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Abstract

In this paper, we completely determine the spectrum of connected
unicyclic bipartite graphs with seven edges decomposing complete
graphs.

1 Introduction

Graph decompositions is a classical graph theory topic that has been ex-
tensively studied for decades. In particular, decompositions of complete
graphs into mutually isomorphic subgraphs has attracted most attention.
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A common approach is to define a class of graphs, often infinite, and de-
termine which complete graphs admit a decomposition into such graphs.
Probably the best known example of this is the Ringel Conjecture [24] that
every tree on n+ 1 vertices decomposes the complete graph K2n+1.

Another approach is to classify all graphs with a given number of vertices
and/or edges and determine which complete graphs they decompose. It
seems that all connected graphs with up to six edges have been fully clas-
sified, as well as some classes of graphs with seven edges, and almost all
graphs with eight edges. An overview of related results is presented in
Section 3.

We continue in this direction by classifying all connected unicyclic bipartite
graphs with seven edges decomposing complete graphs.

Our methods are mostly based on Rosa-type labelings, introduced by Rosa
in 1967 [25].

2 Definitions and tools

We start with some basic definitions. A unicyclic graph is a simple finite
graph without loops containing exactly one cycle.

Definition 2.1. Let H be a graph. A decomposition of the graph H is a
collection of pairwise edge-disjoint subgraphs D = {G1, G2, . . . , Gs} such
that every edge of H appears in exactly one subgraph Gi ∈ D.

We say that the collection forms a G-decomposition of H (also known as
an (H,G)-design) if each subgraph Gr is isomorphic to a given graph G. If
H is the complete graph Kn, then we can use just the term G-design.

Because we focus solely on decompositions of complete graphs, we only use
the term G-decomposition or G-design.

Definition 2.2. A G-decomposition of the complete graph Kn is cyclic if
there exists an ordering (x0, x1, . . . , xn−1) of the vertices ofKn and a permu-
tation ϕ of the vertices of Kn defined by ϕ(xj) = xj+1 for j = 0, 1, . . . , n−1
inducing an automorphism on D, where the addition is performed modulo
n.

Definition 2.3. A G-decomposition of Kn is 1-rotational if there exists
an ordering (x0, x1, . . . , xn−1) of the vertices of Kn and a permutation ϕ
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of the vertices of Kn defined by ϕ(xj) = xj+1 for j = 0, 1, . . . , n − 2 and
ϕ(xn−1) = xn−1 inducing an automorphism on D, where the addition is
performed modulo n− 1.

We will use the interval notation [k, n] for the set of consecutive integers
{k, k + 1, k + 2, . . . , n}.

One of the basic and most useful tools for finding G-designs is the following
labeling.

Definition 2.4 (Rosa [25]). Let G be a graph with n edges. A ρ-labeling
(sometimes also called rosy labeling) of G is an injective function

f : V (G)→ [0, 2n]

that induces the length function ` : E(G)→ [1, n] defined as

`(uv) = min
{
|f(u)− f(v)|, 2n+ 1− |f(u)− f(v)|

}

with the property that

{`(uv) : uv ∈ E(G)} = [1, n].

A graph G possessing a ρ-labeling decomposes the complete graph, as
proved by Rosa in 1967.

Theorem 2.5 (Rosa [25]). Let G be a graph with n edges. A cyclic G-
decomposition of the complete graph K2n+1 exists if and only if G admits
a ρ-labeling.

When a graph G with n edges has a vertex w of degree one and G − w
admits a ρ-labeling, a modification of ρ-labeling can be used to find a
G-decomposition of K2n. Such labeling is known as 1-rotational ρ-labeling
and was first used by Huang and Rosa in [17], although a formal definition
was not stated there.

Definition 2.6 (Huang, Rosa [17]). Let G be a graph with n edges and
edge ww′ where deg(w) = 1. A 1-rotational ρ-labeling of G consists of an
injective function f : V (G)→ [0, 2n−2]∪{∞} with f(w) =∞ that induces
a length function ` : E(G)→ [1, n− 1] ∪ {∞} which is defined as

`(uv) = min
{
|f(u)− f(v)|, 2n− 1− |f(u)− f(v)|

}

for u, v 6= w and
`(ww′) =∞
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with the property that

{`(uv) : uv ∈ E(G)} = [1, n− 1] ∪ {∞}.

