications: 05B30, 05C38.

Key words and phrases: Parallel class, Path, Resolvable decomposition.

complete graph and an independent set on n vertices. Given a collection of graphs \mathcal{H} , an \mathcal{H} -decomposition of a graph G is a set of subgraphs (blocks) of G whose edge sets partition E(G), and each subgraph is isomorphic to a graph from \mathcal{H} . A parallel class of a graph G is a set of subgraphs whose vertex sets partition V(G). A parallel class is called *uniform* if each blocks of the parallel class is isomorphic to the same graph. An \mathcal{H} -decomposition of a graph G is called (uniformly) resolvable if the blocks can be partitioned into (uniform) parallel classes. A resolvable \mathcal{H} -decomposition of G is also referred as \mathcal{H} -factorization of G. We write $G = H_1 \oplus H_2 \oplus \ldots \oplus H_k$, if H_1, H_2, \ldots, H_k are edge-disjoint subgraphs of G and $E(G) = E(H_1) \cup E(H_2) \cup \ldots \cup E(H_k)$.

For two graphs G and H their wreath product $G \otimes H$ has the vertex set $V(G) \times V(H)$ and their edge set $E(G \otimes H) = \{((g,h), (g',h')) | (g,g') \in E(G) \text{ or } g = g', \text{ and } (h,h') \in E(H)\}$. An *r*-factor of G is an *r*-regular spanning subgraph of G. A near 1-factor of G is a 1-regular subgraph which contains all but one vertex of G. Let $K_{k,k}$ be the complete bipartite graph with bipartition (X,Y), where $X = Y = \{0,1,\ldots,k-1\}$. The 1-factor of distance t consists of the edges $\{(i,i+t): 0 \leq i \leq k-1\}$, where the addition is taken modulo k.

Rees [16], obtained the necessary and sufficient conditions for the existence of uniformly resolvable (K_2, K_3) -designs of order n. Horton [10], has proved the existence of resolvable P_k -designs of order n for k = 3 and Bermond et.al [2], have proved it for $k \ge 4$. Many other results on uniformly resolvable decomposition of K_n into distinct subgraphs have been obtained in [4, 3, 13, 17, 5, 8, 15, 11, 12]. Recently [6, 7] Mario Gionfriddo and Salvatore Milici have investigated the existence of uniformly resolvable \mathcal{H} -designs with $\mathcal{H} = \{P_3, P_4\}$ and $\{K_2, P_k\}$ for k = 3, 4.

- We denote the existence of uniformly resolvable decomposition of G into r parallel classes consisting of K_2 -factors and s parallel classes consisting of P_k -factors by (K_2, P_k) -URD(G; r, s).
- Let $I_1(n)$ (resp., $I_2(n)$) denote the set of possible pairs (r, s) for which (K_2, P_k) - $URD(K_n; r, s)$ exists when k is even (resp., k is odd).

For all even $k \ge 4$ and $n \equiv 0 \pmod{k}$, if $n \equiv 0 \pmod{k(k-1)}$ we define

$$I_1(n) = \left\{ \left(n - 1 - (k - 1)x, \frac{k}{2}x \right) : x = 0, 1, \dots, \frac{n - (k - 1)}{(k - 1)} \right\}$$
(1)

and if $n \equiv a \pmod{k(k-1)}$, when $0 \le a \equiv 0 \pmod{k} \le k(k-2)$, we define

$$I_1(n) = \left\{ \left(n - 1 - (k - 1)x, \frac{k}{2}x \right) : x = 0, 1, \dots, \frac{n - \frac{a}{k}}{(k - 1)} \right\}.$$
 (2)

For all odd $k \ge 3$ and $n \equiv 0 \pmod{2k}$, if $n \equiv 0 \pmod{2k(k-1)}$ we define

$$I_2(n) = \left\{ ((n-1) - 2(k-1)x, kx) : x = 0, 1, \dots, \frac{n-2(k-1)}{2(k-1)} \right\}$$
(3)

and if $n \equiv a \pmod{2k(k-1)}$, when $0 \le a \equiv 0 \pmod{k} \le 2k(k-2)$, we define

$$I_2(n) = \left\{ ((n-1) - 2(k-1)x, kx) : x = 0, 1, \dots, \frac{n - \frac{a}{k}}{2(k-1)} \right\}.$$
 (4)

In this paper, we prove that the necessary conditions are sufficient for the existence of (K_2, P_k) - $URD(K_n; r, s)$ for all even $k \ge 4$. Further, we give necessary conditions for the existence of (K_2, P_k) - $URD(K_n; r, s)$ for all odd $k \ge 3$.

2 Preliminary results

In this section, we present some known results required to prove our main results.

Theorem 2.1. ([1] Walecki's Construction).

