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Abstract. Let G be a graph of order n and let u, v be vertices of G.
Let κG(u, v) denote the maximum number of internally disjoint u–v paths
in G. Then the average connectivity κ(G) of G, is defined as κ(G) =∑
{u,v}⊆V (G) κG(u, v)/

(
n
2

)
. If k ≥ 1 is an integer, then G is minimally k-

connected if κ(G) = k and κ(G− e) < k for every edge e of G. We say that
G is an optimal minimally k-connected graph if G has maximum average
connectivity among all minimally k-connected graphs of order n. Based on
a recent structure result for minimally 2-connected graphs we conjecture
that, for every integer k ≥ 3, if G is an optimal minimally k-connected
graph of order n ≥ 2k + 1, then G is bipartite, with the set of vertices of
degree k and the set of vertices of degree exceeding k as its partite sets. We
show that if this conjecture is true, then κ(G) < 9

8k for every minimally
k-connected graph G. For every k ≥ 3, we describe an infinite family of
minimally k-connected graphs whose average connectivity is asymptotically
9
8k. Analogous results are established for the average edge-connectivity of
minimally k-edge-connected graphs.
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1 Introduction

Let G be a nontrivial graph. The connectivity of G, denoted by κ(G), is
the smallest number of vertices whose removal disconnects G or produces a
trivial graph. The edge-connectivity of G, denoted by λ(G), is the smallest
number of edges whose removal disconnects G or produces a trivial graph.

Following Beineke, Oellermann, and Pippert [2], for a pair u, v of distinct
vertices of G, we define the connectivity between u and v in G, denoted
by κG(u, v), to be the maximum number of internally disjoint u–v paths.
The edge-connectivity between u and v, denoted by λG(u, v), is the maxi-
mum number of edge-disjoint u–v paths. Menger’s well-known theorem [11]
states that if u and v are non-adjacent, then κG(u, v) equals the smallest
number of vertices whose removal from G separates u and v. The edge-
connectivity version of Menger’s theorem states that λG(u, v) equals the
minimum number of edges whose removal from G separates u and v. When
G is clear from context we omit the subscript G from κG(u, v) and λG(u, v).

Whitney [14] showed that κ(G) = min{κ(u, v) | u, v ∈ V (G)}. In a similar
manner it follows that λ(G) = min{λ(u, v) | u, v ∈ V (G)}. These results
show that both the connectivity and the edge-connectivity of a graph are
worst-case measures. A more refined measure of the overall level of connect-
edness of a graph was introduced by Beineke, Oellermann, and Pippert [2],
and is based on the average values of the ‘local connectivities’ between all
pairs of vertices. The average connectivity of a graph G of order n, denoted
by κ(G), is the average of the connectivities over all pairs of distinct vertices
of G. That is,

κ(G) =
∑

{u,v}⊆V (G)

κ(u, v)/
(
n
2

)
.

Analogously, the average edge-connectivity of G, studied by Dankelmann
and Oellermann [6], and denoted by λ(G), is the average of the edge-
connectivities over all pairs of distinct vertices of G. That is,

λ(G) =
∑

{u,v}⊆V (G)

λ(u, v)/
(
n
2

)
.

Several bounds for the average connectivity in terms of various graph pa-
rameters, such as for example, the order and size [2], the average degree [5],
and the matching number [7] have been determined. Bounds on the average
connectivity of graphs belonging to particular families have also been estab-
lished, including bounds for planar and outerplanar graphs [5], Cartesian
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product graphs [5], strong product graphs [1], and regular graphs [7]. The
average connectivity also plays a role in the assessment of the reliability
of real-world networks, including street networks [3] and communication
networks [13].

In this paper we study by how much the average (edge-)connectivity can
vary in a class of graphs, whose members are in some sense just barely
k-(edge-)connected for some integer k ≥ 1. A graph G is called mini-
mally k-connected if κ(G) = k and κ(G − e) < k for every edge e of
G. Minimally k-edge-connected graphs are defined similarly. It is nat-
ural to ask by how much the average (edge-)connectivity of a minimally
k-(edge-)connected graph can differ from k. Trivially the smallest aver-
age (edge-)connectivity among all minimally k-(edge-)connected graph is
k. For the remainder of the paper we thus focus on an upper bound for the
average connectivity for all minimally k-(edge-)connected graphs. We say
that G is an optimal minimally k-connected graph if G has maximum aver-
age connectivity among all minimally k-connected graphs. Since minimally
1-(edge-)connected graphs are precisely the trees, they have average con-
nectivity 1. However, for k ≥ 2, the average (edge-)connectivity of a min-
imally k-(edge-)connected graph need not be k. The structure of optimal
minimally 2-(edge-)connected graphs, and an upper bound on their average
(edge-) connectivity is determined by Casablanca, Mol, and Oellermann [4].
In order to state these results we say that a minimally k-(edge-)connected
graph is degree-partitioned if it is bipartite, with partite sets the set of ver-
tices of degree k and the set of vertices of degree exceeding k. (Note that
every degree-partitioned minimally k-(edge-)connected graph has order at
least 2k + 1.)

