BULIETIN of The
 Volume 95 June 2022

 INSTITIUIE: Of

 INSTITIUIE: Of GOW:HWHORLES and its APPIBLIIONS

Editors-in-Chief:

Marco Buratti, Donald Kreher, Ortrud Oellermann, Tran van Trung

Duluth, Minnesota, U.S.A.

ISSN: 2689-0674 [Online] ISSN: 1183-1278 [Print]

Edge odd graceful labelings of certain new classes of graphs

K.M. Kathiresan ${ }^{1}$, S. Muthumari ${ }^{1}$ and R. Ramalakshmi* ${ }^{* 2}$
${ }^{1}$ Centre for Graph Theory, Ayya Nadar Janaki Ammal College (Autonomous)Sivakasi-626 124, India. kathir2esan@yahoo.com, smuthumari276@gmail.com
${ }^{2}$ Department of Mathematics, Rajapalayam Rajus' College, Rajapalayam-626 117, India.
ramimani20@gmail.com

Abstract. In this paper we introduce three families of graphs and we discuss the existence or non existence of edge odd graceful labeling for these classes of graphs.

1 Introduction

Solairaju and Chitra [10] defined a graph G with q edges to be edge odd graceful if there is a bijection f from the edges of the graph to

$$
\{1,3,5, \ldots, 2 q-1\}
$$

such that, when each vertex is assigned the sum of all the edges incident to it modulo $2 q$, the resulting vertex labels are distinct. If G has n vertices, the corona of G with $H, G \odot H$ is the graph obtained by taking one copy of G and n copies of H and joining the i th vertex of G with an edge to every vertex in the i th copy of H. They [10] proved that the following graphs are odd graceful: path with at least 3 vertices; odd cycles; ladders $P_{n} \times P_{2}(n \geq 3)$; stars with an even number of edges; and crowns $C_{n} \odot K_{1}$.

[^0]In [9] they proved that the following graphs have edge odd graceful labeling: $P_{n}(n>1)$ with a pendant edge attached to each vertex (combs); the graph obtained by appending $2 n+1$ pendant edges to each endpoint of P_{2} or P_{3}; and the graph obtained by subdividing each edge of the star $K_{1,2 n}$.

Singhun [8] proved that the following graphs have edge odd graceful labelings: $W_{n}, W_{2 n} \odot K_{1}$ and $W_{n} \odot K_{m}$ when n is odd, m is even, and n divides m.

Seoud and Salim [7] presented an edge odd graceful labelings for the following families of graphs : W_{n} for $n \equiv 1,2$ and $3(\bmod 4), C_{n} \odot \bar{K}_{2 m-1}$, even helms $P_{n} \odot K_{2 m}$ and $K_{2, s}$. They proved that the trees of odd number of vertices and odd degrees can't be edge odd graceful graphs. Also they proved that the cycle C_{n} is not an edge odd graceful graph when n is even. Finally they produced a simple way to label complete graphs which provides edge odd graceful labeling to a good number of complete graphs K_{n} within the range $n \in\{4,5, \ldots, 99,100\}$. In 2007, Gao [4] proved the existence of odd graceful labeling of some union of graphs. In 2019, Daoud [3] proved the necessary and sufficient conditions for the Cylinder grid graph $C_{m, n}=P_{m} \times C_{n}$ and torus grid graph $T_{m, n}=C_{m} \times C_{n}$ to be edge odd graceful. In this paper we discuss the Edge odd graceful labeling of some new classes of graphs namely, $K_{n}^{c} \vee 2 K_{2}, P_{a, b}$ and Flower graph $F L_{n}$.

2 Edge odd gracefulness of $K_{n}^{c} \vee 2 K_{2}$

The graph $K_{n}^{c} \vee 2 K_{2}$ is the join of the complement of the complete graph on n vertices and two disjoint copies of K_{2}. Rao-Hebbare [6] conjectured that for each positive integer n, the graph $K_{n}^{c} \vee 2 K_{2}$ is not graceful. This was proved by Bhat-Nayak and Gokhale [2]. In [1] Balakrishnan and Sampathkumar proved that $K_{n}^{c} \vee 2 K_{2}$ is magic under the conditions that $n=3$ and also they proved that for any positive integer n, the graph $K_{n}^{c} \vee 2 K_{2}$ is antimagic and this graph is harmonious if and only if n is even.

