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Introduction

One of the most prominent Slovak mathematicians Anton Kotzig was born
on October 22, 1919 in the village of Kočovce in northwestern Slovakia. He
died on April 20, 1991 in Montreal. A brief account of his life and work
appeared in [14].

Although a statistician and actuary by training, Kotzig was also well versed
in economy and authored many works about applications of mathematics
in economy. He also contributed to measurements, additive number theory
and game theory. But the center of his scientific activity was graph the-
ory and he is justifiably considered the founder of graph theory in Slovakia
[113]. He came to graph theory by studying the book by Hungarian mathe-
matician Dénes König [38] which for a long time was the only book on graph
theory in existence. In the fifties and sixties of the last century, Kotzig made
many fundamental contributions to graph theory. Unfortunately not all of
these contributions attracted the attention that they deserved. They found
their way into the well of foundations of graph theory only slowly, partly
due to the fact that they were written mainly in Slovak. While Slovak is a
wonderful language, it is not widely spoken. Many of Kotzig’s fundamental
results were rediscovered much later by others. (Some of his early papers
were written in German but appeared in obscure journals; starting with
early sixties, several of his papers were written in Russian: of course, all
of his later papers are written in English, with a few in French.) Kotzig
was a many-sided personality. Those who knew him appreciated him as
an unending source of original ideas, problems and suggestions. He was
very good at attracting young people to research in graph theory. Many
have become his collaborators. He was not as well versed in the literature
as some of his contemporaries but he made up for it by his inventiveness,
often rediscovering on his own already existing results. In his later years
he mastered both French and English.
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His scientific career spans two separate periods. He worked in Bratislava,
Slovakia until 1969, the year he turned 50. In 1969 he emigrated to Canada
where after one year in Calgary he stayed in Montreal until his death in
1991.

At the beginning of the sixties, he founded a very successful graph theory
seminar in Bratislava which he himself led until his departure for Canada
in 1969. This seminar is one of the longest existing graph theory seminars
worldwide and continues to function till this day [113]. Many of its early
participants became later successful and well known mathematicians. Let
us mention here just a few: Juraj Bosák [112], [114], Štefan Znám [115], Ján
Plesńık, Pavol Glivjak, Jozef Širáň, Peter Horák, Martin Škoviera, Roman
Nedela, Robert Jajcay. The Bratislava graph theory seminar is currently
lead by Martin Škoviera.

It is virtually impossible to do justice in assessing Kotzig’s graph theory con-
tributions in a short survey article. The influence of his work is enormous
and most of his contributions are of lasting value. The proper evaluation
of Kotzig’s life work awaits an effort of a professional biographer. The best
I can do here is to attempt to highlight his most important contributions
in graph theory as contained in his numerous publications.

Anton Kotzig
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Dissertation “Connectivity and regular con-
nectivity of finite graphs” and related topics

The beginnings of graph theory in Slovakia can safely be described as hav-
ing their roots in the 1956 opus of Anton Kotzig entitled “Connectivity
and regular connectivity of finite graphs” [44] which remains relevant to
this day. One can say that in 1956 graph theory was in its infancy; at
that time, only one book on graph theory was in existence. It was the
book “Theorie der endlichen und unendlichen Graphen” by the Hungarian
mathematician Dénes König [38] which appeared in 1936. Any conferences
in graph theory still lay in the future. This was the time when graph the-
ory was sometimes referred to as “the slums of topology”. While Kotzig’s
dissertation contains amazingly many fundamental results, it did not com-
mand such attention as it deserved. This is partly due to the fact that
it was not distributed widely, and it was written in Slovak. Many results
contained in Kotzig’s dissertation were rediscovered by others much later.
But it is also true that some of the results Kotzig discovered on his own
have been known before. Lex Schrijver in his three-volume work “Combi-
natorial Optimization. Polyhedra and Efficiency” [116] gives a lot of credit
to Kotzig. In his dissertation, Kotzig gives a proof of the following version
of Menger’s Theorem for undirected graphs.

Theorem 35. Let G be an arbitrary graph containing vertices u 6= v for
which σG(u, v) = k > 0 then there exists a system of paths {C1, C2, . . . , Ck}
such that each path connects vertices u, v and no two distinct paths have an
edge in common. Such a system of paths in G exists only if σG(u, v) ≥ k.

Here σG(u, v) is the minimum size of a u− v cut in G.

Incidentally, in [55] Kotzig gives a proof of the directed arc-disjoint ver-
sion of Menger’s theorem (as Schrijver [116] remarks, without reference to
Menger).

As an outgrowth of [44], Kotzig proves in [54] that there exists a unique
minimum spanning tree T of a weighted graph G if and only if for each
edge e /∈ T , e is the longest edge in the cycle in T ∪ {e}.
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A very general method which has been used extensively in [44] is described
in detail and analyzed in [57]. Let C be a class of graphs hereditarily closed
for factors, and let T be a property of graphs from C satisfying two simple
conditions: 1) no edgeless graph from C has property T , and 2) if a factor
F of a graph G has property T then so does G.

If G has property T , a set with the smallest possible number of edges whose
deletion causes G to lose property T is a t-set of G. The elements of a t-set
are t-edges and the number of t-edges in a t-set is τ(G). An edge e of G is
a t-edge if and only if its deletion decreases the value of τ(G) by one. A
graph G is a Tk-graph if τ(G) = k and each edge of G is a t-edge. The
following theorem is proved in [57]:

Theorem. Let G be a graph such that τ(G) = k > 0 and let j be a natural
number, j ≤ k. Then there exists at least one Tj-graph which is a factor of
G. On the other hand, if G is an arbitrary Tk-graph then no proper factor
of G is a Tk-graph.

Seven concrete examples of properties T are discussed (where the class C
is suitably chosen): 1) G is connected, 2) G is a factor of a given graph
G∗ and certain two vertices of G are connected, 3) G is a directed graph
and for any two its vertices u, v there exists a directed path from u to v,
4) G has at least one 1-factor, 5) G possesses a Hamiltonian path, 6) G is
nonplanar, and 7) the chromatic number of G is greater than n.