Theorem 1.1 (Casablanca, Mol, and Oellermann [4]).

(a) If G is an optimal minimally 2-connected graph of order n ≥ 5, then
G is degree-partitioned. Moreover, we have κ(G) < 9

4 , and this bound
is asymptotically sharp.

(b) If G is an optimal minimally 2-edge-connected graph of order n ≥ 5,
then G is degree-partitioned. Moreover, we have λ(G) < 9

4 , and this
bound is asymptotically sharp.

In this paper, we continue the study of the average (edge-)connectivity of
minimally k-(edge-)connected graphs, which was initiated by Casablanca,
Mol, and Oellermann [4]. Mader [10] showed that the vertices of degree ex-
ceeding k in a minimally k-connected graph induce a forest. Based on Theo-
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rem 1.1, and some computational evidence, we believe that something simi-
lar can be said about the structure of optimal minimally k-(edge-)connected
graphs for every k ≥ 3.

Conjecture 1.2. Let k ≥ 3. If G is an optimal minimally k-(edge-)con-
nected graph of order n ≥ 2k + 1, then G is degree-partitioned.

In Section 2, we show that if k ≥ 2 and G is a degree-partitioned minimally
k-connected graph of order n, then the average connectivity of G satisfies

κ(G) ≤ k +
k(n− 2)2

8n(n− 1)
<

9

8
k. (1)

By a similar argument, it follows that if k ≥ 2 and G is a degree-partitioned
minimally k-edge-connected graph of order n, then the average edge-con-
nectivity of G satisfies

λ(G) ≤ k +
k(n− 2)2

8n(n− 1)
<

9

8
k. (2)

We note that, if Conjecture 1.2 holds, then every minimally k-connected
graph G satisfies κ(G) < 9

8k, and every minimally k-edge-connected graph

G satisfies λ(G) < 9
8k. The inequalities given in (1) and (2) were established

in [4] for the case k = 2 and it was remarked that these proofs could be
extended to all k ≥ 3.

In Section 3.1 we describe, for every k ≥ 3, an infinite family of degree-
partitioned minimally k-edge-connected graphs whose average edge-con-
nectivity is asymptotically 9

8k. In Section 3.2 we describe, for every k ≥ 3,
an infinite family of degree-partitioned minimally k-connected graphs whose
average connectivity is asymptotically 9

8k. Thus, the upper bounds given
by (1) and (2) are asymptotically sharp.

2 Upper bounds

In order to establish the upper bounds given by (1) and (2), we generalize
the argument given by Casablanca, Mol, and Oellermann [4, Section 2.2]
for k = 2. We first recall some terminology (c.f. [4]).

Let G be a graph of order n. The total connectivity of G, denoted by K(G),
is the sum of the connectivities over all pairs of distinct vertices of G, i.e.,
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we have K(G) =
(
n
2

)
κ(G). The potential of a sequence of positive integers

d1, d2, . . . , dn is defined by

P (d1, d2, . . . , dn) =
∑

1≤i<j≤n
min{di, dj}.

If G has vertices v1, v2, . . . , vn, then the potential of G, denoted by P (G),
is the potential of the degree sequence of G; that is,

P (G) = P (deg(v1),deg(v2), . . . ,deg(vn)) =
∑

1≤i<j≤n
min{deg(vi),deg(vj)}.

Since κ(u, v) ≤ min{deg(u),deg(v)} for all pairs of distinct vertices u, v of
G, we have K(G) ≤ P (G).

We require the following lemma, which describes the maximum potential
among all sequences of n positive integers whose sum is a fixed number D.