This technique was used in [17] and proved only for particular graphs stud-
ied in that paper. The following theorem is considered folklore.

Theorem 2.7. Let G be a graph with n edges. If G admits a 1-rotational
ρ-labeling, then there exists a 1-rotational G-decomposition of the complete
graph K2n.

One can observe that a necessary condition for Kn to admit a G-design for
a graph G with 7 edges is that the number of edges in Kn must be divisible
by 7, implying n ≡ 0, 1 (mod 7). For the graphs we are interested in, the
above theorems only allow decompositions of K14 and K15. Therefore, we
will need additional tools, which are some more restrictive modifications of
ρ-labeling.

Definition 2.8 (Rosa [25]). Let G be a bipartite graph with n edges and
a vertex bipartition U ∪ V . An α-labeling of G is a ρ-labeling f with the
additional property that there exist λ such that f(u) ≤ λ < f(v) ≤ n for
every u ∈ U and v ∈ V . The length function is then defined as

`(uv) = f(v)− f(u).

There are also labelings that are less restrictive yet also produce G-decom-
positions of larger complete graphs; that is, K2nk+1 for any k ≥ 1 when G
has n edges.

Definition 2.9 (El-Zanati, Vanden Eynden [8]). Let G be a bipartite graph
with n edges and a vertex bipartition U ∪ V . A σ+-labeling of G is a ρ-
labeling f with the additional property that for every u ∈ U and v ∈ V if
uv ∈ E(G), then f(u) < f(v) and the length function is defined as

`(uv) = f(v)− f(u).

The σ+-labeling is a generalization of the α-labeling and can be viewed as
“locally α-labeling.” Not all labels in set U need to be smaller that all
labels in V , but rather only labels of all neighbors of a given vertex u ∈ U
have to be larger than that of u and vice versa, all neighbors of v ∈ V
have to have labels smaller than the label of v. Even the relaxed conditions
guarantee decompositions of K2nk+1, as proved by El-Zanati and Vanden
Eynden [8].
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Theorem 2.10 (El-Zanati, Vanden Eynden [8]). Let G be a bipartite graph
with n edges. If G admits a σ+-labeling, then there exists a cyclic G-
decomposition of the complete graph K2nk+1 for every k ≥ 1.

To decompose complete graphs with 2nk vertices into graphs with n edges,
we will use the 1-rotational σ+-labeling. Although the technique using such
labeling has been used before (see, e.g., [9]), a formal definition has not been
introduced yet.

Definition 2.11. Let G be a bipartite graph with n edges, vertex w of de-
gree one and an edge ww′. A 1-rotational σ+-labeling of G is a 1-rotational
ρ-labeling with the additional property that for every u ∈ U and v ∈ V
if u, v 6= w and uv ∈ E(G), then f(u) < f(v) and the length function is
defined as

`(uv) = f(v)− f(u)

for u, v 6= w and
`(ww′) =∞.

It is easy to see that when we have a σ+-labeling where the longest edge
is uw, vertex w is of degree one and all other vertices have labels at most
2n− 2, the labeling can be transformed to a 1-rotational σ+-labeling.

Observation 2.12. Let G be a bipartite graph with n edges, an edge uw
where w is of degree one and a σ+-labeling f . If f(w) > f(x) for every x 6=
w and `(uw) = n, then there exists a 1-rotational σ+-labeling g : V (G) →
[0, 2n− 2] ∪ {∞} defined as g(x) = f(x) for x 6= w and g(w) =∞.

The following analogue of the above theorems was proved recently.

Theorem 2.13 (Fahnenstiel, Froncek [9]). Let G be a bipartite graph with
n edges and a vertex of degree one. If G admits a 1-rotational σ+-labeling,
then there exists a 1-rotational G-decomposition of the complete graph K2nk

for every k ≥ 1.