In this paper we prove that $K_{n}^{c} \vee 2 K_{2}$ is edge odd graceful for all positive integers n. Throughout this paper, we denote the set of vertices of $K_{n}^{c} \vee$ $2 K_{2}$ by $\left\{v_{1}, v_{2}, u_{1}, u_{2}, w_{1}, w_{2}, \ldots, w_{n}\right\}$ so that its edge set is $\left\{v_{1} v_{2}, u_{1} u_{2}\right\} \cup$ $\left\{u_{1} w_{i}, u_{2} w_{i}, v_{1} w_{i}, v_{2} w_{i} \mid 1 \leq i \leq n\right\}$.

Definition 2.1. The join $K_{n}^{c} \vee 2 K_{2}$ is the graph obtained by taking a copy of K_{n}^{c} and two adjacent copies of K_{2} disjoint from K_{n}^{c} and joining every vertex of K_{n}^{c} to every vertex of $2 K_{2}$.

Example 2.2. The graph of $K_{3}^{c} \vee 2 K_{2}$.

Theorem 2.3. $G=K_{n}^{c} \vee 2 K_{2}$ is an edge odd graceful graph for all positive integers n.

Proof. Let $V\left(K_{n}^{c} \vee 2 K_{2}\right)=\left\{v_{1}, v_{2}, u_{1}, u_{2}, w_{1}, w_{2}, \ldots, w_{n}\right\}$ and $E\left(K_{n}^{c} \vee\right.$ $\left.2 K_{2}\right)=\left\{v_{1} v_{2}, u_{1} u_{2}, u_{1} w_{k}, u_{2} w_{k}, v_{1} w_{k}, v_{2} w_{k} \mid 1 \leq k \leq n\right\}$ as shown in Figure 1. Therefore, $p=|V(G)|=n+4$ and $q=|E(G)|=4 n+2$.

Figure 1: The graph of $K_{n}^{c} \vee 2 K_{2}$.

Case (i): When $n=1$.

The above labeling shows that $K_{1}^{c} \vee 2 K_{2}$ is an edge odd graceful graph.

Case (ii): When $n>1$.

Define a mapping f from $E(G)$ to $\{1,3, \ldots, 2 q-1\}$ by,

$$
\begin{aligned}
f\left(u_{1} u_{2}\right) & =1 \\
f\left(v_{1} v_{2}\right) & =3 \\
f\left(v_{1} w_{k}\right) & =2 k+3 ; 1 \leq k \leq n \\
f\left(v_{2} w_{k}\right) & =2 n+2 k+3 ; 1 \leq k \leq n \\
f\left(u_{1} w_{k}\right) & =4 n+2 k+3 ; 1 \leq k \leq n \\
f\left(u_{2} w_{k}\right) & =6 n+2 k+3 ; 1 \leq k \leq n
\end{aligned}
$$

The induced mapping is given by,

$$
\begin{aligned}
f^{*}\left(v_{1}\right) & =f\left(v_{1} v_{2}\right)+\sum_{k=1}^{n} f\left(v_{1} w_{k}\right) \quad(\bmod 8 n+4) \\
& =3+\sum_{k=1}^{n}[2 k+3] \quad(\bmod 8 n+4) \\
& =n^{2}+4 n+3 \quad(\bmod 8 n+4) \\
f^{*}\left(v_{2}\right) & =f\left(v_{1} v_{2}\right)+\sum_{k=1}^{n} f\left(v_{2} w_{k}\right) \quad(\bmod 8 n+4) \\
& =3+\sum_{k=1}^{n}[2 n+2 k+3] \quad(\bmod 8 n+4) \\
& =3 n^{2}+4 n+3 \quad(\bmod 8 n+4)
\end{aligned}
$$

Edge odd graceful Labelings

$$
\begin{gathered}
f^{*}\left(u_{1}\right)=f\left(u_{1} u_{2}\right)+\sum_{k=1}^{n} f\left(u_{1} w_{k}\right) \quad(\bmod 8 n+4) \\
=1+\sum_{k=1}^{n}[4 n+2 k+3] \quad(\bmod 8 n+4) \\
=5 n^{2}+4 n+1 \quad(\bmod 8 n+4) \\
f^{*}\left(u_{2}\right)=f\left(u_{1} u_{2}\right)+\sum_{k=1}^{n} f\left(u_{2} w_{k}\right) \quad(\bmod 8 n+4) \\
=1+\sum_{k=1}^{n}[6 n+2 k+3] \quad(\bmod 8 n+4) \\
=7 n^{2}+4 n+1 \quad(\bmod 8 n+4) \\
f^{*}\left(w_{k}\right)=f\left(u_{1} w_{k}\right)+f\left(u_{2} w_{k}\right)+f\left(v_{1} w_{k}\right)+f\left(v_{2} w_{k}\right) \quad(\bmod 8 n+4) \\
=(4 n+2 k+3)+(6 n+2 k+3)+(2 k+3) \\
\quad+(2 n+2 k+3) \quad(\bmod 8 n+4) \\
=12 n+8 k+12 \quad(\bmod 8 n+4) \\
=4 n+8 k+8 \quad(\bmod 8 n+4) ; 1 \leq k \leq n .
\end{gathered}
$$