By [40], each edge of a connected regular graph G of degree n with a 1-
factorization must be contained in a cycle of G. Equivalences on a vertex-
set based on the degree of connectivity between vertices are considered
and properties of partitions into equivalence classes of these relations with
respect to the 1-factors of the 1-factorization are studied in [40]. In a
connected regular graph of odd degree n with a 1-factorization the degree
of connectivity between any two distinct vertices must be even or else equal
to n.

In nine lemmas and four theorems of [45], relationships between spanning
trees of a graph, its cycle bases and bases of cuts (“fundamental system of
cuts”) are explored. Most of the body of this paper as well as the papers
mentioned above is devoted to rigorous proofs, some of them quite difficult.

In [59], interval graphs were called by Kotzig Hajós graphs. Kotzig proves
that a bipartite graph is an interval graph if and only if each of its connected
components is either an isolated vertex, a star, or a caterpillar. Interval
graphs have been characterized by Lekkerkerker and Boland in [104].
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Polyhedral graphs and Eulerian graphs

In his early often cited paper [41] Kotzig obtained important fundamental
results on the weights of edges in polyhedral graphs (i.e. in 3-connected
planar graphs). In such a graph, the face weight σF (h) of an edge h = {u, v}
which is incident with faces S1 and S2 equals σF (h) = m+ n where S1, S2

is an m=gonal and n-gonal face, respectively. Similarly, the vertex-weight
σV (h) = x+ y where x, y is the degree of the vertex u and v, respectively.

It is well known that every polyhedral graph contains at least one face with
at most five vertices and at least one vertex whose degree is at most five.
In [41], Kotzig proves:

Theorem. In any polyhedral graph there exists an edge h such that its
vertex-weight σV (h) ≤ 13 and there exists an edge h′ such that its face-
weight σF (h) ≤ 13.

It is shown that these upper bounds cannot be lowered: if one subdivides
each triangular face of an icosahedral graph by creating a new vertex in the
center of the face joined by three new edges to the three original vertices
of the face then each triangular face of the resulting polyhedral graph is
incident with three vertices of which two are of degree 10 and one is of
degree 3, thus for each edge h either σV (h) = 13 or σV (h) = 20. In the
dual graph we have for each edge h either σF (h) = 13 or σF (h) = 20.

However, if the degree of each vertex is at least 4 then the upper bound for
the edge weights can be lowered.

Theorem. In any polyhedral graph with minimum vertex degree at least 4
there exists an edge h such that σV (h) ≤ 11, and in any polyhedral graph
whose all faces are polygons with at least 4 vertices there exists an edge h
such that σF (h) ≤ 11.

Kotzig provides examples showing that this is best possible, and he also
shows that further improvement is impossible even if one assumes that the
minimum vertex degree is 5.

Some of Kotzig’s results above have been extended by Ivančo, Jendrol’ and
Tuhársky (see, e.g., [37]) to non-orientable surfaces of genus g.

Almost a decade later, Kotzig returns to this theme in [58]. He concentrates
mainly on those polyhedral graphs which are regular of degree d, where of
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course d must be one of 3, 4, or 5. From among the many results in this
paper, let us mention just two. In any polyhedral graph of degree 4 there
exists an edge h such that σF (h) ≤ 8, and this bound is best possible.
In any polyhedral graph of degree 5 there are at least 30 edges incident
with two triangles and thus for these 30 edges we have σF (h) = 6. The
icosahedral graph provides such an example.

In [62] Kotzig provides yet another solution of an old problem by Eberhard,
namely whether there exists a cubic polyhedral graph with an odd number
of faces such that the number of vertices on each face is divisible by 3. A
negative answer is obtained via a colouring theorem for the faces of such
a polyhedral graph. Eberhard’s problem was first solved by Motzkin [108]
and then a different proof was given by Grünbaum [31].

In [67], Kotzig defines an n-regular polyhedron to be regularly variegated if
there exists a sequence u1 < u2 < · · · < un such that for all i ∈ {1, 2, . . . , n},
each vertex of the polyhedron is incident with exactly one ui-gonal face.
He proves that each regularly variegated polyhedral graph must be cubic,
and either contains 12 quadrilaterals, 8 hexagons and 6 octagons, or else
it contains 30 quadrilaterals, 20 hexagons and 12 decagons. Examples of
regularly variegated polyhedra of both types are provided in which each
face is a regular polygon.

A connected Eulerian graph G of degree 2n with an even number of edges
can be partitioned into two factors F1, F2 as follows: the edges of any
Eulerian trail E = (e1, e2, e3, . . . ) of G are assigned alternately to F1 and
F2. In [42], Kotzig proves conversely, that any partition of G into two
factors of degree n arises in this fashion from some Eulerian trail of G.

Let Ei be the set of di = 2ci edges incident with a vertex xi in a connected
Eulerian graph G (i = 1, 2, . . . , n) and let Qi be an arbitrary partition of Ei

into at least two classes. An Eulerian trail P of G is admissible with respect
to the partitions Q1, Q2, . . . , Qn when any two successive edges in P with a
common vertex xi belong to different classes Qi. In [71], Kotzig proves that
an Eulerian trail admissible with respect to the partition Q1, Q2, . . . , Qn

exists if and only if for i = 1, 2, . . . , n no class Qi contains more than ci
edges.

The paper [2] deals with planar Eulerian multigraphs. It is shown that
every planar Eulerian multigraph contains an Eulerian trail in which the
transitions through any vertex never cross.
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A very detailed and fundamental study of Eulerian trails (“lines”) in 4-
regular graphs is undertaken in [70]. It is not possible to reproduce here
the content of this paper or even the statements, let alone proofs, of its
seventeen theorems. Let us attempt, however, to give an indication of
Kotzig’s deep insight by presenting two of his theorems which do not re-
quire too many definitions. His Theorem 5 in [70] states that for any
decomposition of a 4-regular graph G into two 2-factors Q1, Q2 there exists
an Eulerian trail of G in which the edges regularly alternate between Q1

and Q2. Theorem 4 states that in a 4-regular directed graph there exists a
directed Eulerian trail if and only if it is connected and the indegree and
outdegree of each vertex are equal. This theorem holds even if one replaces
“4-regular” with “Eulerian”.