In our constructions, we will also need to decompose complete bipartite
graphs. The tools are similar, based on labelings as well. An equivalent
of ρ-labeling for bipartite graphs is called bilabeling and has been used for
years by numerous authors; it is considered folklore.

Definition 2.14. Let G be a bipartite graph with n edges and a vertex
bipartition U ∪ V . An α-bilabeling of G is a function f : V (G)→ [0, n− 1]
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that is injective when restricted to sets U and V, respectively, with the
additional properties that there exist λ such that f(u) ≤ λ < n and for
every u ∈ U and v ∈ V and there is also an induced length function defined
as

`(uv) = f(v)− f(u)

with the property that

{`(uv) : uv ∈ E(G)} = [0, n− 1].

The following theorem is also considered folklore.

Theorem 2.15. Let G be a bipartite graph with n edges. If G admits an
α-bilabeling, then there exists a G-decomposition of the complete bipartite
graph Knk,nm for every k,m ≥ 1.

It is easy to observe that every α-labeling f can be transformed into an α-
bilabeling f ′ by setting f ′(u) = f(u) for every u ∈ U and f ′(v) = f(v)− 1
for every v ∈ V. Thus, we have the following corollary.

Corollary 2.16. Let G be a bipartite graph with n edges. If G admits
an α-labeling, then there exists a G-decomposition of the complete bipartite
graph Knk,nm for every k,m ≥ 1.

3 Related results

It seems that there has been no attempt to completely determine the de-
composition spectrum for graphs with seven edges. We first summarize
what is known about classification of graphs of similar size, that is, graphs
where |E(G)| ≤ 8.

3.1 Graphs with at most four edges

The cases of one or two edges are trivial. For three edges, the graph is
either a K3, K1,3, P4, P2 ∪ P3 or 3K2. The case of K3 is a Steiner triple
system, whose existence was solved by Kirkman [20]. The paw (or claw)
K1,3 was settled by Cain [5] and the path P4 by Bermond [1]. The union
of paths P2 ∪ P3 was solved by Bermond, Huang, Rosa and Sotteau [2].
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The matching M3 = 3K2 was solved along with all other matchings by de
Werra [27].

There are five connected graphs with four edges. The case of C4 was classi-
fied by Kotzig [21] and the unicyclic graph with a triangle by Bermond and
Schönheim [3]. The path P5 and the tree with a unique vertex of degree
three were settled by Huang and Rosa [17], and the star K1,4 by Yamamoto
et al. [28].

The forests with six vertices, that is, 2P3, P4 ∪ P2 and K1,3 ∪ K2 were
classified by Yin and Gong [29].

We believe that the case of P3 ∪ 2P2 is a folklore, and the results follow for
instance from the existence of its σ+- or 1-rotational σ+-labeling. Finally,
matching M4 = 4K2 was solved by de Werra [27] as already mentioned
above.

3.2 Graphs with five edges

Bermond, Huang, Rosa and Sotteau [2] studied the decomposition spectrum
for all graphs with at most five vertices. They determined it completely for
graphs with at most five edges.

Huang and Rosa [17] classified the spectra for all trees on up to nine vertices.

Graphs with five edges and more than five vertices that are not trees must be
disconnected. They are either forests, or C4 ∪K2, or contain one triangle.
Those containing a cycle were settled by Yin and Gong [29] except for
K3 ∪ 2K2. We were unable to find any results on forests with five edges
except when it is a matching, which was solved by de Werra [27].

3.3 Graphs with six edges

The only graph on four vertices with six edges is K4 and was treated by
Hanani [16]. The graphs on five vertices have been completely settled by
Bermond, Huang, Rosa and Sotteau [2] except for a decomposition of K24

into P5, the complement of P5. This case was solved by Blinco [4] and
independently by Kang and Wang [19].
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Yin and Gong [29] found necessary and sufficient conditions for the exis-
tence of a G-design for graphs with six vertices and 3 ≤ |E(G)| ≤ 6.

Graphs with six edges and more than six vertices are either trees (treated
in [17]) or disconnected. We were unable to find any results on the discon-
nected graphs.