Lemma 2.1 (Beineke, Oellermann, and Pippert [2]). Let d1, d2, . . . , dn be
the degree sequence of a graph, and let D =

∑n
i=1 di. Let D = dn+r, where

d ≥ 0 and 0 ≤ r < n. Then

P (d1, d2, . . . , dn) ≤ P ( d, . . . , d︸ ︷︷ ︸
n− r terms

, d+ 1, . . . , d+ 1︸ ︷︷ ︸
r terms

).

We are now ready to prove the upper bound given by (1). Recall that a
minimally k-connected graph is called degree-partitioned if it is bipartite,
with partite sets the set of vertices of degree k and the set of vertices of
degree exceeding k.

Theorem 2.2. Let k ≥ 2, and let G be a degree-partitioned minimally
k-connected graph of order n ≥ 2k + 1. Then

κ(G) ≤ k +
k(n− 2)2

8n(n− 1)
<

9

8
k.

Proof. Suppose that G has s vertices of degree exceeding k, and hence
n−s vertices of degree k. Let d1, d2, . . . , ds be the degrees of the vertices of
degree exceeding k. Since G is degree-partitioned, the sum d1+d2+ · · ·+ds
must be equal to k(n − s), the sum of the degrees of the vertices having
degree k.
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Let k(n− s) = ds+ r for d, r ∈ Z and 0 ≤ r < s. Then by Lemma 2.1, we
have

K(G) ≤ P (G) ≤ k
[(
n
2

)
−
(
s
2

)]
+ P (d1, d2, . . . , ds)

≤ k
[(
n
2

)
−
(
s
2

)]
+ P ( d, . . . , d︸ ︷︷ ︸

s− r terms

, d+ 1, . . . , d+ 1︸ ︷︷ ︸
r terms

)

≤ k
(
n
2

)
− k
(
s
2

)
+ d
(
s
2

)
+
(
r
2

)

= k
(
n
2

)
+ k(n−2s)(s−1)

2 − r(s−r)
2

≤ k
(
n
2

)
+ k

2 (n− 2s)(s− 1)

Using elementary calculus, we find that the quantity (n−2s)(s−1) achieves

a maximum of (n−2)2
8 at s = n+2

4 . Thus we have

K(G) ≤ k
(
n
2

)
+ k

2
(n−2)2

8 .

Now dividing through by
(
n
2

)
gives the desired upper bound on κ(G).

The upper bound given by (2) can be established in a strictly analogous
manner, so we omit the proof.

Theorem 2.3. Let k ≥ 2, and let G be a degree-partitioned minimally
k-edge-connected graph of order n ≥ 2k + 1. Then

λ(G) ≤ k +
k(n− 2)2

8n(n− 1)
<

9

8
k.

3 Constructions

In this section, we provide constructions of degree-partitioned minimally
k-connected graphs and degree-partitioned minimally k-edge-connected
graphs for which the upper bounds of Theorem 2.2 and Theorem 2.3, re-
spectively, are attained asymptotically. This has already been done for the
case k = 2 [4], so we consider only k ≥ 3. We begin by defining a k-regular
graph Gk,p, which is used as a “building block” in the constructions that
follow.

Definition 3.1. Let k, p be integers such that 3 ≤ k ≤ p. Let W =
{w0, w1, . . . , wp−1} and X = {x0, x1, . . . , xp−1}. Let Gk,p be the graph
with vertex set W ∪X and edge set
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Figure 1: The graph G3,20.

E = {wixi+j | 0 ≤ i ≤ p− 1, 0 ≤ j ≤ k − 1},
where subscripts are expressed modulo p.

For example, the graph G3,20 is illustrated in Figure 1. In the sequel, the
notation Gk,p will always denote the graph of Definition 3.1.

Remark 3.2. It can be shown in a straightforward manner that Gk,p is
vertex transitive.

3.1 Minimally k-edge connected graphs

We show in this subsection that for all k ≥ 3, there is an infinite family of
degree-partitioned minimally k-edge-connected graphs whose average edge-
connectivity asymptotically achieves the 9

8k upper bound established in
Section 2. The following result due to Mader [9] will be used.
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Theorem 3.3. If G is a connected, k-regular, vertex transitive graph, then
G is k-edge-connected.

As an immediate consequence of this result and Remark 3.2 we have the
following:

Corollary 3.4. The graphs Gk,p described in Definition 3.1 are minimally
k-edge-connected.