Finally, in [3] Kotzig’s old result proved originally only for Eulerian multi-
graphs of degree 4 is extended to arbitrary Eulerian multigraphs: any Eule-
rian trail in such a multigraph can be obtained from any other Eulerian trail
by a finite number of simple transformations (called κ-transformations).

Directed graphs and tournaments

This is another topic to which Kotzig contributed significantly. We have
already mentioned his directed version of Menger’s Theorem [55]. His first
extensive paper on the topic [49] deals with the relationship between Eu-
lerian graphs and balanced directed graphs. These are directed graphs in
which for each vertex its indegree and outdegree are equal. These graphs
are assumed to be without isolated vertices but multiple edges are allowed.
Kotzig extends several theorem from [38], in particular, he is interested in
the number ρ(G) of different balanced orientations that can be obtained by
assigning a direction to each edge of a connected Eulerian undirected graph
G. He obtains a formula for ρ(G) in terms of the number µ(G) which is
the number of distinct decompositions of an Eulerian graph G into closed
trails. For the number µ(G) itself a closed formula is obtained where µ(G)
is expressed solely in terms of degrees of vertices of G. Kotzig also obtains a
formula for the number of balanced subgraphs of a balanced directed graph.
The last of the 13 theorems in this paper suggests a connection between
the number of 1-factors in a bipartite graph G which contains at least one
1-factor, and the number of distinct balanced directed subgraphs of G.

In [66] two relations are considered on the set G = {G1, . . . , Gk} of directed
graphs arising from an undirected graph G without loops or multiple edges
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by assigning a direction to each of its edges. Two graphs Gi, Gj ∈ G are in
relation Ω if the outdegree is the same for each vertex x ∈ V where V is the
vertex-set of G. Two graphs Gi, Gj ∈ G are in relation elta if one can be
obtained from the other by a sequence of transformations each consisting
of reversing the orientation of the edges of a 3-cycle of G. The main result
of the paper is that the two relations Ω and elta coincide if and only if G
is a graph without bridges.

In [65], Kotzig proves several results on the existence of directed cycles
in balanced tournaments. The most important of these is the following
theorem.

Theorem. Let V be any set of r vertices, 2 ≤ r ≤ 2n + 1, in a balanced
tournament T on 2n+ 1 vertices. Then T contains a directed k-cycle con-
taining all r vertices of V either for all k ∈ R , or for all k ∈ R \ {r}, or
for all k ∈ R \ {r + 1} where R = {r, r + 1, . . . , 2n+ 1}.

In [84], the following question is studied: what is the minimum number of
directed edges that must be removed from a tournament on n vertices so
that the resulting directed graph is acyclic? Alternatively, what is the min-
imum number of directed edges that must have their direction reversed so
that the resulting directed graph is acyclic? The two numbers in question
are always equal. The maximum of these numbers taken over all tourna-
ments on n vertices is denoted by µ∗(n). It is bounded below by the number
κ(n) of triples in a maximum partial triple system of order n which is well
known to equal κ(n) = bn3 bn−12 cc [25]. Kotzig shows that for infinitely
many values of n, µ∗(n) is strictly greater than κ(n) and conjectures that
this is true for all n > 10.

In [16], a similar question is considered for bipartite tournaments (that is,
directed graphs arising from orienting each edge of the complete bipartite
graph Km,n). These are studied through their connection to (m×n) (0, 1)-
matrices. The maximal order of cyclicity of such matrices and of (m,n)-
bipartite tournaments is introduced and studied.

In [74] and [76], both written in French, Kotzig studies and proves many
results on 3-cycles and 4-cycles in (primarily) balanced tournaments. Con-
cerning the maximum number of 4-cycles in balanced tournaments, it turns
out that he was unaware of earlier results (cf. [15]) establishing the max-
imum number of 4-cycles in a tournament, as he himself acknowledges in
an erratum to [74].
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In [75], Kotzig associates with each balanced directed graph a directed
bipartite graph with twice as many vertices. Then he proves that a balanced
tournament cannot be decomposed into Hamiltonian cycles if for every
decomposition of this associated bipartite graph into 1-factors, at least one
of the 2-factors obtained as a union of two distinct 1-factors contains an
even number of cycles.

Cubic graphs

Kotzig devoted a whole series of papers to various properties of cubic graphs
(in addition to papers on 1-factors and 1-factorizations of cubic graphs
discussed in the following section): [68], [73], [41], [86], [6].

There are two ways to split an edge of a bipartite cubic graph G without
loops or multiple edges (cf. [38]). The resulting graphs G′ and G′′ are also
bipartite cubic but may contain multiple edges. If both G′ and G′′ contain
multiple edges then the edge is irreducible. The graph G is irreducible if
each its edge is irreducible. It is proved in [68] that a bipartite cubic graph
is irreducible if and only if each of its components is isomorphic to the
complete bipartite graph K3,3.

Kotzig’s paper [73] is a case of “independent discovery”. In it Kotzig
presents a construction for cubic graphs due to E.L. Johnson.

In [85] and [86], Kotzig studies the so-called change graphs of cubic graphs
of class one. Given two distinct 1-factorizations F ′ and F ′′ of a cubic
graph G, its change graph CH(F ′, F ′′) is the subgraph of G induced by
those edges which are of “different colour” in F ′ and F ′′, that is, belong to
different 1-factors in F ′ and F ′′. Kotzig studies transformations on change
graphs and their properties, in particular, for planar cubic graphs.

