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Abstract. A symmetric 2-(v, k, 3) design is called a triplane. In this pa-
per we construct two triplanes of order twelve, i.e., symmetric 2-(71, 15, 3)
designs, from the binary codes of the previously known triplanes. All 146
previously known triplanes of order twelve, i.e., symmetric 2-(71, 15, 3) de-
signs, admit an action of an automorphism of order three, while these two
newly constructed triplanes have full automorphism groups that are isomor-
phic to the elementary abelian group of order eight. Furthermore, possible
actions of automorphisms of prime order on a triplane of order twelve are
studied.

1 Introduction and preliminaries

We assume that the reader is familiar with the basic facts of design theory.
For basic definitions and properties of symmetric designs not given in this
paper we refer the reader to [3, 14].

An incidence structure D = (P,B, I), with point set P, block set B and
incidence I is a t-(v, k, λ) design, if |P| = v, every block B ∈ B is incident
with precisely k points, and every t distinct points together are incident with
exactly λ blocks. In a 2-(v, k, λ) design each point is incident with exactly

r =
λ(v − 1)

k − 1
blocks, and r is called the replication number of a design. The

number n = r−λ is called the order of a 2-(v, k, λ) design. An isomorphism
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from one design to another is a bijective mapping from points to points
and from blocks to blocks that preserves incidence. An isomorphism from
a design D onto itself is called an automorphism of D. The set of all
automorphisms of D forms its full automorphism group denoted Aut(D).

A design is called symmetric if it has the same number of points and blocks.
If a 2-(v, k, λ) design is symmetric, then r = k and every two blocks have λ
points in common. The dual of a symmetric 2-(v, k, λ) design D, i.e., the
design obtained by reversing the roles of points and blocks of D, is also a
symmetric 2-(v, k, λ) design. The incidence matrices of a symmetric design
and its dual are transpose to each other, and in general these two designs
need not be isomorphic. A symmetric design that is isomorphic to its dual
is called self-dual.

A symmetric 2-(v, k, 3) design is called a triplane. The known nontrivial
triplanes have parameters 2-(11, 6, 3), 2-(15, 7, 3), 2-(25, 9, 3), 2-(31, 10, 3),
2-(45, 12, 3) or 2-(71, 15, 3). The classification of triplanes of orders three,
four, six and seven is completed (see [15]), there is only one triplane of
order three, exactly five triplanes of order four, 78 triplanes of order six,
and 151 triplanes of order seven. Furthermore, it is known that there are at
least 5421 triplanes of order nine (see [4]) and at least 146 triplanes of order
twelve (see [7]). Symmetric 2-(71, 15, 3) designs have the largest number
of points among the known triplanes, since it is not known whether there
exists a symmetric 2-(81, 16, 3) design. Moreover, for many years symmetric
2-(81, 16, 3) design has also been the smallest symmetric design for which
(non)existence has not been determined (see [11]) (since 1985 when the
existence of a symmetric 2-(78, 22, 6) design was established in [13]).

All known triplanes of order twelve admit an automorphism of order three.
In this paper we will give first examples of symmetric 2-(71, 15, 3) designs
which don’t have this property, by constructing a triplane of order twelve
whose full automorphism group is isomorphic to the elementary abelian
group E8. We also study possible actions of automorphisms of prime order
on a triplane of order twelve. Thereby, we will prove Theorem 1.1.

Theorem 1.1. There are at least 148 triplanes of order twelve, up to iso-
morphism.

Let D be a triplane of order twelve and let α be an automorphism of D. Let
fα denotes the number of fixed points of α. For a prime p, fp denotes the
number of fixed points of α, |α| = p. We will prove the following theorem.
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Theorem 1.2. Let D be a triplane of order twelve and let α be an auto-
morphism of prime order acting on D. Then |α| ∈ {2, 3, 5, 7, 11}. Further,
the following holds:

1. f2 ∈ {7, 9, 11, 13, 15, 17},

2. f3 ∈ {2, 5},

3. f5 = f7 = 1,

4. f11 = 5.