Theorem 3.5. There is an infinite family of degree-partitioned minimally
k-edge-connected graphs whose average edge-connectivity is asymptotically
9
8k.

Proof. Let k, p be integers such that 3 ≤ k ≤ p. LetW={w0, w1, . . . , wp−1},
and for m ∈ {1, 2, 3}, let Xm = {xm0 , xm1 , . . . , xmp−1}. Let Γk,p be the graph
of order 4p with vertex set W ∪X1 ∪X2 ∪X3 and edge set E1 ∪ E2 ∪ E3,
where

Em = {wixmi+j | 0 ≤ i ≤ p− 1, 0 ≤ j ≤ k − 1}
for m ∈ {1, 2, 3}, and where subscripts are expressed modulo p. For m ∈
{1, 2, 3}, letHm = Γk,p[W∪Xm]. Note that Hm

∼= Gk,p for allm ∈ {1, 2, 3},
and that H1, H2, and H3 are pairwise edge-disjoint. The graph Γk,p is
bipartite with partite sets W and X = X1 ∪ X2 ∪ X3, and every vertex
in W has degree 3k, while every vertex in X has degree k. (Essentially,
the graph Γk,p consists of three copies of Gk,p, where the three copies of
the vertex wi are identified for all 0 ≤ i < p.) Since Γk,p is obtained
from three distinct copies of the minimally k-edge-connected graph Gk,p,
by identifying corresponding vertices of W , it is k-edge-connected. Further,
since every edge of Γk,p is incident with a vertex of degree k, we see that
Γk,p is minimally k-edge-connected.

We now compute the average connectivity of Γk,p. First of all, if x ∈ X
and v ∈ V (Γk,p)−{x}, then λ(x, v) = k, since Γk,p is k-edge-connected and
deg(x) = k. If wi, wj ∈ W for i 6= j, then λ(wi, wj) = 3k, since there are
k edge-disjoint wi–wj paths in each of the edge-disjoint subgraphs H1, H2

and H3. Thus the average edge-connectivity of Γk,p is given by

3k
(
p
2

)
+ k[

(
4p
2

)
−
(
p
2

)
](

4p
2

) =

(
9p− 3

8p− 2

)
k,

which is asymptotically 9
8k.
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3.2 Minimally k-connected graphs

We show in this subsection that for all k ≥ 3, there is an infinite family of
degree-partitioned minimally k-connected graphs whose average connectiv-
ity asymptotically achieves the 9

8k upper bound established in Section 2.

While the graphs Γk,p described in the proof of Theorem 3.5 are minimally
k-connected, it can be shown in a fairly straightforward manner that their
average connectivity is asymptotically less than 9

8k.

So we define different families of degree-partitioned minimally k-connected
graphs for which the upper bound given in Theorem 2.2 is attained asymp-
totically. We require two slightly different constructions; one for k ∈
{3, 4, 5}, where we compute the average connectivity by constructing inter-
nally disjoint paths, and another for k ≥ 6, where we compute the average
connectivity by considering vertex separators. Our constructions use the
graphs Gk,p described in Definition 3.1. The proof of the main result of
this section hinges on the following technical lemma.

Lemma 3.6. Let k, p be integers such that 3 ≤ k ≤ p, and let u and v be
nonadjacent vertices of Gk,p. Let S be a minimal vertex separator of u and
v in Gk,p. Then |S| = k or |S| = 2k − 2.

Proof. First of all, if either u or v is isolated in Gk,p − S, say u, then S
contains the entire neighbourhood N(u) of u, and by the minimality of S,
we have S = N(u). We conclude that |S| = k in this case.

So we may assume that neither u nor v is isolated in Gk,p − S. In this
case, we show that |S| = 2k − 2. Let C be the component of Gk,p − S
that contains u, and let D be the union of the remaining components of
Gk,p − S. Colour the vertices of C red, the vertices of D white, and the
vertices of S black. Since u is not isolated in Gk,p − S, the component C
has order at least 2, and hence both W and X must contain at least one
red vertex. Similarly, since v is not isolated in Gk,p − S, we see that both
W and X must contain at least one white vertex.