Finally, in [6], Abrham and Kotzig introduce and discuss a new type of a
labelling for cubic graphs which they called ξ-labelling. This type of la-
belling is unlike the labellings discussed below in the section Labellings,
and was motivated by the authors’ investigations on additive sets of per-
mutations (see below). A ξ-labelling of a cubic graph G is a 1− 1 mapping
of its edge set E(G) onto a set X = {x1, x2, . . . , xk} (where k = |E(G)|)
of integers such that (1) {ξ(e) + ξ(f) : e, f ∈ E(G), e, f adjacent} = X,
(2) if e = {u, v} ∈ E(G), vertex u is incident also with edges p, q and
vertex v is incident also with edges s, t then ξ(p) + ξ(q) = ξ(s) + ξ(t). Sev-
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eral examples are given of cubic bipartite graphs with many ξ-labellings.
Möbius ladders with 4q + 2 vertices have a ξ-labelling while those with 4q
vertices do not. The prism P2n with 2n faces has a ξ-labelling while an-
other whole two-parameter class of cubic graphs is shown not to admit a
ξ-labelling. A connected bipartite cubic graph with a ξ-labelling must be
3-edge-connected, but this need not be true for non-bipartite cubic graphs.
Some transformations which increase the number of vertices and preserve
the existence of ξ-labellings are also described in [6].

1-factors, 1-factorizations,
perfect 1-factorizations

From the very beginning of his studies in graph theory, Kotzig was inter-
ested in the questions related to the existence of 1-factors (perfect match-
ings, or linear factors, as he called them in his early papers) in finite graphs.
In particular, he was intrigued by the question of when does there exist a
decomposition of a regular graph into 1-factors. When such a decomposi-
tion (1-factorization) exists, what properties does it have? Kotzig called
graphs admitting 1-factorizations in which the union of any two 1-factors
is a Hamiltonian cycle strongly Hamiltonian. Nowadays, such graphs are
simply called graphs with a perfect 1-factorization.

Graphs with at least one 1-factor are subject of a deep and extensive three-
part study [50], [51], [52]. This important fundamental work written in
Slovak has unfortunately not been reviewed by Mathematical Reviews, only
indexed, and even Zentralblatt für Mathematik reviewed only the first part
[50]. There are 12 lemmas and 36(!) theorems in total, and it is not possible
to describe these results in a concise way. A cycle (path) in a graph G with
at least one 1-factor is called an α-cycle (an α-path) with respect to a
certain 1-factor L if exactly one of any two its adjacent edges belongs to
L. Theorem 2 states that the composition of an α-cycle with respect to
L with L is again L. Theorem 4 says that if Hi is the set of all edges
of all α-cycles with respect to Li then Hi = H for all i. To state any of
the remaining theorems would require introducing many new concepts and
definitions which is inappropriate for this kind of survey. The reader is
referred to the original papers.

One-factors in lattice graphs, mainly two-dimensional, are subject of study
in [61]. Kotzig shows, for example, that if L,L′ are any two 1-factors of a
two-dimensional lattice graph then L′ can be obtained from L by a sequence
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of a finite number of simple transformations, each consisting in replacing
two opposite edges of a basic quadrangle by the other pair of opposite edges,.
Any 1-factor in a two-dimensional lattice graph necessarily contains a pair
of opposite edges of some basic quadrangle.

A 1-factor L of a lattice graph is significant if there is at least one edge of L
joining vertices of any two adjacent lines. Significant 1-factors in a lattice
graph are in a 1 − 1 correspondence with significant tilings of an (m × n)
chessboard by dominoes (1 × 2 tiles). These tilings are shown to exist if
and only if m ≥ 5, n ≥ 5 except when m = n = 6, a result also obtained by
different means by Solomon Golomb.

Kotzig also shows that in any tiling of a 2-dimensional chessboard with
dominoes, the dominoes can be coloured by four colours in such a way that
no two dominoes sharing boundary have the same colour.

One-factorizations of Cartesian products are dealt with in [87]. Let H
be the Cartesian product of regular graphs G1, G2, . . . , Gn, that is, H =
G1 × G2 × · · · × Gn. If for at least one i ∈ {1, 2, . . . , n} there exists a
1-factorization of Gi, or if there are at least two numbers i and j such
that both Gi and Gj contain at least one 1-factor, then there exists a 1-
factorization of H. Neither of these sufficient conditions is necessary.

Kotzig made many fundamental contributions to the theory of graphs of
third degree (cubic graphs). In [46], he proves the following important
theorem.

Theorem. A connected cubic graph with an even number of edges has a
1-factorization if and only if its line graph has a 1-factorization.

Kotzig’s studies into the existence and construction of cubic graphs with
perfect 1-factorizations are especially deep. They were initiated in [47] and
continued in [53], [56], [39], [91] and finally in [92] which also contains a
list of open problems. Of these, quite an important paper is [39]. In this
paper, Kotzig establishes that the complete graph K2n has a perfect 1-
factorization (P1F) whenever 2n− 1 or n is a prime, and conjectures that
a P1F of K2n exists for all natural n. Actually, he states his conjecture in
a very cautious way: Is there an n such that K2n does not admit a perfect
1-factorization? Even in a much later paper [92] he only asks for which n
does K2n have a P1F. Remarkably, the two infinite series of orders for which
Kotzig established the existence of a perfect 1-factorization are till today
the only two such infinite series of orders, although another infinite class of
P1Fs was obtained in [23] for those K2n for which 2n− 1 is a prime. Other
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than that the existence of P1Fs of K2n was established only for several
sporadic orders. For more details on the problem of perfect 1-factorizations
of the complete graph and its history, see [111]. Currently, the smallest
order of a complete graph for which the existence of a P1F is in doubt is
64.

It is well known that any regular bipartite graph has a 1-factorization.
Already in [47], Kotzig proves that a regular bipartite graph with n vertices
can have a perfect 1-factorization only if n ≡ 2 (mod 4). In [53] he proves
that a planar bipartite graph with more than two vertices cannot have a
perfect 1-factorization. In the deep study [56], it is shown, among other
things, that starting with the graph with two vertices and three edges
joining these two vertices and by applying repeatedly two types of two-
vertex extensions, called ρ-extension and π-extension, respectively, one can
construct any cubic graph with a perfect 1-factorization.

Graph decompositions

A classical theorem by Listing states that if a finite connected graph has
exactly 2n vertices of odd degree then there exists a decomposition of its
edge-set into n open trails. In [43], Kotzig proves several extensions of this
theorem.

Theorem. If a finite regular graph G of degree 2d+ 1 with 2n vertices has
at least one 1-factor, say L, then there exists an edge-decomposition of G
into n open trails, each of length 2d + 1 and each containing exactly one
edge of L.