- 1. For all odd $n \ge 3$, the graph K_n has a Hamilton cycle decomposition.
- 2. For all even $n \ge 4$, the graph $K_n I$ has a Hamilton cycle decomposition with prescribed cycles $\{C, \sigma(C), \sigma^2(C), \ldots, \sigma^{\frac{n-4}{2}}(C)\}$. where $\sigma = (0)(12\ldots n-1)$ is a permutation, $C = (01\ldots n-1)$ is a Hamilton cycle and $I = \left\{ (0, \frac{n}{2}), (i, n-i) | 1 \le i \le \frac{n}{2} 1 \right\}$ is a 1-factor of K_n .

Theorem 2.2. [14, 9]

1. There exist a 1-factorization (resp., a near 1-factorization) of K_n if and only if n is even (resp., n is odd). 2. Every regular bipartite graph is 1-factorable.

Theorem 2.3. [18] For all even k, the graph K_n has a P_k -factorization if and only if $n \equiv k \pmod{k(k-1)}$.

Lemma 2.1. [18, 19] If k is even, then the graph $K_{k,k}$ can be decomposed into one 1-factor and $\frac{k}{2}P_k$ -factors.

3 Necessary conditions

In this section, we give necessary conditions for the existence of

$$(K_2, P_k)$$
- $URD(K_n; r, s)$

for all $k \geq 3$.

Lemma 3.1. For all even $k \ge 4$, if (K_2, P_k) - $URD(K_n; r, s)$ exists, then $n \equiv 0 \pmod{k}$ and $(r, s) \in I_1(n)$.

Proof. The condition $n \equiv 0 \pmod{k}$ is trivial. Let \mathcal{D} be an arbitrary (K_2, P_k) - $URD(K_n; r, s)$. By resolvability, we have

$$r\frac{n}{2} + s\frac{n}{k}(k-1) = \frac{n(n-1)}{2}$$
(5)

Hence

$$rk + 2s(k-1) = k(n-1)$$
(5)

Now (5) gives

$$rk \equiv k(n-1) \pmod{2(k-1)}$$
 and $2s(k-1) \equiv k(n-1) \pmod{k}$ (6)

If k is even, then (6) implies the following: Now letting $s = \frac{k}{2}x$, Equation (5) gives r = (n-1) - (k-1)x. Since r and s cannot be negative, and x is an integer, the value of x must be in the range for $I_1(n)$. (See Equations 1 and 2.)

Lemma 3.2. For all odd $k \geq 3$, if (K_2, P_k) - $URD(K_n; r, s)$ exists, then $n \equiv 0 \pmod{2k}$ and $(r, s) \in I_2(n)$.

Proof. The condition $n \equiv 0 \pmod{2k}$ is trivial. Let \mathcal{D} be an arbitrary (K_2, P_k) - $URD(K_n; r, s)$. By resolvability, we have

$$r\frac{n}{2} + s\frac{n}{k}(k-1) = \frac{n(n-1)}{2}$$

Ilayaraja, Vadivu and Muthusamy

r	s	n
$(k-2) \pmod{(k-1)}$	$0 \pmod{\frac{k}{2}}$	$0 \pmod{k(k-1)}$
$0 \pmod{(k-1)}$	$0 \pmod{\frac{k}{2}}$	$k \pmod{k(k-1)}$
$1 \pmod{(k-1)}$	$0 \pmod{\frac{k}{2}}$	$2k \pmod{k(k-1)}$
$(k-3) \pmod{(k-1)}$	$0 \pmod{\frac{k}{2}}$	$(k-2)k \pmod{k(k-1)}$

Table 1: For even k

Hence

$$rk + 2s(k-1) = k(n-1)$$
(7)

Now (7) gives

$$rk \equiv k(n-1) \pmod{2(k-1)}$$
 and $2s(k-1) \equiv k(n-1) \pmod{k}$ (8)

If k is odd, then (8) implies the following:

r	s	n
$(2k-3) \pmod{2(k-1)}$	$0 \pmod{k}$	$0 \pmod{2k(k-1)}$
$1 \pmod{2(k-1)}$	$0 \pmod{k}$	$2k \pmod{2k(k-1)}$
$3 \pmod{2(k-1)}$	$0 \pmod{k}$	$4k \pmod{2k(k-1)}$
	•	•
$(2k-5) \pmod{2(k-1)}$	$0 \pmod{k}$	$2k(k-2) \pmod{2k(k-1)}$

Now letting s = kx, Equation (7) gives r = (n-1) - 2(k-1)x. Since r and s cannot be negative, and x is an integer, the value of x must be in the range for $I_2(n)$. (See Equations 3 and 4.)

4 Base construction

We present some definitions and results which are required to prove our main result.