3.4 Graphs with seven edges

We focus on graphs with seven edges. Those with five vertices were investi-
gated in [2], [4], and [19]. Cui [7], Blinco [4], and Tian, Du, and Kang [26]
studied connected graphs with seven edges and six vertices.

Theorem 3.1 (Cui [7], Blinco [4], Tian et al. [26]). There exists a G-de-
composition of Kn into a connected graph G on six vertices and seven edges
if and only if the necessary conditions are met except for eight exceptions
when n = 7 or n = 8.

The only disconnected graph with seven edges and six vertices is K4 ∪K2.
The spectrum for this graph was determined by Tian, Du and Kang [26].

All graphs with seven edges and seven vertices are either unicyclic or dis-
connected, and we investigate the connected bipartite ones in the following
section.

Connected graphs with seven edges and eight vertices are trees, which were
investigated by Huang and Rosa [17]. We are not aware of any attempt to
classify graphs (necessarily disconnected) with seven edges and more than
eight vertices, or disconnected graphs with seven edges and seven vertices.

3.5 Graphs with eight edges

Graphs with eight edges have been extensively studied recently (see, e.g., [6,
9, 10, 11, 12, 13, 14, 15, 18]) and there are fewer than ten graphs, all of
them disconnected, where the spectrum is not known.
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4 Non-existence results

In this section, we present proofs of non-existence of G-decompositions of
Kn for certain graphs G and n = 7, 8.

We denote the graphs decomposing Kn by Gi, where i = 1, 2, 3 when n = 7
and i = 1, 2, 3, 4 when n = 8. By degGi

(xj) we denote the degree of vertex
xj in Gi. The graph degree sequence of a graph Gi is the list of the vertex
degrees in Gi and will be denoted by gds(Gi) = (a1, a2, . . . , an), where n is
the order of the respective graph Kn and aj = degGi

(xj). It will be listed
in such a way that the sequence for Gi will be non-increasing. Notice that
for n = 8 we will have the last entry in gds(Gi) equal to zero. To simplify
our arguments when n = 8, we will consider the vertex of degree zero to
belong to the respective copy Gi.

The vertex degree sequence of a vertex xj is the list of the degrees of xj in
the three or four copies of G and will be denoted by vds(xj). By vertex
degree set we understand the unordered multiset of degrees of a particular
vertex, denote it DS(xj) and usually list in non-increasing order.

For convenience, we first present a catalog of all connected unicyclic bipar-
tite graphs with seven edges in Figure 1. We use the notation introduced
by Reed and Wilson in [23].

Proposition 4.1. The graphs B39, B40 and B46 do not decompose K7.

Proof. We proceed by contradiction and assume such decompositions exist.

First we observe that the three graphs are factors of K7 and thus the vertex
degree sets related to a potential decomposition cannot contain any 0’s.

For graph B39, let degG1
(x1) = 4 and degG1

(x2) = 3. Hence, the edge x1x2
is not in G1. Because we have degG1

(x1) = 4, it follows that degG2
(x1) = 1

and also degG3
(x1) = 1. We can now assume without loss of generality

that x1x2 is an edge in G2. But then we must have degG2
(x2) ≥ 3, and the

sum of degrees of x2 is already equal to six. This leaves no room for edges
incident with x2 in G3, and B39 cannot decompose K7.

For graph B40, let degG1
(x1) = 5. Because B40 is a factor of K7, we must

have degGi
(x1) ≥ 1 for i = 2, 3. This is impossible, as then x1 would be of

degree at least seven in K7.
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Figure 1: The connected unicyclic bipartite graphs with 7 edges B39–B48

The graph degree sequence of B46 is gds(B46) = (3, 3, 3, 2, 1, 1, 1). Then
degG1

(xj) = 3 for j = 1, 2, 3 and without loss of generality we can assume
the vertex degree sequence vds(x1) = (3, 2, 1), since the degrees in K7 must
add up to six. Similarly, for x2 we must have vds(x2) = (3, 2, 1) or (3, 1, 2).
But the former is impossible, since it would mean that in copy G2 there are
two vertices of degree two, which is not the case. For the same reasons, we
must have vds(x3) = (3, 2, 1) or (3, 1, 2), but none of them is possible, as
either G2 or G3 would then have two vertices of degree two. This completes
the proof.