Theorem. If G is a cubic graph with 2n vertices which has an edge-
decomposition into n open trails of length 3 each, then G contains at least
one 1-factor. An analogous statement for a regular graph of degree d + 1
with d > 1 does not hold.

Theorem. A necessary condition for a regular graph G of degree 2d + 1
to possess an edge-decomposition into open trails of length 2d+ 1 is that it
does not contain a vertex incident with more than d bridges.

This is augmented by the following theorem that we find in [48].

Theorem. A regular graph G of degree 2d + 1 with 2n vertices can be
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decomposed into a factor of degree d and a factor of degree d+1 if and only
if it can be decomposed into n open trails where each trail contains an odd
number of edges.

In [80] necessary and sufficient conditions are found for the existence of a
decomposition of the complete graph Kn into regular bipartite factors. If
the number of factors is k then 2k−1 < n ≤ 2k. Curiously, due to an obvi-
ously unintended oversight, this paper appeared in Discrete Mathematics
twice(!): it can be found in volume 2(1972), 383–387 and also in volume
4(1973), 65–69.

Decompositions of the 4-regular graph Qn isomorphic to a circulant
S(n; {1, 2}) into two 2-factors are considered in [26]. It is proved that in
any decomposition of Qn into two 2-factors, at least one of the factors must
be a Hamiltonian cycle.

In one of his early papers [46], Kotzig proved that every connected graph
with an even number of edges has an edge-decomposition into paths of
length two; here, a path of length two is the simple graph with three vertices
and two edges.

The edge-set of any tree T having 2n vertices can be decomposed into n
paths, and n is the smallest number of paths into which the edge-set of T
can be decomposed. In [69], a formula is given for the number of different
decompositions of T into n paths in terms of di and gi where di is the
number of vertices of T of degree i and gi = i!! if i is odd, and gi = (i− 1)!!
if i is even.

Kotzig was the first to consider decompositions of complete graphs into
cycles of fixed length in [64]. He proved, by a direct construction, that the
complete graph Kn where n ≡ 1 (mod 8k) can be cyclically decomposed
into copies of a 4k-cycle. When k is a power of 2, k = 2a, this sufficient
condition for the existence of a decomposition of the complete graph into
4k-cycles is also necessary. This paper marked the start of a series of pa-
pers dealing with decompositions of the complete graph into cycles of fixed
length culminating in a complete solution of this problem many decades
later. Credit is due Kotzig for his early work on the subject.

In [88], similar in spirit to [64], Kotzig considers decompositions of complete
graphs into d-dimensional cubes. By establishing the existence of an α-
labelling (see the section on labellings below) of the d-dimensional cube
Wd, he proves that a decomposition of the complete graph Kn into copies
of Wd exists for all n ≡ 1 (mod d2d). When d is even, this condition is
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also necessary. When d is odd, however, then another possibility is that
n ≡ 0 (mod 2d) and n ≡ 1 (mod d). He points out the existence of a
decomposition of K16 into copies of W3. Kotzig’s results have subsequently
been extended in [22] and [27], however, the existence of decompositions of
Kn into copies of Wd when d is odd, d ≥ 5, is still open.

The study of decompositions of the complete graph Kn into factors with
given diameters was initiated in [21] where it is shown that Kn can be
decomposed into m factors with diameters d1, d2, . . . , dm if and only if n ≥
F (d1, d2, . . . , dm), the smallest number n for which such a decomposition
exists. That paper and a large number of papers that followed studied the
function F (d1, . . . , dm). If the diameter of each of the m factors equals d,
one writes F (d, . . . , d) = Fm(d). The paper [98] studies the same problem
with the additional requirement that the m factors be pairwise isomorphic.
Values of n such that m|

(
n
2

)
are admissible. Let Gm(d) be the smallest

cardinal number n such that there exists a decomposition of Kn into m
pairwise isomorphic factors of diameter d, and let Hm(d) be the smallest
cardinal number n such that for all admissible N ≥ Hm(d) there exists a
decomposition of Kn into m isomorphic factors of diameter d. Trivially,
Fm(d) ≤ Gm(d) ≤ Hm(d), and it is conjectured (but remains unproved in
general) that Gm(d) = Hm(d). For m = 2 one easily obtains Gm(2) =
Hm(2) = 4 if d = 3, = 5 if d = 2 and = ∞ otherwise. The main body
of [98] deals with the case of m = 3 isomorphic factors. In this case, the
admissible values are n ≡ 0 or 1 (mod 3).

Main result states:
Theorem 2. Let t > 1 be an integer and let d ∈ {3, 4, . . . , t+ 2}. The K3t

and K3t+1 can be decomposed into three isomorphic factors of diameter d.
When t = 2 or t = 3, such a decomposition exists also with d = t+ 3.

As for diameter d = 2, combined with a much later result of an impossibility
of a decomposition of K12 into three factors of diameter 2 [117], we get
G3(2) = 13 (actually, F3(2) = G3(2) = H3(2).

We find another pioneering contribution of Kotzig in his paper [77] where
he introduces the notion of a P -groupoid and a P -quasigroup arising from
a decomposition of a complete graph with an odd number of vertices into
closed trails. The connection he establishes may be viewed as a general-
ization of the well-known relationship between Steiner triple systems and
Steiner quasigroups [25]. A P -groupoid is a pair (V,×) where V is a finite
set and × is a binary operation which is (1) idempotent, (2) such that
if a, b ∈ V, a 6= b then a, b, a × b are all distinct, and (3) a × b = c im-
plies c × b = a. It is shown that the set of P -groupoids with n elements
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is coextensive with the set of decompositions of the complete graph Kn

into closed trails. When a P -groupoid satisfies one more condition (4) the
equation x × a = b has a unique solution for all a, b ∈ V , then it is a
P -quasigroup. The (1, 3, 2)-conjugate of a P -quasigroup is a commutative
quasigroup which Kotzig calls K-quasigroup. In a somewhat later paper
[102], Kotzig and Turgeon gave a constructive graph-theoretic proof that
for every integer r such that 2r+1 ≡ 0 (mod 7) there exists a P -quasigroup
of order 2r+ 1 defining an Eulerian path in K2r+1. Kotzig’s paper [77] had
as a consequence a furious activity (too broad and extensive to be fully sur-
veyed here) leading to some deep and fairly definitive results. As a sample,
let us just mention the paper [106] on Steiner pentagon systems, or many
classification results for i-perfect cycle systems, surveyed, e.g., in [105].