Definition 4.1. For each Hamilton cycle h_i of K_l , we define N_i to be the graph with vertex set $V(N_i) = V(K_l \times I_k)$ and edge set $E(N_i)$, where

$$V(K_l) = \{x : 0 \le x \le l - 1\},\$$

$$V(I_k) = \{j : 1 \le j \le k\} \text{ and}\$$

$$E(N_i) = \{((x, j), (y, j + 1)) : (x, y) \in E(h_i), \ 1 \le j \le k\}.$$

(Addition taken modulo k, i.e., $1, 2, \ldots, k$). See Figure 1.

Figure 1: The graph N_i , i = 1, 2. Definition 4.2. Let M be a graph with $V(M) = V(N_i)$ and the edge set

$$E(M) = \begin{cases} \bigcup_{i=1}^{l-1} E(N_i), \text{ when } l \text{ is odd} \\ \bigcup_{i=1}^{l-2} E(N_i) \bigcup F, \text{ when } l \text{ is even} \\ \bigcup_{i=1}^{l-2} E(N_i) \bigcup F, \text{ when } l \text{ is even} \end{cases}$$

where F is a 1-factor of M (which correspond to the 1-factor of K_l) (see Figure 2) as follows: $F = \left\{ \left((0, a), \left(\frac{l}{2}, a+1\right) \right), \left((i, a), \left(l-i, a+1\right) \right) \middle| 0 \le a \le k-1, \ 1 \le i \le \frac{l}{2} - 1 \right\}.$

Remark. Clearly the graph M defined in Definition 4.2 has an N-decomposition, $N_i \cong N$.

ILAYARAJA, VADIVU AND MUTHUSAMY

Figure 2: The graph M

Definition 4.3. Let (r_1, s_1) and (r_2, s_2) be two pairs of non-negative integers. Then we define $(r_1, s_1) + (r_2, s_2) = (r_1 + r_2, s_1 + s_2)$. Usually positive integers are denoted as \mathbb{Z}_+ . If $A = \{(r_1, s_1) | r_1, s_1 \in \mathbb{Z}_+\}$; $B = \{(r_2, s_2) | r_2, s_2 \in \mathbb{Z}_+\}$ and $h \in \mathbb{Z}_+$, then $A + B = \{(r_1, s_1) + (r_2, s_2) | (r_1, s_1) \in A, (r_2, s_2) \in B\}$ and h * A denotes the set of all pairs of non-negative integers which can be obtained by adding any h elements of A together (repetitions of elements of A are allowed).

Now, let us define the following subgraphs in M for our convenience as follows:

$$P = \bigcup_{i=1}^{\frac{k}{2}} N_i = \frac{k}{2}N$$
 and $Q = \bigcup_{i=1}^{k-1} N_i = (k-1)N$

Lemma 4.1. For all even $k \ge 4$, there exists a (K_2, P_k) -URD(N; r, s) with (r, s) = (2, 0).

Proof. For any $i, 0 \le i \le \frac{k-2}{2}$, we define subsets of V(N) as follows: $X_1^i = \{(x,2i) | \ 0 \le x \le l-1\}, \ X_2^i = \{(x,2i+1) | \ 0 \le x \le l-1\}, \ Y_1^i = \{(x,2i+1) | \ 0 \le x \le l-1\}$ and $Y_2^i = \{(x,2i+2) | \ 0 \le x \le l-1\}$, where the addition is taken modulo k. Then the edges between the vertex sets X_1^i and X_2^i will form one 1-factor in N. Similarly the sets Y_1^i and Y_2^i will form one more 1-factor in N. Hence, we obtain the required resolvable decomposition.

Lemma 4.2. For all even $k \ge 4$, there exists a (K_2, P_k) -URD(P; r, s) with each $(r, s) \in \{(1, \frac{k}{2}), (k, 0)\}.$

Proof. We prove in two cases.

Case 1. $(1, \frac{k}{2})$.

We first construct one P_k -factor from each N_j , $1 \leq j \leq \frac{k}{2}$ as follows: For any fixed j, $1 \leq j \leq \frac{k}{2}$, we define the subsets of $V(N_j)$ as $X^j = \{(x, 2(j-1)) | 0 \leq x \leq l-1\}$ and $Y^j = \{(x, 2(j-1)+1) | 0 \leq x \leq l-1\}$, where the addition is taken modulo k. Now keep the edges between the subsets X^j and Y^j for future purpose. The remaining graph will form one P_k -factor in N_j . By repeating the process for each N_j , we obtain $\frac{k}{2} P_k$ -factors in P. Now the edges between the sets X^j and Y^j from each N_j together gives one 1-factor in P. Therefore, we get the required uniform resolvable decomposition.

Case 2. (k, 0).

Each N_j , $1 \le j \le \frac{k}{2}$ can be decomposed into two 1-factors, by Lemma 4.1. Hence, we obtain the required resolvable decomposition of P.