By symmetry, we may assume that w0 is red, and that wp−1 is not red;
otherwise, we can relabel the vertices of Gk,p so that this happens. Since
S is a minimal vertex separator of u and v, there are no edges between red
and white vertices, and every black vertex must be adjacent with at least
one red vertex and at least one white vertex. We illustrate the relevant
portion of the graph Gk,p in Figure 2.
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Let t ≥ 0 be the largest integer such that all of the vertices in the set
CW = {w0, . . . , wt} are coloured red. Thus all of the vertices in the set
N({w0, . . . , wt}) = {x0, . . . , xt+k−1} are coloured either red or black. Let
x` be the first red vertex and xr be the last red vertex in the sequence
x0, . . . , xt+k−1. (We use ` and r for “left” and “right”, respectively.) Since
C is connected and contains w0, some neighbour of w0 must be coloured red,
meaning that ` ≤ k − 1. Similarly, some neighbour of wt must be coloured
red, meaning that r ≥ t. So we have 0 ≤ ` ≤ k − 1 and t ≤ r ≤ t+ k − 1.

We show first that xj is coloured red for every ` < j < r. Suppose otherwise
that this is not the case, and let j be the smallest integer such that ` < j < r
and xj is coloured black. Note that the black vertex xj must have a white
neighbour. By the minimality of j, the vertices x`, . . . , xj−1 are coloured
red, and hence none of the vertices w0, . . . , wj−1 are coloured white. Thus
we either have j > t and wj is white, or j < k − 1 and xj has a white
neighbour in the set {wp−(k−1−j), . . . , wp−1}. In the first case, the white
vertex wj is also adjacent to the red vertex xr, a contradiction. In the
second case, the white neighbour of xj is also adjacent to the red vertex
x`, a contradiction. We have shown that C contains the vertices in the set
CW = {w0, . . . , wt} and the vertices in the set CX = {x`, . . . , xr}. In fact,
we will see that V (C) = CW ∪ CX .

We now show that S has at least 2k − 2 vertices, i.e., that at least 2k − 2
vertices are coloured black. First of all, by the definition of ` and r, and
the fact that each of the vertices x0, . . . , xt+k−1 is either red or black, we
see that the vertices in the sets

LX = {x0, . . . , x`−1} and RX = {xr+1, . . . , xt+k−1}

are coloured black. (Note that the set LX is empty if ` = 0, and that the
set RX is empty if r = t+ k − 1.)

We claim that the vertices in the sets

LW = {wp−(k−1−`), . . . , wp−1} and RW = {wt+1, . . . , wr}

are also coloured black. First consider the set LW . If ` = k − 1, then the
set LW is empty, and there is nothing to prove. So suppose ` < k−1. Then
the vertex wp−1 is adjacent to the red vertex x`, and since we have assumed
that wp−1 is not red, it must be black. Since every black vertex must have
a white neighbour, and the neighbours x0, . . . , xk−2 of wp−1 are all black
or red, the vertex xp−1 must be coloured white. So all of the vertices in
LW are adjacent to the white vertex xp−1 and the red vertex x`, and must
therefore be black. The argument for RW is similar. If r = t, then RW
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wn−(k−1−`) wn−1 w0 wt wt+1 wr

xn−1 x0 x`−1 x` xr xr+1 xt+k−1 xt+k· · · · · · · · ·

· · · · · · · · ·

LW RWCW

LX CX RX

Figure 2: The minimal vertex separator S for u and v. Note that the black
and white vertices are represented by black and white circles, respectively,
and the red vertices are represented by red squares.

is empty, so suppose that r > t. By the maximality of t, the vertex wt+1

must be black, and hence must have a white neighbour. It follows that the
vertex xt+k must be white. So all of the vertices in RW are adjacent to the
white vertex xt+k and the red vertex xr, and must therefore be black.

Let T = LW ∪LX ∪RW ∪RX . We have shown that T ⊆ S. Since both W
and X contain white vertices, the sets LX , RX , LW , and RW are pairwise
disjoint. Note also that |LW ∪ LX | = k − 1 and |RW ∪ RX | = k − 1, so
|S| ≥ |T | = 2k − 2. Moreover, since N(CW ∪ CX) = T , we see that no
vertex in CW ∪CX has a red neighbour outside of CW ∪CX . It follows that
V (C) = CW ∪ CX , and that Gk,p − T is disconnected, hence S = T .

We note that in the terminology of [8], we have shown that Gp,k has con-
nectivity k and is essentially (2k − 2)-connected.

The proof of Lemma 3.6 reveals more about the minimal vertex separators
of Gk,p than just their cardinality. We can describe the structure of the
minimal vertex separators in Gp,k as in the following remark and this is
important in the sequel.