Concerning the well-known Oberwolfach problem (OP) and its variants,
Kotzig deals with them in [97], [32] and [35]. Specifically, in [35] a spouse-
avoiding variant of OP (called therein NOP) is introduced for the first
time, and many results, both general and for small orders are obtained.
A special case of NOP, an analogue of Kirkman triple systems, the so
called nearly Kirkman systems, was introduced earlier in [97]. All three
above cited papers offer partial results on existence problems, and were thus
later superseded by new results, in some cases settling the corresponding
existence questions completely. So, for example, nearly Kirkman triple
systems are now known to exist for all n ≡ 0 (mod 6), n ≥ 18; they do
not exist for n = 6 or n = 12. The NOP problem is conjectured to have
a solution in all cases except in the two cases mentioned but so far the
conjecture has been proven only asymptotically.

Latin squares and quasigroups

Latin squares which contain no Latin subsquares of order 2, so-called N2-
Latin squares, are subject of [93] and [99]. Squares of this kind are applied
in [93] to construct sets of pairwise disjoint Steiner triple systems. Both ex-
istence problems (for N2-Latin squares and for large sets of disjoint Steiner
triple systems) were subsequently completely settled: a Latin square of
order n without a subsquare of order 2 exists for all natural n with the
exception of n = 2 and n = 4, and a large set of disjoint Steiner triple
systems of order n exists if and only if n ≡ 1 or 3 (mod 6), n 6= 7.

The associativity index α of a finite groupoid is the number of ordered
triples (a, b, c) such that (ab)c = a(bc). It is known that for a quasigroup of
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order q which is not a group the associativity index is at least q and at most
q3 − q if q ≥ 7 but whether these bounds are best possible for all orders
remains in doubt. In [94], Kotzig and Reischer derive results which improve
these bounds for certain special classes of quasigroups. So, for example, if
a quasigroup Q of order q has a one-sided identity then α ≥ q2, and if Q
is a loop then α ≥ 3q2 − 3q + 1. Moreover, for every q 6≡ 2 (mod 4) there
exists a quasigroup with left identity having α = q2 so that for these orders
the bound is sharp. For a commutative quasigroup of order q, α ≥ q2 and
the bound is sharp whenever q 6≡ 2 (mod 4). When q ≡ 2 (mod 4) there
exists a commutative quasigroup with α = 2q2. The paper contains further
partial results for idempotent quasigroups, Steiner quasigroups etc. but the
general problem of determining the spectrum for the associativity index of
finite quasigroups remains wide open. Several further contributions to this
important and intriguing problem can be found in the paper by Grošek
and Horák [30] as well as in several papers by Kepka, Drápal and their
collaborators, too numerous to be mentioned here.

An interesting new problem is studied in [34]. A Latin square of order n is
h-homogeneous if each its cell is contained in exactly h Latin subsquares of
order 2. 0-homogeneous Latin squares are the N2-Latin squares mentioned
above. The (n − 1)-homogeneous Latin squares exist if and only if n is
a power of 2, while (n − 2)-homogeneous Latin squares do not exist, and
1-homogeneous Latin squares of order n exist if and only if n is even. It
is shown that (n − 3)-homogeneous Latin squares of order n exist if and
only if n ∈ {3, 4, 6, 8, 12, 16}. Several further constructions are given for
various h-homogeneous Latin squares. This work is continued in [33] where
a multiplicative construction is used to produce a 4-homogeneous Latin
square of order 12, 6-homogeneous Latin squares of orders 20 and 24, and
a 12-homogeneous Latin square of order 24. What is known about the
existence of h-homogeneous Latin squares of order up to 26 is summarized
here but many cases with 2 ≤ h ≤ 22 and 9 ≤ n ≤ 26 remain unresolved.
To determine for which values of h does there exist an h-homogeneous Latin
square of order n is a fascinating open problem.

Antipodal graphs

According to [72], a connected bipartite graphG is centrally symmetric if for
each vertex x in G there is exactly one vertex x̄ such that for all neighbours
y of x̄ the distance from x to y is smaller than the distance from x to x̄.
The vertices x, x̄ are said to be antipodal pair. The distance between the
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two vertices of an antipodal pair equals the diameter d(G), Each centrally
symmetric graph has an even number of vertices and each has a fixed-point-
free involution as an automorphism. Several structural properties of these
graphs are derived here, and then in [29], [17] and [18], antipodal graphs
are discussed: these are graphs where for each vertex x there is a unique
vertex x̄ at distance d where d is the diameter of G. Antipodal graphs
of diameter 2 are isomorphic to the cocktail-party graph Kn \ L where L
is a 1-factor. Antipodal bipartite graphs of diameter 3 are isomorphic to
Kn,n \ L. A construction is given in [18] producing all antipodal graphs
of diameter 3. The authors use in the proof what is otherwise known
in the theory of strongly regular graphs as Seidel switching, apparently
discovered independently. A nonbipartite antipodal graph of diameter 3
must contain at least 2n − 12 triangles, and for every even n > 8 there is
an antipodal graph of diameter 3 with exactly 2n−12 triangles. Finally, in
[19], antipodal graphs of diameter 4 and girth 5 are considered. Under an
additional condition on the vertices equidistant from an antipodal pair x, x̄
there is exactly one such graph in which vertices equidistant from x and x̄
form a dodecahedron.

Labellings

In [95], Kotzig introduced the notion of a magic labelling. This is nowadays
known as edge-magic labelling to distinguish it from vertex-magic labelling.
For a graph G with m vertices and n edges, vertex set V (G) and edge-
set E(G), a magic labelling f with a constant C is a one-to-one mapping
f : V (G)∪E(G)→ {1, 2, . . . ,m+n} such that f(x) +f(y) +f({x, y}) = C
for all edges {x, y} ∈ E(G).