Lemma 4.3. For all even $k \ge 4$, there exists a (K_2, P_k) -URD(Q; r, s) with each $(r, s) \in \{(2(k-1), 0), (k-1, \frac{k}{2}), (0, k)\}.$

Proof. We prove in three cases.

Case 1. (2(k-1), 0). Clearly the graph Q = (k-1)N has a 2(k-1) 1-factors, by Lemma 4.1.

Case 2. $(k-1, \frac{k}{2})$. Take $Q = (k-1)N = (\frac{k-2}{2})N + (\frac{k}{2})N = X + Y$. By Lemmas 4.1 and 4.2, the graphs X and Y have (k-2) 1-factors and one 1-factor and $\frac{k}{2} P_k$ -factors respectively. Hence, we obtain (k-1) 1-factors and $\frac{k}{2} P_k$ -factors in Q.

Case 3. (0, k).

We first construct one P_k -factor from each N_j , $1 \le j \le k-1$ as follows: For any fixed j, $1 \le j \le k-1$, we define the subsets of $V(N_j)$ as $X^j = \{(x, j-1)|0 \le x \le l-1\}$ and $Y^j = \{(x, j)|0 \le x \le l-1\}$. Now keep the edges between the subsets X^j and Y^j for future purpose. The remaining

Ilayaraja, Vadivu and Muthusamy

graph will form one P_k -factor in N_j . By repeating the process for each N_j , we obtain (k-1) P_k -factors in Q. Now the edges between the sets X^j and Y^j from each N_j which were kept aside together gives one P_k -factor in Q. Therefore, we get the required resolvable decomposition.

The order (number of vertices) of the graph M (defined in Definition 4.2) be denoted as Θ . For all even $k \ge 4$ and $\Theta \equiv 0 \pmod{k}$, if $\Theta \equiv 0 \pmod{k(k-1)}$, we define

$$I(\Theta) = \left\{ \left(l - 1 - (k - 1)x, \frac{k}{2}x \right) : x = 0, 1, \dots, \frac{l - (k - 1)}{(k - 1)} \right\}$$
(9)

and if $\Theta \equiv a \pmod{k(k-1)}$, when $0 < a \equiv 0 \pmod{k} \le k(k-2)$, we define

$$I(\Theta) = \left\{ \left(l - 1 - (k - 1)x, \frac{k}{2}x \right) : x = 0, 1, \dots, \frac{l - \frac{a}{k}}{(k - 1)} \right\}.$$
 (10)

Lemma 4.4. For all even $k \ge 4$, if (K_2, P_k) -URD(M; r, s) exists, then $\Theta \equiv 0 \pmod{k}$ and $(r, s) \in I(\Theta)$.

Proof. The condition $\Theta \equiv 0 \pmod{k}$ is trivial and hence $\Theta = kl, \ l \in \mathbb{Z}_+$. Let \mathcal{D} be an arbitrary (K_2, P_k) -URD(M; r, s). By resolvability, we have

$$r\frac{kl}{2} + s\frac{kl}{k}(k-1) = \frac{kl(l-1)}{2}$$

Hence

$$rk + 2s(k-1) = k(l-1) \tag{11}$$

Letting $s = \frac{k}{2}x$, Equation (11) gives r = (l-1) - (k-1)x. Since r and s cannot be negative, and x is an integer, the value of x must be in the range for $I(\Theta)$. (See Equations 9 and 10.)

Lemma 4.5. For any $\Theta \equiv 0 \pmod{4}$, there exists (K_2, P_4) -URD(M; r, s).

Proof. Let $\Theta \equiv 0 \pmod{4}$, we have a $\Theta \equiv a \pmod{12}$ with a = 0, 4, 8. We prove in three cases.

Case 1. For $\Theta \equiv 0 \pmod{12}$, we have a $\Theta = 12x = 4(3x)$, where $x \ge 1$.

Subcase 1. If x is odd, then the graph

$$M = \left(\frac{3x-1}{2}\right)N = \left(\frac{3x-3}{2}\right)N \cup N = \left(\frac{x-1}{2}\right)Q \cup N.$$

Hence, by Lemmas 4.1 and 4.3, we get the required URDs.

Subcase 2. If x is even, then the graph

$$M = \left(\frac{3x-2}{2}\right)N \cup F = \left(\frac{3x-6}{2}\right)N \cup 2N \cup F = \left(\frac{x-2}{2}\right)Q \cup P \cup F.$$

Hence, by Lemmas 4.2 and 4.3 along with F, we get the required URDs.

Case 2. For $\Theta \equiv 4 \pmod{12}$, we have a $\Theta = 12x + 4 = 4(3x + 1)$, where $x \ge 0$.