Given a symmetric 2-(v, k, λ) design D, a residual design of D is the design
obtained by deleting a block of D and keeping the points that do not belong
to that block. A residual design at any block of D is a 2-(v − k, k − λ, λ)
design, so a residual design of a triplane 2-(71, 15, 3) has parameters 2-
(56, 12, 3).

Let D be a 2-(v, k, λ) design with only three distinct intersection numbers
k − r + λ, ρ1 and ρ2 (ρ1 > ρ2). Then D yields a strongly regular graph,
called the class graph of D (see [10, Theorem 3.2.4.]). The class graph of
D is a graph whose vertices are equivalence classes (two blocks of D, B1

and B2, are equivalent if |B1 ∩ B2| ∈ {k, k − r + λ}), where two vertices
are adjacent if two blocks representing the corresponding classes have ρ1
points in common.

The (linear) code CF of the design D over a finite field F is the vector
space spanned by the incidence vectors of the blocks over F. The vectors
in C are called codewords. For x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Fn
the number d(x, y) = |{i | 1 ≤ i ≤ n, xi 6= yi}| is called a Hamming
distance. An important parameter of a code C is its minimum distance
d = min{d(x, y) | x, y ∈ C, x 6= y}. If a linear code C over a field of order q
is of length n, dimension k, and minimum weight d, then we write [n, k, d]q
to show this information. For x ∈ Fn we define the weight w(x) of x by
w(x) = d(x, 0). For a linear code C its minimum distance is equal to its
minimum weight. The support of a nonzero vector x = (x1, . . . , xn) ∈ Fn
is the set of indices of its nonzero coordinates, i.e. supp(x) = {i | xi 6= 0}.
For background reading on codes related to designs we refer the reader to
[2]. In this paper, we consider binary codes of the triplanes of order twelve.

2-(71, 15, 3) designs

81



2 Known triplanes of order twelve

Symmetric 2-(71, 15, 3) designs have the largest number of points among all
known triplanes and it is not known if a triplane 2-(v, k, 3) exists for v > 71.
The first triplane of order twelve was constructed from an embeddable 2-
(56, 12, 3) design. More precisely, in 1980 Haemers proved the existence of
at least four embeddable 2-(56, 12, 3) designs and constructed four mutually
non-isomorphic symmetric 2-(71, 15, 3) designs that are not self-dual (see
[10]). Three of the constructed triplanes have the full automorphism group
of order 336 and the order of the full automorphism group of the forth
triplane is 48. Together with their duals, this makes eight triplanes of order
twelve constructed by Haemers. In [9], an action of an automorphism group
G ∼= E8 : F21 was presumed and nine triplanes of order twelve with that
automorphism group have been constructed. Besides three pairs of dually
isomorphic designs previously constructed by Haemers, that includes three
new 2-(71, 15, 3) designs with the full automorphism group isomorphic to
E8 : F21 and the first example of a self-dual triplane of order twelve. With
the enumeration of all triplanes of order twelve which admit an action of an
automorphism of order six presented in [17] and [7], a total of 146 triplanes
have been constructed so far. Among them, there are 10 self-dual designs.
Let us note that triplanes with an automorphism of order six also include
the triplanes previously constructed by Haemers and Garapić.

All known triplanes admit an automorphism of order three as presented in
Table 1, where G denotes the full automorphism group of a design.

Table 1: The full automorphism groups of known triplanes of order twelve.

the order of G the structure of G the number of designs

336 (E8 : F21) × Z2 6
168 E8 : F21 3
48 E4 ×A4 26
42 F21 × Z2 6
24 A4 × Z2 89
24 S3 × E4 16

Remark 2.1. A residual design of a triplane of order twelve is a 2-(56, 12, 3)
design. In [10], two non-isomorphic strongly regular graphs with parameters
(35, 16, 6, 8) were constructed as class graphs of residual designs of triplanes
of order twelve. In [18], it is shown that six non-isomorphic strongly regular
graphs with parameters (35, 16, 6, 8) can be constructed from residual designs
of known triplanes of order twelve.
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3 Construction of new symmetric 2-(71, 15, 3)
designs

Binary and ternary codes of the known syymmetric 2-(71, 15, 3) designs and
their residual designs were studied in [7], where the parameters of the codes
and the information on orders of their automorphism groups are given. In
this section we use binary codes of known triplanes for a construction of the
first example of triplane of order twelve that does not admit an action of
an automorphism of order three. The method of the construction is similar
to the method used in [5].