It is shown in [95] that all n-cycles for n ≥ 3, all complete bipartite graphs,
all caterpillars and matchings with an odd number of edges have an edge-
magic labelling (called an M-valuation in [95]). The paper [95] has spurned
a furious activity and the topic of magic labellings of all kinds has attracted
for its simplicity and appeal many novices to graph theory as witnessed
by Gallian in his survey [28]. There are four additional papers by Kotzig
devoted wholly or partially to edge-magic labellings. In [96] it is shown that
the complete graph Kn has an edge-magic labelling if and only if n = 2, 3, 5,
or 6. In [78], Kotzig proves the existence of a class of forests and of a class
of regular graphs which cannot possess an edge-magic labelling. In [79] it
is shown that if a 3-colourable graph G has an edge-magic labelling than
the graph consisting of an odd number of components each isomorphic to
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G also has an edge-magic labelling. Thus, for example, a graph consisting
of an odd number of disjoint n-cycles has an edge-magic labelling. Finally,
the paper [81] explores the relationship between α-labellings (see below)
and edge-magic labellings of bipartite graphs. If a bipartite graph has
an α-labelling then it also possesses an edge-magic labelling. It has been
conjectured that all trees have an edge-magic labelling. Consequently, when
looking for a counterexample, it suffices to look at those trees which do
not admit an α-labelling. Several infinite classes of such trees are known.
Despite the ongoing discussion about the importance of the topic, these
papers confer another testimony to Kotzig’s inventiveness. For an up-to-
date status of research on edge-magic labellings, see [28].

After Gerhard Ringel posed in 1963 his famous problem on tree decompo-
sitions of the complete graph [109] and after an introduction of a hierarchy
of graph labellings as a means to approach Ringel’s problem [110], Anton
Kotzig became very interested in this circle of problems. However, his first
paper on this type of labellings appears only much later after he has moved
to Canada. In order to describe most important contributions of Anton
Kotzig to this topic, we need some definitions. A labelling φ of a graph
G with n edges is a 1 − 1 mapping of its vertex set V (G) into the set
{0, 1, . . . , n}. The value of an edge {u, v}, u, v ∈ V (G), in the labelling φ is
|φ(u) − φ(v)|. If the set of edge-values of a labelling φ of a graph G with
n edges is the set {1, 2, . . . , n} then φ is said to be a graceful labelling of G
(an older name: β-labelling, or β-valuation). If, in addition, there exists a
number x such that for every edge {u, v} ∈ G, one of the values φ(u), φ(v)
does not exceed x and the other is strictly greater than x, then the labelling
φ is called an α-labelling.

Clearly, every α-labelling is also a graceful labelling but not conversely. The
Graceful Tree Conjecture (GCT) states that every tree admits a graceful
labelling. On the other hand, there exist trees which do not admit an
α-labelling; the smallest such tree has 7 vertices.

The GCT is older than 50 years but in spite of an extensive effort, it remains
open. In [82], Kotzig proves a result which in my opinion is among the
strongest results toward settling the GTC. Given a tree T and an arbitrary
edge e = {u, v} ∈ E(T ), let Ti(e) be the tree obtained form T by replacing
the edge e with a path of length i, i = 1, 2, . . . with end-vertices u, v. Kotzig
proves in [82] that for any tree T and any its edge e, wouldn’t “its any edge”
be better? in the infinite set of trees T (e) = {Ti(e) : i = 1, 2, . . . } there is
at most a finite number of trees without an α-labelling. Thus, in a certain
sense, almost all trees admit an α-labelling even though there are several
infinite classes known of trees without an α-labelling (cf. [36], [110]).
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In his later years, Kotzig became interested in labellings of 2-regular graphs,
an interesting topic although seemingly of lesser importance. In a 2-regular
graph each component is a cycle. An Eulerian graph with n edges can have
a graceful labelling only if n ≡ 0 or 3 (mod 4) [110]. For an n-cycle, this
condition is also sufficient. It is stated in [90] and proved in [13] that in
the case of a 2-regular graph with two components, this condition is also
sufficient. However, the condition is not sufficient in general. Kotzig de-
termines in [90] the smallest 2-regular graph satisfying the above necessary
condition but not admitting a graceful labelling; it has three components,
two of which are triangles and one is a pentagon. In the same paper [90],
Kotzig derives another necessary condition for the existence of a graceful
labelling of a 2-regular graph. If ω is the number of odd length cycles
in a 2-regular graph G then for the number of its vertices one must have
|V (G)| ≥ ω · (ω + 2). It is also shown that for every natural ω there exists
a 2-regular graceful graph with exactly ω · (ω + 2) vertices having exactly
ω odd length cycles. While Kotzig proves in [90] that a 2-regular graph
with three components, each of length 4k + 3 (k natural) is graceful, he
also convinces the reader that the existence problem for graceful labellings
of 2-regular graphs is far from easy.

In [83], he treats the case of isomorphic components. In a series of pa-
pers [10], [11], joint with Jaromı́r Abrham culminating in [12], they settle
completely the case when all cycles are of length 4: each such 2-regular
graph admits even an α-labelling except in the case of three components
when only a graceful labelling exists. In [101], it is shown that a d-regular
graph with c components which are all complete (and thus isomorphic to
Kd+1) has a graceful labelling if and only if c = 1 and d < 4. Exponential
lower bounds on the number of graceful labellings of paths and of cycles
are obtained in [8] and [7], respectively. See also [9].

Perfect systems of difference sets and additive
permutations

A non-modular analogue of difference sets and supplementary difference sets
well known in combinatorial design theory is considered in several papers
starting with [100] and [20] although traces of the ideas involved one can
find already in an early paper [60].