Subcase 1. If x is odd, then the graph

$$M = \left(\frac{3x-1}{2}\right)N \cup F = \left(\frac{3x-3}{2}\right)N \cup N \cup F = \left(\frac{x-1}{2}\right)Q \cup N \cup F.$$

Hence, by Lemmas 4.1 and 4.3 along with F, we get the required URDs.

Subcase 2. If x is even, then the graph

$$M = \left(\frac{3x}{2}\right)N = \left(\frac{x}{2}\right)Q$$

Hence, by Lemma 4.3, we get the required URDs.

Case 3. For $\Theta \equiv 8 \pmod{12}$, we have a $\Theta = 12x + 8 = 4(3x + 2)$, where $x \ge 0$.

Subcase 1. If x is odd, then the graph

$$M = \left(\frac{3x+1}{2}\right)N = \left(\frac{3x-3}{2}\right)N \cup 2N = \left(\frac{x-1}{2}\right)Q \cup P.$$

Hence, by Lemmas 4.2 and 4.3, we get the required URDs.

Subcase 2. If x is even, then the graph

$$M = \left(\frac{3x}{2}\right)N \cup F = \left(\frac{x}{2}\right)Q \cup F.$$

Hence, by Lemma 4.3 along with F, we get the required URDs.

Lemma 4.6. For even $k \ge 6$ and $\Theta \equiv 0 \pmod{k}$, (K_2, P_k) -URD(M; r, s) exists.

Proof. Let $\Theta \equiv 0 \pmod{k}$, we have a $\Theta \equiv a \pmod{k(k-1)}$ with $0 \le a \equiv 0 \pmod{k} \le k(k-2)$. We prove in six cases.

Case 1. For $\Theta \equiv 0 \pmod{k(k-1)}$, we have a $\Theta = k(k-1)x$, where $x \ge 1$.

Subcase 1. If x is odd, then the graph

$$M = \left(\frac{(k-1)x - 1}{2}\right)N = \left(\frac{(k-1)x - (k-2) - 1}{2}\right)N \cup \left(\frac{k-2}{2}\right)N \\ = \left(\frac{x-1}{2}\right)Q \cup \left(\frac{k-2}{2}\right)N.$$

Hence, by Lemmas 4.1 and 4.3, we get the required URDs.

Subcase 2. If x is even, then the graph

$$M = \left(\frac{(k-1)x-2}{2}\right)N \cup F = \left(\frac{(k-1)(x-2)}{2}\right)N \cup (k-2)N \cup F$$
$$= \left(\frac{x}{2}\right)Q \cup P \cup N \cup F.$$

Hence, by Lemmas 4.1 to 4.3 along with F, we get the required URDs.

Case 2. For $\Theta \equiv k \pmod{k(k-1)}$, we have a $\Theta = k(k-1)x + k = k((k-1)x + 1)$, where $x \ge 0$.

Subcase 1. If x is odd, then the graph

$$M = \left(\frac{(k-1)x-1}{2}\right)N \cup F = \left(\frac{(k-2)(x-1)-1}{2}\right)N \cup \left(\frac{k-2}{2}\right)N \cup F$$
$$= \left(\frac{x-1}{2}\right)Q \cup \left(\frac{k-2}{2}\right)N \cup F.$$

Hence, by Lemmas 4.1 and 4.3 along with F, we get the required URDs.

Subcase 2. If x is even, then the graph

$$M = \left(\frac{(k-1)x}{2}\right)N = \left(\frac{x}{2}\right)Q.$$

Hence, by Lemma 4.3, we get the required URDs.

Case 3. For $\Theta \equiv 2k \pmod{k(k-1)}$, we have a $\Theta = k(k-1)x + 2k = k((k-1)x + 2)$, where $x \ge 0$.

Subcase 1. If x is odd, then the graph

$$M = \left(\frac{(k-1)x+1}{2}\right)N = \left(\frac{(k-1)x+1-k}{2}\right)N \cup \left(\frac{k}{2}\right)N$$
$$= \left(\frac{x-1}{2}\right)Q \cup P.$$

Hence, by Lemmas 4.2 and 4.3, we get the required URDs.

Subcase 2. If x is even, then the graph

$$M = \left(\frac{(k-1)x}{2}\right)N \cup F = \left(\frac{x}{2}\right)Q \cup F.$$

Hence, by Lemma 4.3 along with F, we get the required URDs.

Case 4. For $\Theta \equiv 3k \pmod{k(k-1)}$, we have a $\Theta = k(k-1)x + 3k = k((k-1)x + 3)$, where $x \ge 0$.