Proposition 4.2. The graphs B39 and B40 do not decompose K8.

Proof. We again proceed by contradiction, assuming such decompositions
exist.

For graph B39 we observe that every edge has one endvertex of degree three
or four, and the other of degree one or two. Let x1, x2, x3, x4 be the vertices
of the four-cycle in G1 such that degG1

(x1) = 4 and degG1
(x3) = 3. By our
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observation above, assuming the edge x1x3 is in G2, we have one of x1, x3
of degree at least three in G2, because every edge in B39 is incident with a
vertex of degree either 4 or 3.

Therefore we have a vertex xj , j ∈ {1, 3} such that degG1
(xj) ≥ 3 and

degG2
(xj) ≥ 3.

Now we consider four-cycle xi1 , xi2 , xi3 , xi4 in G3. Let degG3
(xi1) = 4 and

degG3
(xi3) = 3. The edge xi1xi3 belongs to Gs, s ∈ {1, 2, 4}.

We again obtain that there exists a vertex xik with k ∈ {1, 3} such that
degG3

(xik) ≥ 3 and degGs
(xik) ≥ 3. Obviously, j 6= ik, otherwise

degG1
(xj) ≥ 3, degG2

(xj) ≥ 3 and degG3
(xj) ≥ 3,

which is impossible.

Thus we must have at least two vertices xj , xt such that they have degree
sets {4, 3, 0, 0} or {3, 3, 1, 0}. We now change our previous vertex notation
and without loss of generality set j = 1 and t = 2.

Case 1. DS(x1) = DS(x2) = {4, 3, 0, 0}. But then the edge x1x2 must have
in G1 or G2 both endvertices of degree at least three, which is impossible.

Case 2. DS(x1) = DS(x2) = {3, 3, 1, 0}. Let x3, x4, x5, x6 be the vertices
having degree four in one of the graphs Gi. We have exhausted two 0’s and
two 1’s in the degree sets, hence we can assume without loss of generality
that DS(x3) = DS(x4) = {4, 1, 1, 1} and DS(x5) = DS(x6) = {4, 2, 1, 0}.
This forces DS(x7) = DS(x8) = {2, 2, 2, 1}. But then because x8 is in each
Gi of degree one or two, the other endvertex of every edge x8xj must be
of degree three or more. This is impossible, since x7 is always of degree at
most two.

Case 3. DS(x1) = {4, 3, 0, 0} and DS(x2) = {3, 3, 1, 0}. Let x3, x4, x5 be
the vertices having degree four in one of the graphs Gi, i 6= 1. We have
exhausted three of the four 0’s and one of the twelve 1’s in the degree
sets, hence we can assume without loss of generality DS(x3) = DS(x4) =
{4, 1, 1, 1} and DS(x5) = {4, 2, 1, 0} or DS(x5) = {4, 1, 1, 1}. Let x6 be the
vertex having degree three in its degree set. If DS(x5) = {4, 2, 1, 0}, we
must have DS(x6) = {3, 2, 1, 1} (since all 0’s have been already assigned).
If DS(x5) = {4, 1, 1, 1}, we must have DS(x6) = {3, 2, 2, 0}. That is because
the only other unassigned degrees now are 2’s and 1’s, and we cannot have
such a set containing zero that would sum up to seven. In either case we are
only left with unassigned 2’s and 1’s, and again have DS(x7) = DS(x8) =
{2, 2, 2, 1}, which was shown to be impossible in Case 2.
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Now we look at the graph B40. The degree sequence of B40 is (5, 2, 2, 2,
1, 1, 1, 0) and we must have vds(x1) = (5, 2, 0, 0) or (5, 1, 1, 0). But we
have only four 0’s available for all four graph degree sequences, and if x1
is of degree 0 in two of them, there must be a vertex xj with a 5 but
no 0 in vds(xj). However, it is obvious that every vertex xj , which is of
degree five in one of the graphs Gi must be of degree zero in another copy,
otherwise the sum of its degrees would exceed seven. Hence, we must have
vds(x1) = (5, 1, 1, 0) and there are three other vertices whose vertex degree
sequence is a permutation of 5, 1, 1, 0.