The incidence matrices of 146 known triplanes of order twelve are available
at www.math.uniri.hr/∼sanjar/structures/. In the sequel we will follow the
order of designs given there and denote designs by Di, i ∈ {1, 2, ..., 146}.
The binary code spanned by Di will be denoted by Ci.

For every code Ci we construct the corresponding graph Gi whose vertices
are codewords of Ci of weight 15, two vertices being adjacent if the supports
of corresponding codewords share three points. Then, we are searching for
cliques of size 71 in Gi. Those cliques correspond to 2-(71, 15, 3) designs. For
finding cliques in graphs we used Cliquer [16]. The number of codewords of
weight 15 in codes Ci is presented in Table 2, where N denotes the quotient
|Aut(Ci)|
|Aut(Di)| , i.e., the number of isomorphic copies of Di in Ci. The number

of vertices of Gi varies from 120 to 59648, and for some of the cases the
construction of all cliques of size 71 is out of our reach. Those cases are
marked with * in Table 2. For the cases marked with !, the number of
obtained cliques is greater than N , and we checked if the obtained designs
were previously known. For the isomorphism testing and computing the
groups we used GAP [8].

From the code C30 we obtained three isomorphic copies of a design with
the full automorphism group of order 8, which we denote by D. The dual
of D is obtained from the code C33 spanned by D33. These two designs
are the first examples of a triplane of order twelve that do not admit an
automorphism of order three.
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Table 2: The number of codewords of weight 15 in the codes of triplanes of order 12.

i cw15 N i cw15 N i cw15 N i cw15 N

1 1140 96 38 1270 1 75 161 1 112 3698 16
2 1044 2 39 1394 2 76 2680 2 113 3784 8
3 408 2 40* 9434 8 77 898 1 114 3788 8
4 360 2 41 3056 16 78 1948 2 115 5174 1
5 120 1 42* 8632 1 79 1948 2 116* 16244 256
6 330 1 43* 26538 128 80 946 1 117* 22688 512
7 282 1 44 3580 16 81 2680 2 118* 11404 1
8 192 1 45 2800 8 82 378 1 119* 20852 256
9 386 1 46 1126 1 83 7380 32 120 2940 2
10 236 1 47 1402 1 84* 59648 32768 121 1262 1
11 338 1 48 614 1 85 3068 8 122 926 1
12 248 1 49 1142 2 86 3452 8 123 4814 2
13 170 1 50 324 2 87* 59648 32768 124* 16364 256
14 314 1 51 348 2 88 7932 32 125 2076 2
15 386 1 52 1220 2 89* 24750 4096 126* 15788 256
16 266 1 53 170 1 90 3650 8 127 4778 2
17! 6454 8 54 266 1 91 647 1 128 5594 2
18 2068 4 55 378 1 92 2736 16 129* 14132 256
19! 6550 8 56 306 1 93 2448 16 130 2796 2
20 2224 4 57 434 1 94 4342 1 131 1884 2
21! 6454 8 58 344 1 95 3808 16 132 2700 2
22 1762 4 59 224 1 96 1154 1 133 5084 16
23! 6550 8 60 314 1 97 3974 1 134 3836 16
24 2374 4 61 386 1 98 3160 8 135* 20276 256
25 1126 1 62 212 1 99 3380 8 136 2856 2
26 2800 8 63 338 1 100 3670 1 137* 23780 512
27 4540 16 64 272 1 101* 19700 256 138 3288 2
28 1018 1 65! 6226 8 102 1250 1 139 4366 1
29* 26538 896 66 1762 4 103* 20132 256 140* 14828 256
30! 5752 1 67! 6106 8 104* 17780 256 141 2700 2
31 228 16 68 1816 4 105 3068 8 142 3088 8
32 950 1 69! 6226 8 106* 21212 512 143 3472 8
33! 6554 1 70 1714 4 107* 14957 2 144 43338 4096
34 1270 1 71! 6106 8 108* 29936 3072 145 5486 8
35 986 1 72 1966 4 109 4144 16 146 710 1
36 774 1 73 1115 1 110* 18668 512
37 750 1 74 844 1 111* 21212 512
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The full automorphism group G = 〈g1, g2, g3〉 of D is isomorphic to the
elementary abelian group E8 = Z2 × Z2 × Z2. Its generators g1, g2 and g3
are given in the sequel. Note that g1, g2 and g3 fix seven blocks (points) of
D.