Subcase 1. If x is odd, then the graph

$$M = \left(\frac{(k-1)x+1}{2}\right)N \cup F = \left(\frac{(k-1)x+1-k}{2}\right)N \cup \left(\frac{k}{2}\right)N \cup F$$
$$= \left(\frac{x-1}{2}\right)Q \cup P \cup F.$$

Hence, by Lemmas 4.2 and 4.3 along with F, we get the required URDs.

Subcase 2. If x is even, then the graph

$$M = \left(\frac{(k-1)x+2}{2}\right)N = \left(\frac{(k-1)x+1}{2}\right)N \cup N$$
$$= \left(\frac{x}{2}\right)Q \cup N.$$

Hence, by Lemmas 4.1 and 4.3, we get the required URDs.

Case 5. For $\Theta \equiv a \pmod{k(k-1)}$ with $3k < a \equiv 0 \pmod{k} < k(k-2)$, we have a $\Theta = k(k-1)y + a = k(k-1)y + kx = k((k-1)y + x)$, where $y \ge 0$ and $4 \le x \le k-3$.

Subcase 1. Let x = 2z + 2, where $1 \le z \le \frac{k-6}{2}$ and even $y \ge 0$, then the graph

$$M = \left(\frac{(k-1)y+x-2}{2}\right)N \cup F = \left(\frac{(k-1)y+2z}{2}\right)N \cup F$$
$$= \left(\frac{(k-1)y}{2}\right)N \cup zN \cup F$$
$$= \left(\frac{y}{2}\right)Q \cup zN \cup F.$$

Hence, by Lemmas 4.1 and 4.3 along with F, we get the required URDs.

Subcase 2. Let x = 2z + 2, where $1 \le z \le \frac{k-6}{2}$ and odd $y \ge 1$, then the graph

$$\begin{split} M &= \Big(\frac{(k-1)y+x-1}{2}\Big)N &= \Big(\frac{(k-1)y+2z+1}{2}\Big)N \\ &= \Big(\frac{(k-1)y-k+1}{2}\Big)N \cup \Big(\frac{k}{2}\Big)N \cup zN \\ &= \Big(\frac{y-1}{2}\Big)Q \cup P \cup zN. \end{split}$$

Hence, by Lemmas 4.1 to 4.3, we get the required URDs.

Subcase 3. Let x = 2z + 3, where $1 \le z \le \frac{k-6}{2}$ and odd $y \ge 1$, then the graph

$$M = \left(\frac{(k-1)y+x-2}{2}\right)N \cup F = \left(\frac{(k-1)y+2z+1}{2}\right)N \cup F$$
$$= \left(\frac{(k-1)y-k+1}{2}\right)N \cup \left(\frac{k}{2}\right)N \cup zN \cup F$$
$$= \left(\frac{y-1}{2}\right)Q \cup P \cup zN \cup F.$$

Hence, by Lemmas 4.1 to 4.3 along with F, we get the required URDs.

Subcase 4. Let x = 2z + 3, where $1 \le z \le \frac{k-6}{2}$ and even $y \ge 0$, then the graph

$$M = \left(\frac{(k-1)y+x-1}{2}\right)N = \left(\frac{(k-1)y+2z+2}{2}\right)N$$
$$= \left(\frac{(k-1)y}{2}\right)N \cup (z+1)N$$
$$= \left(\frac{y}{2}\right)Q \cup (z+1)N.$$

Hence, by Lemmas 4.1 and 4.3, we get the required URDs.

Case 6. For $\Theta \equiv k(k-2) \pmod{k(k-1)}$, we have a $\Theta = k(k-1)x + k(k-2) = k((k-1)x + (k-2))$, where $x \ge 0$.

Subcase 1. If x is odd, then the graph

$$M = \left(\frac{(k-1)x+k-3}{2}\right)N = \left(\frac{(x-1)-k+1}{2}\right)N \cup (k-2)N$$
$$= \left(\frac{x-1}{2}\right)Q \cup \left(\frac{k}{2}\right)N \cup \left(\frac{k-4}{2}\right)N$$
$$= \left(\frac{x-1}{2}\right)Q \cup P \cup \left(\frac{k-4}{2}\right)N.$$

Hence, by Lemmas 4.1 to 4.3, we get the required URDs.

Subcase 2. If x is even, then the graph

$$M = \left(\frac{(k-1)x+k-4}{2}\right)N \cup F = \left(\frac{(k-1)x}{2}\right)N \cup \left(\frac{k-4}{2}\right)N \cup F$$
$$= \left(\frac{x}{2}\right)Q \cup \left(\frac{k-4}{2}\right)N \cup F.$$

Hence, by Lemmas 4.1 and 4.3 along with F, we get the required URDs. \Box

Theorem 4.1. For all even $k \ge 4$, if (K_2, P_k) -URD(M; r, s) if and only if $\Theta \equiv 0 \pmod{k}$ and $(r, s) \in I(\Theta)$.