Consequently, there are four vertices with their degree sequences consisting
of 2, 2, 2, 1 in some order. Let these vertices be y1, y2, y3, y4. In each Gi, we
have one of the vertices yj adjacent to two other vertices ys and yt. But
then the subgraph of K8 induced on y1, y2, y3, y4 would contain at least
eight edges, which is absurd.

5 Decompositions of K7 and K8

We now present decompositions of K7 into graphs B41–B45, B47, and B48.
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Figure 2: B41-decomposition of K7
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Figure 4: B43-decomposition of K7
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Figure 5: B44-decomposition of K7
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Figure 7: B47-decomposition of K7
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Figure 8: B48-decomposition of K7

The following observation arises directly from the figures above.

Observation 5.1. There exists a G-decomposition of K7 where G is any
of B41–B45, B47, B48.

Next we present packings of K7 with graphs G−e for the graphs that do not
decompose K7, that is, B39, B40, and B46. These packings will be later
used for decompositions of graphs K14 −K7. The dashed edge is shown to
illustrate the whole graph G including the edge e.
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Figure 9: Packing of K7 with B39− e
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Figure 10: Packing of K7 with B40− e
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Figure 11: Packing of K7 with B46− e

Now we show decompositions of K8 into B41–B48. The decompositions
into B41, B43, B44, and B47 were provided by Meszka [22]. Recall that
decompositions of K8 into B39 and B40 do not exist.
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Figure 12: B41-decomposition of K8

0

1

2

34

5

6

7 0

1

2

34

5

6

7 0

1

2

34

5

6

7 0

1

2

34

5

6

7

Figure 13: B42-decomposition of K8
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Figure 14: B43-decomposition of K8
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Figure 15: B44-decomposition of K8
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Figure 16: B45-decomposition of K8
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Figure 17: B46-decomposition of K8
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Figure 18: B47-decomposition of K8
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Figure 19: B48-decomposition of K8

Observation 5.2. There exists a G-decomposition of K8 where G is any
of B41–B48.

6 Decompositions of Kn for n ≡ 0, 1(mod 14)

All decompositions of Kn for n ≡ 1 (mod 14) are based on α-labelings of
the respective graphs.

The labelings we use can be easily modified to 1-rotational σ+-labelings by
replacing the label 7 with ∞ except for graph B42, where a 1-rotational
σ+-labeling does not exist. We present the labelings in Figures 20–23.
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Figure 20: σ+-labelings of B39, B40, B41 (left to right)
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Figure 21: σ+-labelings of B43, B44, B45 (left to right)
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Figure 22: σ+-labelings of B46, B47, B48 (left to right)

Decomposition into unicyclic bipartite graphs

69



6
47

5

3
1

2

0

2

3

6

47

5

∞
46

5

3
1

2

0

2

3

∞

47

5

Figure 23: α-labeling (left) and 1-rotational ρ-labeling (right) of B42

The result for n ≡ 1 (mod 14) now follows immediately from Theorem 2.10.

Theorem 6.1. There exists a G-decomposition of Kn for all G ∼= B39,
B40, . . . , B48 and every n ≡ 1 (mod 14).

For n ≡ 0 (mod 14), we first present a B42-decomposition of K14k.

Lemma 6.2. There exists a B42-decomposition of K14k for any k ≥ 1.

Proof. As shown in Figure 23, there exist both α-labeling and 1-rotational
ρ-labeling of the graph B42. Then by Corollary 2.16 and Theorem 2.7 there
exists a B42-decomposition of K14,14 and K14, respectively.

For every k ≥ 2, the graph K14k can be decomposed into k copies of K14

and
(
k
2

)
copies of K14,14. The conclusion follows.