g1 = (2, 3)(4, 5)(12, 15)(13, 16)(14, 17)(18, 21)(19, 22)(20, 23)(24, 27)(25, 28)

(26, 29)(30, 33)(31, 34)(32, 35)(36, 39)(37, 40)(38, 41)(42, 45)(43, 46)

(44, 47)(48, 51)(49, 52)(50, 53)(54, 57)(55, 58)(56, 59)(60, 63)(61, 64)

(62, 65)(66, 69)(67, 70)(68, 71)

g2 = (2, 12)(3, 15)(4, 57)(5, 54)(13, 17)(14, 16)(18, 42)(19, 49)(20, 29)(21, 45)

(22, 52)(23, 26)(24, 51)(25, 46)(27, 48)(28, 43)(30, 63)(31, 37)(32, 71)

(33, 60)(34, 40)(35, 68)(36, 69)(38, 65)(39, 66)(41, 62)(44, 50)(47, 53)

(55, 59)(56, 58)(61, 67)(64, 70)

g3 = (2, 13)(3, 16)(4, 58)(5, 55)(12, 17)(14, 15)(18, 24)(19, 46)(20, 53)(21, 27)

(22, 43)(23, 50)(25, 49)(26, 44)(28, 52)(29, 47)(30, 66)(31, 61)(32, 41)

(33, 69)(34, 64)(35, 38)(36, 60)(37, 67)(39, 63)(40, 70)(42, 51)(45, 48)

(54, 59)(56, 57)(62, 71)(65, 68)

The orbit lengths distribution for an action of the group G on D is
(1, 2, 2, 2, 2, 2, 2, 2, 8, 8, 8, 8, 8, 8, 8), and the representatives of the block or-
bits are:

1 . . . {1, 2, 3, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17}
2 . . . {1, 4, 5, 6, 9, 24, 27, 36, 39, 48, 51, 54, 57, 66, 69}
2 . . . {1, 4, 5, 7, 10, 25, 28, 31, 34, 49, 52, 55, 58, 61, 64}
2 . . . {1, 4, 5, 8, 11, 20, 23, 38, 41, 44, 47, 56, 59, 68, 71}
2 . . . {6, 7, 8, 18, 19, 23, 26, 27, 28, 42, 43, 47, 48, 49, 53}
2 . . . {6, 10, 11, 18, 24, 34, 35, 38, 40, 42, 51, 64, 65, 68, 70}
2 . . . {7, 9, 11, 19, 25, 32, 33, 36, 38, 43, 52, 62, 63, 66, 68}
2 . . . {8, 9, 10, 20, 26, 30, 34, 36, 37, 44, 53, 60, 64, 66, 67}
8 . . . {1, 2, 3, 18, 24, 33, 39, 44, 46, 49, 53, 61, 62, 67, 68}
8 . . . {2, 4, 7, 16, 24, 29, 30, 32, 34, 35, 47, 48, 56, 63, 67}
8 . . . {2, 4, 9, 15, 26, 28, 29, 37, 43, 45, 51, 59, 61, 65, 68}
8 . . . {2, 4, 10, 13, 22, 23, 25, 33, 35, 36, 42, 45, 53, 57, 71}
8 . . . {2, 5, 6, 12, 20, 22, 32, 33, 37, 40, 47, 49, 55, 65, 66}
8 . . . {2, 5, 8, 14, 24, 28, 37, 41, 42, 52, 57, 60, 62, 63, 70}
8 . . . {2, 5, 11, 17, 19, 21, 22, 23, 26, 39, 51, 58, 63, 64, 67}
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Remark 3.1. All residual designs ofD are mutually isomorphic 2-(56, 12, 3)
designs with intersection numbers 0, 2 and 3. The corresponding class graph
is a strongly regular graph with parameters (35, 16, 6, 8) isomorphic to the
graph G2 from [18]. Residual designs of the dual of D have four intersection
numbers.