Proof. Follows from Lemmas 4.4 to 4.6.

5 Sufficient conditions

In this section, we prove that the necessary conditions are sufficient for the existence of uniformly resolvable decomposition of K_n into r parallel classes containing K_2 -factors and s parallel classes containing P_k -factors for any even $k \ge 4$ and $r, s \ge 0$.

Lemma 5.1. For all even $k \ge 4$ and $n \equiv 0 \pmod{k}$, there exists

$$(K_2, P_k)$$
- $URD(M; r, s)$.

Proof. As $n \equiv 0 \pmod{k}$, let $n = kl, l \in \mathbb{Z}_+$.

Case 1. l is odd. For l = 1, there exists a required uniform resolvable decomposition, by Theorems 2.2 and 2.3. For $l \ge 3$, let $V(K_{kl}) = \bigcup_{x=0}^{l-1} A_x$, where $A_x = \{(x, kx+i) : 0 \le i \le k-1 \text{ and the addition is taken modulo } k\}$. We obtain a new graph A from K_{kl} , by identifying each A_x with a single vertex a_x and joint a_x and a_y if there exists a complete bipartite graph $K_{|A_x|,|A_y|}$ between A_x and A_y in K_{kl} . Then the new graph $A \cong K_l$. By Theorem 2.2, the graph K_l has l near 1-factors say F_x , $0 \le x \le l-1$ with the missing vertex x. Corresponding to each F_x with a missing vertex x of K_l , we have a $\binom{l-1}{2}K_{k,k}$ in K_{kl} and corresponding to A_x in K_{kl} , we have a $K_{|A_x|} \cong K_k$. By Theorem 2.2, the graphs $K_{k,k}$, K_k have k, (k-1) 1-factors, respectively and by Lemma 2.1, the graph K_k has a one 1-factor and $\frac{k}{2} P_k$ -factors. Also by Theorem 2.3, the graph K_k has a $\frac{k}{2} P_k$ -factors.

First we use (k-1) 1-factors corresponding to each F_x from each $K_{k,k}$ and K_k to get (r,s) = (k-1,0). Finally, we are left with a 1-factor in each $K_{k,k}$ and k isolated vertices in each K_k . Similarly when we use $\frac{k}{2} P_k$ -factors we get $(r,s) = (0, \frac{k}{2})$. By repeating this process for all l near 1-factors of K_l , we obtain $(r,s) \in l * \{(k-1,0), (0, \frac{k}{2})\}$ and a new graph M (defined in Definition 4.2) in which there is only one 1-factor between each pair of A_x and A_y in K_{kl} . By Theorem 4.1, the graph M has a (K_2, P_k) -URD(r,s) with $(r,s) \in I(\Theta)$. Therefore, it is easy to see that

$$I_1(n) \subseteq l * \left\{ (k-1,0), \left(0,\frac{k}{2}\right) \right\} + I(\Theta).$$

Case 2. *l* is even. For l = 2, we have $K_{2k} \equiv K_{k,k} \oplus 2K_k$. Applying Theorems 2.2 and 2.3 and Lemma 2.1, it is easy to obtain $\left\{ (k,0), \left(1, \frac{k}{2}\right) \right\} + \left\{ (k-1,0), \left(0, \frac{k}{2}\right) \right\} \supseteq I_1(2k)$. For $l \ge 4$, we have $K_{kl} \equiv (K_l \otimes I_k) \oplus l \ K_k$ $= \left((F_0 \oplus F_1 \oplus \cdots \oplus F_{l-2}) \otimes I_k \right) \oplus l \ K_k$ $= \left((F_0 \otimes I_k) \oplus (F_1 \otimes I_k) \oplus \cdots \oplus (F_{l-2} \otimes I_k) \right) \oplus l \ K_k.$

By Theorem 2.2, K_l has a (l-1) 1-factors say F_x , $0 \le x \le l-2$. Each F_x of K_l will gives rise to $\frac{l}{2}K_{k,k}$ in K_{kl} . By Theorem 2.2 and Lemma 2.1, the graph $K_{k,k}$ has a k 1-factors, and a 1-factor and $\frac{k}{2} P_k$ -factors respectively. First we use (k-1) 1-factors corresponding to each F_x from each $K_{k,k}$ to get (r,s) = (k-1,0). Similarly we use $\frac{k}{2} P_k$ -factors to get $(r,s) = (0, \frac{k}{2})$. Finally, we are left with a 1-factor in each $K_{k,k}$. Repeating this process for all (l-1) 1-factors of K_l , we obtain $(r,s) \in (l-1)*\{(k-1,0), (0, \frac{k}{2})\}$ and a new graph M (defined in Definition 4.2) which is a subgraph of $K_l \otimes I_k$. By Theorems 2.2 and 2.3, the graph K_k has a (k-1) 1-factor and $\frac{k}{2} P_k$ -factors. Hence lK_k has a (K_2, P_k) -URD(r, s) with $(r, s) \in \{(k-1,0), (0, \frac{k}{2})\}$. Therefore, it is easy to see that

$$I_1(n) \subseteq (l-1) * \left\{ (k-1,0), \left(0, \frac{k}{2}\right) \right\} + I(\Theta) + \left\{ (k-1,0), \left(0, \frac{k}{2}\right) \right\}.$$

6 Main result

Lemmas 3.1 and 5.1 together give our main result.