Now, the result for n ≡ 0 (mod 14) follows from Theorem 2.13 and
Lemma 6.2.

Theorem 6.3. There exists a G-decomposition of Kn for G ∼= B39, B40,
. . . , B48 and every n ≡ 0 (mod 14).

7 Decompositions of Kn for n ≡ 7 (mod 14)

To decompose complete graphs with n = 14k + 7 vertices, we mostly use
our previous results. We first break up the graph K14k+7 into K14k,K7,
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and 2k copies of K7,7. Then we decompose each of them separately, using
labelings or decompositions provided in previous sections. For the three
graphs that do not decompose K7, namely B39, B40 and B46, we split
K14k+7 into K14k, 2k− 1 copies of K7,7 and one copy of K14 −K7. In this
case, we need to find a G-decomposition of K14 − K7 for G ∼= B39, B40
and B46.

Decompositions of K14k were shown in Section 6. Now we formally prove
the existence of decompositions of K7,7. Although the Lemma in fact fol-
lows from Corollary 2.16, we prefer to show the details and introduce some
notation that will be later useful for decompositions of graphs K14 −K7.

Lemma 7.1. Each graph G ∼= B39, B40, . . . , B48 decomposes the complete
bipartite graph K7,7.

Proof. We take the α-labelings f shown in Figures 20–23 and transform
them into α-bilabelings f ′ by setting f ′(u) = f(u) for every u ∈ U (always
shown in the left column) and f ′(v) = f(v) − 1 for every v ∈ V (always
in the right column). For clarity, we identify the vertices with their labels
and add subscript 1 to labels of vertices in U and subscript 2 to labels in
V . The graph K7,7 then has vertex sets U = {01, 11, . . . , 61} and V =
{02, 12, . . . , 62}.

The graph obtained this way is the copy G1 of G. Then for i = 2, 3, . . . , 7
if in G1 we have f ′(u) = a1, in Gi the label of u will be (a + i − 1)1 and
similarly when f ′(v) = b2, in Gi the label will be (b+ i− 1)2. Because each
copy G1 contains exactly one edge of each length 0, 1, . . . , 6, the collection
G1, G2, . . . , G7 forms a decomposition of K7,7.

To illustrate the Lemma 7.1 method, we present in Figure 24 the first four
copies of B39.
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Figure 24: The first four copies of a B39-decomposition of K7,7
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To decompose K14 − K7 into graphs B39, B40 and B46, we proceed as
follows. We always “borrow” one edge from Gi for i = 1, 2, 3 and add it
(shown dashed) to the corresponding graph G−e = Hi shown in Figures 9–

11 to produce a copy H̃i. Then we replace the borrowed edge with the
appropriate excess edge from the packing leave (dash-dot) to get the copy

G̃i.

Lemma 7.2. The graphs B39, B40 and B46 decompose K14 − K7, the
complete graph K14 with a hole of size 7.

Proof. For each of the three graphs, the copies H̃1, H̃2, H̃3, G̃1, G̃2, G̃3 and
G4 are shown in Figures 25, 26 and 27, respectively.

The remaining copies G5, G6 and G7 arise from the α-bilabelings described
in the proof of Lemma 7.1.
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Figure 25: Copies H̃i and G̃i of B39 in K14 −K7

The main result of this section now follows easily.
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Figure 26: Copies H̃i and G̃i of B40 in K14 −K7

Theorem 7.3. There exists a G-decomposition of Kn for all G ∼= B39,
B40, . . . , B48 and every n ≡ 7 (mod 14) except when n = 7 and G ∼= B39,
B40 or B46.

8 Decompositions of Kn for n ≡ 8 (mod 14)

To decompose complete graphs with n = 14k+ 8 vertices, we again use our
previous results. For k = 0, the results follow directly from the previous
sections. For k ≥ 1, we split the graph K14k+8 into several subgraphs
first, then decompose each of them separately. The ingredients will include
K14k,K14k−7,K15,K14 −K7,K8,7, and K7,7.

Decompositions of K14k and K15 were shown in Section 6, and those of
K14k−7,K14 −K7 and K7,7 in Section 7.