4 Automorphisms of symmetric 2-(71, 15, 3)
designs

Let D = (P,B, I) be a symmetric (v, k, λ) design and G ≤ Aut(D). The
group action of G produces the same number of point and block orbits
(see [14, Theorem 3.3]). We denote this number by m, the point orbits by
P1, . . . ,Pm, the block orbits by B1, . . . ,Bm, and set |Pr| = ωr and |Bi| = Ωi.
An automorphism group G is said to be semi-standard if, after possible
renumbering of the orbits, we have ωi = Ωi, for i = 1, . . . ,m. We denote
by γir the number of points of Pr which are incident with a representative
of the block orbit Bi. For these numbers the following equalities hold (see
[6, 12]):

m∑

r=1

γir = k , (1)

m∑

r=1

Ωj
ωr
γirγjr = λΩj + δij · (k − λ) , (2)

where δij is the Kronecker delta.

Definition 4.1. A (m×m)-matrix (γir) with entries satisfying conditions
(1) and (2) is called an orbit matrix for the parameters (v, k, λ) and orbit
lengths distributions (ω1, . . . , ωm), (Ω1, . . . ,Ωm).

Hence, the ith row of an orbit matrix satisfies the condition (1) and the
condition

m∑

r=1

Ωi
ωr
γ2ir = λ(Ωi − 1) + k . (3)

Let us note that for the case where an automorphism of prime order acts
on a symmetric design, after a possible reordering of orbits, we have that
(ω1, . . . , ωm) = (Ω1, . . . ,Ωm).
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Definition 4.2. An (s ×m)-matrix (γir), s < m, with entries satisfying
condition (1), and the condition

m∑

r=1

Ωj
ωr
γirγjr ≤ λΩj + δij · (k − λ), 1 ≤ i, j ≤ s , (4)

is called a partial (block) orbit matrix for the parameters (v, k, λ) and orbit
lengths distributions (ω1, . . . , ωm), (Ω1, . . . ,Ωm).

Orbit matrices are often used in a construction of designs with a presumed
automorphism group. More information on orbit matrices of block designs
and a construction of 2-designs using orbit matrices can be found in [6].

In the following, we use orbit matrices to determine possible actions of
automorphisms of prime order on triplanes of order twelve. The number
of fixed points of an automorphism of order p is denoted by fp. From the
following theorem it follows that fp ≤ 18.

Theorem 4.3. [14, Corollary 3.7] Suppose that a nonidentity automor-
phism σ of a symmetric 2-(v, k, λ) design fixes f points. Then

f ≤ v − 2(k − λ) and f ≤ (
λ

k −
√
k − λ

)v.

The second inequality in Theorem 4.3 is equivalent to f ≤ k +
√
k − λ,

which is easier to use. Further, according to the following theorem given in
[1] we need to consider only the primes p for which p ≤ k = 15.

Theorem 4.4. [1, Theorem 2.7] Let D be a symmetric 2-(v, k, λ) design
and p a prime divisor of the order of Aut(D). Then either p divides v or
p ≤ k.

Clearly, fp ≡ 71 (mod p). The following theorem gives a lower bound for
the number of fixed points of an involution fixing at least one point.

Theorem 4.5. [14, Proposition 4.23] Suppose that D is a nontrivial sym-
metric 2-(v, k, λ) design, with an involution σfixing F points and blocks. If
F 6= 0, then

F ≥
{

1 + k
λ , if k and λ are both even,

1 + k−1
λ , otherwise.