Theorem 6.1. For all even $k \ge 4$, there exists a (K_2, P_k) -URD $(K_n; r, s)$ if and only if $n \equiv 0 \pmod{k}$ and $(r, s) \in I_1(n)$.

Remark. In this paper, we completely solved the existence of a uniformly resolvable decomposition of K_n into r classes containing only copies of K_2 -factors and s classes containing only copies of P_k -factors when k is even. Further we proved that the necessary conditions for odd k. Finding sufficient conditions for odd k is still open.

Acknowledgments

Authors thank the University Grant Commission, Government of India, New Delhi for its support through the Grant No.F.510/7/DRS-I/2016(SAP-I). The second author thank the Department of Atomic Energy, Government of India, Mumbai for its support through the Grant No.DAE No.2/40(22)/2016/R&D-11/15245.

References

- B. Alspach, J.C. Bermond and D. Sotteau, Decomposition into cycles I: Hamilton decompositions, in: "Cycles and Rays", Hahn, Gena, Sabidussi, Gert, Woodrow and Robert, Eds., Kluwer Academic Publisher, 1990.
- [2] J.C. Bermond, K. Heinrich and M.L. Yu, Existence of resolvable path designs, Europ. J. Combin., 11 (1990), 205–211.
- [3] F. Chen and H. Cao, Uniformly resolvable decompositions of K_n into K_2 and $K_{1,3}$ graphs, Discrete Math., **339** (2016), 2056–2062.
- [4] J.H. Dinitz, A.C.H. Ling and P. Danziger, Maximum uniformly resolvable designs with block sizes 2 and 4, Discrete Math., 309 (2009) 4716– 4721.
- [5] M. Gionfriddo and S. Milici, On the existence of uniformly resolvable decompositions of K_n and into paths and kites, *Discrete Math.*, **313** (2013), 2830–2834.
- [6] M. Gionfriddo and S. Milici, Uniformly resolvable \mathcal{H} -designs with $\{P_3, P_4\}$, Australas J. Combin., **60** (2014), 325–332.

- [7] M. Gionfriddo and S. Milici, On uniformly resolvable $\{K_2, P_k\}$ -designs with k = 3, 4, Contr. Discrete Math., **10** (2015), 126–133.
- [8] M. Gionfriddo, S. Kucukcifci, S. Milici and E. Yazici, Uniformly resolvable $(C_4, K_{1,3})$ -designs of index 2, Contr. Discrete Math., **13** (2018), 23–34.
- [9] F. Harary, Graph Theory, Addison-Wesley, 1969.
- [10] J.D. Horton, Resolvable path designs, J. Combin. Theory Ser. A, 39 (1985), 117–131.
- [11] S. Kucukcifci, G. Lo Faro, S. Milici and A. Tripodi, Resolvable 3-star designs, *Discrete Math.*, **338** (2014), 608–614.
- [12] S. Kucukcifci, S. Milici and Z. Tuza, Maximum uniformly resolvable decompositions of K_n and K_n - I into 3-stars and 3-cycles, Discrete Math., **338** (2015), 1667–1673.
- [13] G. Lo Faro, S. Milici and A. Tripodi, Uniformly resolvable decompositions of K_n into paths on two, three and four vertices, *Discrete Math.*, **338** (2015), 2212–2219.
- [14] E. Mendelsohn and A. Rosa, One-Factorizations of the complete graph a survey, J. Graph Theory, 9 (1985), 43–65.
- [15] S. Milici and Z. Tuza, Uniformly resolvable decompositions of K_n into P_3 and K_3 graphs, Discrete Math., **331** (2014), 137–141.
- [16] R. Rees, Uniformly resolvable pairwise balanced designs with block sizes two and three, J. Combin. Theory Ser. A, 45 (1987), 207–225.
- [17] H. Wei and G. Ge, Some more uniformly resolvable designs with block sizes 2 and 4, Discrete Math., 340 (2017), 2243–2249.
- [18] M.L. Yu, Resolvable path designs of complete graphs, B.Sc. Thesis, Simon Fraser University, 1987.
- [19] M.L. Yu, On path factorizations of complete multipartite graphs, Discrete Math., 122 (1993), 325–333.