Therefore, we only need to show decompositions of K8,7. Because no es-
tablished labeling techniques can be used here, we need to find ad hoc
decompositions. One can see that if G decomposes K2,7 or K4,7, then it
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Figure 27: Copies H̃i and G̃i of B46 in K14 −K7

also decomposes K8,7. We were able to find decompositions of K2,7 or
K4,7 in most cases, only graph B43 required decompositions of K4,14. The
decompositions are presented in the figures below.
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Figure 28: Decompositions of K2,7 into B39 (left) and B40 (right)

Froncek and Kubesa

74



01
11
21
31

02
12
22
32
42
52
62

01
11
21
31

02
12
22
32
42
52
62

01
11
21
31

02
12
22
32
42
52
62

01
11
21
31

02
12
22
32
42
52
62

G1 G2 G3 G4

Figure 29: Decomposition of K4,7 into B41
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Figure 30: Decomposition of K4,7 into B42
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Figure 31: Decomposition of K4,14 into B43

Notice that for B43 we actually had to decompose K4,14. We present first
four copies, the remaining four can be obtained by increasing each of the
labels b2 to (b + 7)2, taken modulo 14. Observe that the edges 2112 and
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1152 are the only edges a1b2 for a = 0, 1, 2, 3 and b = 0, 1, . . . , 6 not used in
the first four copies, but are replaced by edges 2182 and 11122 instead.

Next we present decompositions of K4,7 into graphs B44–B48.
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Figure 32: Decomposition of K4,7 into B44

01
11
21
31

02
12
22
32
42
52
62

01
11
21
31

02
12
22
32
42
52
62

01
11
21
31

02
12
22
32
42
52
62

01
11
21
31

02
12
22
32
42
52
62

G1 G2 G3 G4

Figure 33: Decomposition of K4,7 into B45
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Figure 34: Decomposition of K4,7 into B46
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Figure 35: Decomposition of K4,7 into B47
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Figure 36: Decomposition of K4,7 into B48

From the decompositions shown in Figures 28–36, we immediately have the
following.

Lemma 8.1. The graphs B39, . . . , B42 and B44, . . . , B48 decompose the
complete bipartite graph K8,7; the graph B43 decomposes K8,14.

Now we can prove the main result of this section.

Theorem 8.2. There exists a G-decomposition of Kn for all G ∼= B39,
B40, . . . , B48 and every n ≡ 8 (mod 14) except when n = 8 and G ∼= B39
or B40.

Proof. Decompositions of K8 for B41, B42, . . . , B48 follow from Observa-
tion 5.1, and non-existence for n = 8 and G ∼= B39, B40 follows from
Proposition 4.2. Hence in what follows, we always assume that k ≥ 1.
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For B39 and B40, when k = 1, we break up K22 into K15, K14 −K7 and
K8,7. Their decompositions into B39 and B40 exist by Theorem 6.1 and
Lemmas 7.2 and 8.1.

When k > 1, we break up K14k+8 into K15,K14k−7, and 2k − 1 copies of
each K7,7 and K8,7. Their decompositions exist by Theorems 6.1 and 7.3,
and Lemmas 7.1 and 8.1.

For B43, we split up K14k+8 into K8,K14k, and k copies of K8,14, and we
haveB43-decompositions by Observation 5.1, Theorem 6.3, and Lemma 8.1.

For the remaining graphs, we split K14k+8 into K8,K14k, and 2k copies of
each K7,7 and K8,7, the desired decompositions of which exist by Observa-
tion 5.2, Theorem 6.3 and Lemmas 7.1 and 8.1.

9 Conclusion

Our main result now follows directly from the obvious necessary condition,
Propositions 4.1 and 4.2, and Theorems 6.1, 6.3, 7.3, and 8.2.

Theorem 9.1. There exists a G-decomposition of Kn for G ∼= B39, B40,
. . . , B48 if and only if n ≡ 0, 1 (mod 7) except when n = 7 and G ∼= B39,
B40 or B46; or when n = 8 and G ∼= B39 or B40.
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