It follows from Theorem 4.5 that f2 ≥ 6.
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4.1 Automorphisms of prime order acting on the known
symmetric 2-(71, 15, 3) designs

According to [7, 17], all previously known triplanes admit an action of an
automorphism of order six with one of the following orbit lengths distribu-
tions:

1. (2, 3, 3, 3, 3, 3, 6, 6, 6, 6, 6, 6, 6, 6, 6),

2. (1, 2, 2, 3, 3, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6),

3. (1, 1, 1, 2, 3, 3, 3, 3, 6, 6, 6, 6, 6, 6, 6, 6, 6),

and those are the only possible actions of an automorphism of order six.
Furthermore, the full automorphism groups of triplanes of order twelve
admitting an automorphism of order six have one of the following orders
(see Table 1): 336 = 24 · 3 · 7, 168 = 23 · 3 · 7, 48 = 24 · 3, 42 = 2 · 3 · 7
and 24 = 23 · 3. Two newly constructed triplanes of order twelve have
the full automorphism group of order 8 = 23. So, there exist triplanes of
order twelve having automorphisms of order two, three and seven. It is not
known if there are symmetric 2-(71, 15, 3) designs having an automorphism
of order five, eleven or thirteen.

From given orbit lengths distributions for a group isomorphic to Z6, one
can see that an automorphism of order three acts on the known triplanes
of order twelve with two or five fixed points, while an involution acts with
seven or fifteen fixed points. Further analysis of the actions of automor-
phisms of order two, three and seven on the known triplanes yields the
following:

• If the full automorphism group of a design is isomorphic to the one of
the groups E8 or E8 : F21, then an involution fixes seven points, and
if the full automorphism group is isomorphic to the group F21 × Z2,
then an involution fixes 15 points. In all other cases, both actions
appear.

• An automorphism of order three acts with two fixed points on the ten
designs with the full automorphism group isomorphic to Z2 ×A4 for
which the orbit lengths distribution for Z6 is given by (2, 3, 3, 3, 3, 3, 6,
6, 6, 6, 6, 6, 6, 6, 6). In all the other cases, an automorphism of order
three fixes five points.

• An automorphism of order seven always acts with one fixed point.

Crnković and Rukavina
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As established in [7], an automorphism of order three acting on a triplane
of order twelve cannot have more than five fixed points, so f3 ∈ {2, 5}.
Further, we know that 6 ≤ f2 ≤ 18, hence f2 ∈ {7, 9, 11, 13, 15, 17}. So far,
there are no known examples for f2 ∈ {9, 11, 13, 17}.

Lemma 4.6. Let D be a triplane of order twelve and let α be an automor-
phism of D of order 7. Then α fixes exactly one point.

Proof. Since f7 ≤ 18, we have f7 ∈ {1, 8, 15}. All known actions of an
automorphism of order seven on a triplane of order twelve are with one
fixed point.

If f7 = 8 then the cycle type of every fixed block is 1871 or 1172, i.e., a fixed
block consists of eight fixed points and one 〈α〉-orbit of length seven, or one
fixed point and two 〈α〉-orbits of length seven. Therefore, it is not possible
to have more then one fixed block because the size of the intersection of
two blocks must be equal to λ = 3. It follows that f7 6= 8.

If f7 = 15 then the cycle type of a fixed block is 115, 1871 or 1172. We have
to consider only blocks of type 1871, because a fixed block of type 115 or 1172

cannot intersect with other fixed blocks in λ = 3 points. The corresponding
orbit matrix OM is a 23×23 matrix (γir) with entries satisfying conditions
(1) and (2). Without loss of generality we can assume that the first three
rows (corresponding to the fixed blocks) of OM are given in Table 3.

The forth block of type 1871 must intersect each of the previously con-
structed blocks in three points. Therefore, because of the intersection with
the first row, the fourth row must have exactly three 1’s among the first
eight positions and the following seven positions consist of five 1’s and two
0’s. That could not happen in a way that both intersections with the sec-
ond and the third row are equal to three. So, it is not possible to construct
the forth row of OM using a fixed block of type 1871, and we can exclude
the case f7 = 15.