Let Ai = (ai1 < ai2 < · · · < ain), i = 1, 2, . . . ,m, be m sequences of
integers, and let Di = {aij − aih : 1 ≤ h < j ≤ n} be their difference
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sets. The system D = (D1, . . . , Dm) is a perfect (m,n, c)-system if D =
D1 ∪D2 ∪ · · · ∪Dm = {c, c+ 1, . . . , c− 1 +m

(
n
2

)
}. The sets Di are called

the components. For example, the existence of a perfect (m,n, 1)-system
corresponds to a graceful labelling of the graph consisting of m complete
graphs Kn having one common vertex. The definition is quite restrictive
as no (m,n, c)-system exists if n ≥ 6, as is proved in [20].

Several further papers by Kotzig, most of them co-authored by Jaromı́r
Abrham - nine, to be precise - deal with the properties of (m,n, c)-systems
and also of more general perfect systems of difference sets (PSDS) where the
components need not be of the same size. In these papers, various properties
of these systems are derived and proved. Among other things, all (not too
numerous) such systems with small number of components are exhibited
and classified. For example, one such system with two components has
D1 = {1, 7, 8}, D2 = {2, 3, 4, 5, 6, 9}. Somewhat surprisingly, this is the only
perfect system of difference sets having exactly two components. There are
only two such systems with one component, and altogether 28 such systems
with three components [5].

It is difficult to judge the importance of these papers and the topic at
this time. The truth is that the response to this set of papers regarding
perfect systems of difference sets has been quite muted up to this time, re-
flected, among other things, by a negligible number of citations which these
papers collectively elicited. Motivated by a real life problem of spacing an-
tennas in radioastronomy, there have so far been very few applications.
However, one can find some applications in a paper by Mathon [107] who
uses PSDS to construct many new cyclic Steiner designs S(2, 4, v). Ac-
cording to [24], PSDSs with n components of size 4 are known to exist
for n ∈ {1, 4, 5, . . . , 36.41, 46}, and also for several infinite classes of n.
Whether such PSDS exist for every number n of components of size 4 is
still unanswered. As for PSDS with components of size 5, these can exist
only when n is even, and for n ≤ 50 are known to exist only when n = 6, 8
or 10 [107]. .

A related notion is that of additive sets of permutations. For an odd num-
ber m = 2k + 1, let X1 = (−k,−k + 1, . . . ,−1, 0, 1, . . . , k − 1, k) and let
X2, . . . , Xn be permutations of X1. Then X1, X2, . . . , Xn is an additive
sequence of permutations (ASP) of order m and length n if the vector sum
of every subsequence of consecutive permutations is also a permutation of
X1. ASPs play a role in recursive constructions for PSDSs and vice versa
(see, e.g, [1]). Twelve papers of Kotzig and his collaborators all published
between 1979 and 1986 deal with the existence and various questions of
additive sequences of permutations. Apart from the paper [4] about the
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relationship of additive sets of permutations and Skolem sequences, the
response to the rest appears to be muted up until now.

Other contributions

Kotzig made important contributions to several other areas of graph theory.

In a paper [103] coauthored by Bohdan Zelinka we find the following inter-
esting theorem:
For any positive integers r, s there exists a regular graph of degree 2r in
which each edge belongs to exactly one cycle of length s. There are no
regular graphs of odd degree with this property.

In [63], he proved three theorems on the existence of Hamiltonian cycles in
lattice graphs.

Two of his papers deal with friendship graphs, in particular, with degrees
of vertices in infinite friendship graphs. Obviously inspired by this, he
considered the following generalization in [89]. For natural numbers r, k,
let Pr(k)-graph (or r-regularly connected k-path graph) be a graph in which
for each pair of vertices there exist exactly r paths of length k connecting
these two vertices. The P1(1)-graphs are complete graphs and P1(2)-graphs
are the friendship graphs. He conjectures that there exists no P1(k)-graph
for k > 2 and proves the conjecture for k < 10. Several examples of Pr(k)-
graphs with r > 1 are presented in [89]. For example, the graph consisting
of n K5’s having a common vertex is a P6(3)-graph. The octahedron is
a P8(5)-graph. But the existence problem for Pr(k)-graphs remains wide
open.

Two papers coauthored by Juraj Bosák and Štefan Znám deal with some
metric problems in graph theory (see [114]). Kotzig also wrote about ap-
plications of graph theory to economic problems, permutations, number
sequences and other topics.

Kotzig sometimes felt that his work was underappreciated. In the fifties
and early sixties of last century when Kotzig did some of his best work,
graph theory was still denigrated in certain circles. However, he did receive
some of the highest honours granted to scientists in Czechoslovakia: in 1965
it was the Order for Outstanding Contributions to the Country, and the
Czechoslovak State Prize in 1969. On the occasion of his 60th birthday,
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volume 12 of Annals of Discrete Mathematics edited by Alexander Rosa,
Gert Sabidussi and Jean Turgeon was dedicated to him, with contributions
from leading graph-theorists worldwide, such as Paul Erdös, Bill Tutte,
Claude Berge, Branko Grünbaum and many others.

Kotzig’s legacy is enormous, and his work and contributions are lasting.
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[21] J. Bosák, A. Rosa, and Š. Znám, On decompositions of complete
graphs into factors with given diameters, in “Theory of Graphs, Proc.
Colloq. Tihany, 1966”, pages 37–56. Akademiai Kiadó, Budapest,
1968.

[22] D. Bryant, S.I El-Zanati, and R. Gardner, Decompositions of Km,n

and Kn into cubes, Australas. J. Combin., 9 (1994), 285–290.

[23] D. Bryant, B. Maenhaut, and I.M. Wanless, New families of atomic
latin squares and perfect 1-factorisations, J. Combin. Theory (A),
113 (2006), 608–624.

[24] Z. Chen, D. Wu, and P. Fan, Applications of additive sequence of
permutations, Discrete Math., 309 (2009), 6459–6463.

[25] C.J. Colbourn and A. Rosa, Triple Systems. Oxford Univ, Press, 1999.

[26] P. Doutre and A. Kotzig, Les décomposition des graphes Qn en fac-
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t’ahy. Čas, pěst. mat., 81 (1956), 396–404.
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Bratislava, 1956.

[45] A. Kotzig, Význam kostry grafu pre konštrukciu kompozičných báz
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časopis SAV, 16 (1966), 72–75.

[69] A. Kotzig, On decomposition of a tree into the minimal number of
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