Remark 3.7. Let S be a minimal vertex separator of nonadjacent vertices
u and v in Gk,p. Then one of the following holds:

• |S| = k, and S = N(u) or S = N(v).
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• |S| = 2k − 2, and with notation as in the proof of Lemma 3.6, we
have S ∩W = LW ∪RW , where both LW and RW consist of at most
k − 1 consecutive vertices from the cyclic arrangement of vertices of
W and S ∩ X = LX ∪ RX , where LX and RX consist of at most
k − 1 consecutive vertices from the cyclic arrangement of vertices of
X. Moreover, |LW ∪ LX | = k − 1 and |RW ∪RX | = k − 1.

It is also straightforward to prove that Gk,p is minimally k-connected using
Lemma 3.6.

Corollary 3.8. Let k, p be integers such that 3 ≤ k ≤ p. Then Gk,p is
minimally k-connected.

Proof. Since Gk,p is k-regular, we must have κ(Gk,p) ≤ k. Now let S be
a minimal vertex separator of Gk,p. By Lemma 3.6, we have |S| = k or
|S| = 2k−2. Since k ≥ 3, we have 2k−2 > k, hence |S| ≥ k. So κ(Gk,p) ≥ k,
and we conclude that κ(Gk,p) = λ(Gk,p) = k. Finally, since Gk,p is k-
regular, we see that for every edge e of Gk,p, we have κ(Gk,p − e) < k.
Thus, we conclude that Gk,p is minimally k-connected.

Theorem 3.9. If k≥3, then there is an infinite family of degree-partitioned
minimally k-connected graphs whose average connectivity is asymptotically
9
8k.

Proof. For k ∈ {3, 4, 5}, the proof is completed using a computer algebra
system. The details are omitted here but are included in Appendix A of
the arXiv version [12], as is a justification why we consider two different
constructions: one for k ∈ {3, 4, 5} and another for k ≥ 6.

Assume now that k ≥ 6 is fixed and let p ∈ {rk2−1 | r ∈ {k+1, k+2, . . .}}.
Since k is relatively prime to p, the functions π1 and π2 from the set Zp =
{0, 1, 2, . . . , p− 1} to itself defined by

π1(i) = ki

and
π2(i) = k2i

for 0 ≤ i ≤ p − 1 (where the output in either case is expressed modulo p)
are permutations of Zp.
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Let

W = {w0, w1, . . . , wp−1},
X = {x0, x1, . . . , xp−1},
Y = {y0, y1, . . . , yp−1}, and

Z = {z0, z1, . . . , zp−1}.

Let Φk,p be the graph of order 4p with vertex set W ∪X ∪ Y ∪Z and edge
set EX ∪ EY ∪ EZ , where

EX = {wixi+j | 0 ≤ i ≤ p− 1, 0 ≤ j ≤ k − 1},
EY = {wπ1(i)yi+j | 0 ≤ i ≤ p− 1, 0 ≤ j ≤ k − 1}, and

EZ = {wπ2(i)zi+j | 0 ≤ i ≤ p− 1, 0 ≤ j ≤ k − 1},

where subscripts are expressed modulo p.

Let

HX = Φk,p[W ∪X],

HY = Φk,p[W ∪ Y ], and

HZ = Φk,p[W ∪ Z].

Note that HX , HY , and HZ are isomorphic to Gk,p.

We first show that Φk,p is degree-partitioned minimally k-connected. Let
S be any subset of at most k − 1 vertices of Φk,p. We will show that
Φk,p − S is connected. Since HX is isomorphic to Gk,p, it is k-connected
by Corollary 3.8. Therefore, the graph HX − S is connected. Let v be any
vertex in Y ∪ Z that is not in S. Then v has k neighbours in Φk,p, all of
which belong to W ⊆ V (HX). At most k − 1 of these neighbours belong
to S, so v is joined to some vertex of HX − S. It follows that Φk,p − S is
connected, and hence Φk,p is k-connected. Note that Φk,p is bipartite with
partite sets W and X ∪ Y ∪ Z, and that every vertex in W has degree 3k,
while every vertex in X ∪ Y ∪ Z has degree k. We conclude that Φk,p is
degree-partitioned minimally k-connected.