Table 3: The unique partial orbit matrix for three fixed blocks for Z7 acting with 15
fixed points.

OM 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 7 7 7 7 7 7 7 7
1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 7 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 1 1 1 1 1 0 0 0 7 0 0 0 0 0 0
1 0 0 0 1 1 1 0 0 1 1 1 0 0 1 1 0 0 7 0 0 0 0 0
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Hence, we have the following statement.

Lemma 4.7. For triplanes of order twelve the following holds:

1. f2 ∈ {7, 9, 11, 13, 15, 17},

2. f3 ∈ {2, 5},

3. f7 = 1.

4.2 Automorphisms of order 5, 11 and 13

If an automorphism of prime order acts on a symmetric 2-(71, 15, 3) design,
then its order belongs to the set {2, 3, 5, 7, 11, 13}. In this section we con-
sider possible actions of an automorphism of order 5, 11 or 13, that do not
act on the known triplanes of order 12.

4.2.1 An action of an automorphism of order 13

Lemma 4.8. A 2-(71, 15, 3) design with an automorphism of order 13 does
not exist.

Proof. The only possible orbit lengths distribution for an action of an auto-
morphism of order 13 on the points (and blocks) of a triplane with param-
eters 2-(71, 15, 3) is (1, 1, 1, 1, 1, 1, 13, 13, 13, 13, 13) ∼ 16135, and the cycle
type of a fixed block is given by 12131. Two fixed blocks of that type cannot
intersect in λ = 3 points and, therefore, an automorphism of order thirteen
does not act on a triplane of order twelve.

4.2.2 An action of an automorphism of order 11

Lemma 4.9. Let D be a triplane with parameters 2-(71, 15, 3) and let α,
|α| = 11, be an automorphism of D. Then α acts on D with five fixed points
(blocks) and the corresponding orbit matrix OM is presented in Table 4.

Proof. An automorphism of order 11 could act with 5 or 16 fixed points.
If f11 = 5, then a fixed block must be of the cycle type 14111, and without
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Table 4: The unique orbit matrix for an action of an automorphism of order 11.

OM 1 1 1 1 1 11 11 11 11 11 11
1 1 1 1 1 0 11 0 0 0 0 0
1 1 1 1 0 1 0 11 0 0 0 0
1 1 1 0 1 1 0 0 11 0 0 0
1 1 0 1 1 1 0 0 0 11 0 0
1 0 1 1 1 1 0 0 0 0 11 0
11 1 0 0 0 0 2 2 2 2 3 3
11 0 1 0 0 0 2 2 2 3 2 3
11 0 0 1 0 0 2 2 3 2 2 3
11 0 0 0 1 0 2 3 2 2 2 3
11 0 0 0 0 1 3 2 2 2 2 3
11 0 0 0 0 0 3 3 3 3 3 0

loss of generality we can assume that the first five rows (corresponding to
the five fixed blocks) of OM are as given in Table 5.

Table 5: The unique partial orbit matrix for five fixed blocks for Z11 acting with 5
fixed points.

OM 1 1 1 1 1 11 11 11 11 11 11
1 1 1 1 1 0 11 0 0 0 0 0
1 1 1 1 0 1 0 11 0 0 0 0
1 1 1 0 1 1 0 0 11 0 0 0
1 1 0 1 1 1 0 0 0 11 0 0
1 0 1 1 1 1 0 0 0 0 11 0

Further, we will construct the possible row types for non-fixed blocks. Since
every par of fixed points appeared three times in the first five blocks, it
follows that a non-fixed block B contains at most one fixed point. From
the condition (1), it follows that

∑11
r=1 γir = 15, and from (3) we have

11 +
∑11
r=6 γ

2
ir = 45 when B contains one fixed point, i.e.,

∑11
r=6 γ

2
ir =

45 when B does not contain any fixed point. Moreover, if B contains
a fixed point, it also contains four 2’s and one 3, since its intersection
with all fixed blocks must be equal to three. That yield the unique row
type (1, 0, 0, 0, 0, 3, 3, 2, 2, 2, 2), where the first five components correspond
to the orbits of size one. Since every fixed point appears in 15 blocks
of a triplane, obtained row type must apply to the rows 6 − 10 of OM ,
and the last row corresponds to a non-fixed block that does not contain
any fixed point. First five components of that row are 0, 0, 0, 0, 0, and
the rest of the row must include five 3’s. That yield the unique row type
(0, 0, 0, 0, 0, 3, 3, 3, 3, 3, 0) for the last row. So, the orbit matrix presented in
Table 4 is, up to isomorphism, the only possible orbit matrix for an action
of an automorphism of order eleven with f11 = 5.
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If f11 = 16, then the cycle type of some fixed block is 115 or 14111, and the
first of them can appear at most once. Moreover, the fixed block of type
14111 can appear at most five times, since there are five orbits of length
eleven and the size of the intersection of the sixth fixed block of that type
with the one of the previous five fixed block of that type would be at least
eleven. So, it is not possible to have 16 fixed blocks consisting of these two
types.

4.2.3 An action of an automorphism of order 5

Lemma 4.10. Let D be a triplane with parameters 2-(71, 15, 3) and let α
be an automorphism of D. If |α| = 5, then α fixes exactly one point (block)
of D.

Proof. From f5 ≤ 18 and f5 ≡ 71 (mod 5) it follows f5 ∈ {1, 6, 11, 16}.
If f5 = 6, then possible cycle types for a fixed block are 1552 and 53. It is
obvious that each of them can appear at most once and that two blocks of
different types cannot intersect in λ = 3 points. Therefore, f5 6= 6.
If f5 = 11, then possible cycle types for a fixed block are 11051, 1552 and
53. We have to consider only blocks of type 1552, because a fixed block of
type 11051 or 53 cannot intersect with other fixed blocks in λ = 3 points.
Similarly as in the proof of Lemma 4.9, we obtain the unique partial orbit
matrix OM for the first five rows corresponding to fixed blocks, which is
presented in Table 6.

Because of the intersection with the first row, the sixth row should have
three 1’s at the first five positions. However, all 2-subsets of the point set
{1, 2, 3, 4} already appear three times in the first five fixed blocks so the
sixth block cannot contain two points from that set. Therefore, it is not
possible to construct the sixth row corresponding to a fixed block. Hence,
f5 6= 11.

For f5 = 16, there are four possible cycle types for fixed blocks, namely
115, 11051, 1552 and 53. A block of type 115 or 11051 could appear at most
once. Each block of the type 1552 must have two 5’s at positions 17 − 28.
Therefore, such a block could appear at most five times, since the sixth
block of that type must intersect one of the previously constructed blocks
of the same type in five points. In a similar way, we conclude that a block
of the type 53 could appear at most three times. So, it is not possible to
construct 16 fixed blocks. It follows that f5 6= 16.
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Table 6: The unique partial orbit matrix for 5 fixed blocks, Z5 acting with 11 fixed
points.

OM 1 1 1 1 1 1 1 1 1 1 1 5 5 5 5 5 5 5 5 5 5 5 5
1 1 1 1 1 1 0 0 0 0 0 0 5 5 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 1 1 0 0 0 0 0 0 5 5 0 0 0 0 0 0 0 0
1 1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 5 5 0 0 0 0 0 0
1 1 0 1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 5 5 0 0 0 0
1 0 1 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 5 5 0 0

Remark 4.11. There are 66091 orbit matrices for an action of an auto-
morphism of order five on a triplane of order twelve with one fixed point,
which we constructed by the use of a computer. However, indexing of those
orbit matrices is out of our reach.
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admitting an automorphism of order six and their binary and ternary
codes, Util. Math., 103 (2017), 23–40.

[8] The GAP Group, GAP – Groups, Algorithms, and Programming, Ver-
sion 4.8.8, 2017. (https://www.gap-system.org)
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