It now suffices to show that κ(u, v) = 3k for every pair of distinct vertices
u, v ∈ W . Since u and v both have degree 3k, we certainly have κ(u, v) ≤
3k. So it suffices to show that |S| ≥ 3k for every vertex separator S of u
and v. Let S be a vertex separator of u and v, and let SX , SY , and SZ
denote the sets S ∩V (HX), S ∩V (HY ), and S ∩V (HZ), respectively. Note
that SX , SY and SZ separate u and v in HX , HY , and HZ , respectively.
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Let TX ⊆ SX , TY ⊆ SY and TZ ⊆ SZ be minimal separators of u and v in
HX , HY and HZ , respectively. Note that we have

|S| = |SX ∪ SY ∪ SZ | ≥ |TX ∪ TY ∪ TZ |.

We will use the principle of inclusion and exclusion to show that |TX ∪TY ∪
TZ | ≥ 3k.

Let T = {TX , TY , TZ}, and let T ∈ T . First of all, by Lemma 3.6, we have
|T | = k or |T | = 2k − 2. Since k ≥ 6, we have 2k − 2 > k, so |T | ≥ k.
Further, by Remark 3.7, if |T | = k, then T is the neighbourhood of u or v
in the subgraph HX , HY , or HZ corresponding to T , and since u, v ∈ W ,
we see that T ∩W = ∅ in this case.

We show now that if two distinct sets in T have nonempty intersection,
then they both have cardinality 2k−2, and their intersection has cardinality
at most four. Suppose first that TX ∩ TY 6= ∅. Since TX ⊆ W ∪ X and
TY ⊆W∪Y , we see that TX∩TY ⊆W . Thus, from the previous paragraph,
we must have |TX | = |TY | = 2k − 2. Further, by Remark 3.7, we have

TX ∩W ⊆ {wa, wa+1, . . . , wa+k−2} ∪ {wb, wb+1, . . . , wb+k−2}

for some a, b ∈ {0, 1, . . . , p− 1}, and

TY ∩W ⊆ {wπ1(c), wπ1(c+1), . . . , wπ1(c+k−2)}
∪ {wπ1(d), wπ1(d+1), . . . , wπ1(d+k−2)}

= {wkc, wkc+k, . . . , wkc+k(k−2)} ∪ {wkd, wkd+k, . . . , wkd+k(k−2)}

for some c, d ∈ {0, 1, . . . , p− 1}. Since each of the sets

{wa, wa+1, . . . , wa+k−2} and {wb, wb+1, . . . , wb+k−2}

overlaps with each of the sets

{wkc, wkc+k, . . . , wkc+k(k−2)} and {wkd, wkd+k, . . . , wkd+k(k−2)}

in at most one vertex, we have |TX ∩ TY | ≤ 4. The arguments for TX ∩ TZ
and TY ∩ TZ are similar, and are omitted.

We now show that |TX ∪ TY ∪ TZ | ≥ 3k by considering several cases.

• If the sets in T are pairwise disjoint, then they each have cardinality
at least k, and it follows immediately that |TX ∪ TY ∪ TZ | ≥ 3k.
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• If exactly one pair of sets from T has nonempty intersection, then
both of these sets have cardinality 2k−2, and they overlap in at most
four vertices. Further, they are disjoint from the third set, which
has cardinality at least k. Thus, by the principle of inclusion and
exclusion, we have

|TX ∪ TY ∪ TZ | ≥ 2(2k − 2)− 4 + k = 5k − 8 > 3k,

where we used the fact that k ≥ 6 at the end.

• If all pairs of sets in T have nonempty intersection, then all of the
sets in T have cardinality 2k − 2, and each pair overlaps in at most
four vertices. Thus, by the principle of inclusion and exclusion, we
have

|TX ∪ TY ∪ TZ | ≥ 3(2k − 2)− 3(4) = 6k − 18 ≥ 3k,

where we used the fact that k ≥ 6 at the end.

We conclude in all cases that |S| ≥ |TX ∪ TY ∪ TZ | ≥ 3k. Therefore, we
have κ(u, v) = 3k, which completes the proof.

4 Conclusion

The obvious open problem is to resolve Conjecture 1.2, which states that
if G is an optimal minimally k-(edge-)connected graph of order n ≥ 2k+ 1
for some k ≥ 3, then G is degree-partitioned. We showed that if this
conjecture is true, then the average (edge-)connectivity of a minimally k-
(edge-)connected graph is at most 9

8k, and we constructed degree-partitioned
minimally k-(edge-)connected graphs which attain this upper bound asymp-
totically.
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