The labels of edges are in the set $\{1\} \cup\{3\} \cup\{5,7, \ldots, 2 n+3\} \cup\{2 n+$ $5, \ldots, 4 n+3\} \cup\{4 n+5, \ldots, 6 n+3\} \cup\{6 n+5, \ldots 8 n+3\}$.
Then the labels of vertices are in the set $\left\{n^{2}+4 n+3\right\} \cup\left\{3 n^{2}+4 n+\right.$ $3\} \cup\left\{5 n^{2}+4 n+1\right\} \cup\left\{7 n^{2}+4 n+1\right\} \cup\{4 n+8 i+8 \mid 1 \leq i \leq n\}$ $(\bmod 8 n+4)$.
That is, $\left\{n^{2}+4 n+3\right\} \cup\left\{3 n^{2}+4 n+3\right\} \cup\left\{5 n^{2}+4 n+1\right\} \cup\left\{7 n^{2}+\right.$ $4 n+1\} \cup\{4 n+16,4 n+24, \ldots, 4 n+8 n, 4 n+4\}(\bmod 8 n+4)$.
We observe that the vertices have distinct labels. Therefore, $K_{n}^{c} \vee 2 K_{2}$, is an edge odd graceful graph.

Example 2.4. An edge odd graceful labeling of $K_{5}^{c} \vee 2 K_{2}$.

3 Edge odd gracefulness of $\boldsymbol{P}_{a, b}$

Let u and v be two fixed vertices. We connect u and v by means of $b \geq 2$ internally disjoint paths of length $a \geq 2$ each. Kathiresan [4] proved that $P_{2 r, 2 m+1}$ are graceful for all values of r and m. He also conjectured that $P_{a, b}$ is graceful except when $a=2 r+1$ and $b+4 s+2$. Throughout this paper we denote the set of vertices of $P_{a, b}$ by $\left\{u, v, v_{j, i} \mid 1 \leq i \leq a-1,1 \leq j \leq b\right\}$, so that its edge set is $\left\{u v_{j, i}, v_{j, a-1} v, v_{j, i} v_{j, i+1} \mid 1 \leq i \leq a-1,1 \leq j \leq b\right\}$.

Example 3.1. The graph $P_{4,3}$

Theorem 3.2. $G=P_{a, b}$ is an edge odd graceful graph when both a and b are odd.

Proof. Let $V(G)=\left\{u, v, v_{j, i} \mid 1 \leq i \leq a-1,1 \leq j \leq b\right\}$, and $E(G)=$ $\left\{u v_{j, i}, v_{j, a-1} v, v_{j, i} v_{j, i+1} \mid 1 \leq i \leq a-1,1 \leq j \leq b\right\}$ as shown in Figure 2. Therefore $p=|V(G)|=a b-b+2$ and $q=|E(G)|=a b$ where $u=v_{1,0}=$ $v_{2,0}=\cdots=v_{b, 0}$ and $v=v_{1, a}=v_{2, a}=\cdots=v_{b, a}$. Define a labeling f from

Figure 2: The graph of $P_{a, b}$.
$E(G)$ to $\{1,3, \ldots, 2 q-1\}$ by,

$$
\begin{aligned}
f\left(v_{1, i} v_{1, i+1}\right) & =2 i+1 ; 0 \leq i \leq a-1 \\
f\left(v_{j, i} v_{j, i+1}\right) & =2 j a+2 i+1 ; 0 \leq i \leq a-1,2 \leq j \leq b-1 \\
f\left(v_{b, i} v_{b, i+1}\right) & =4 a-2 i-1 ; 0 \leq i \leq a-1
\end{aligned}
$$

The induced mapping is given by,

$$
\begin{aligned}
f^{*}(u) & =f\left(u v_{1,1}\right)+f\left(u v_{b, 1}\right)+f\left(u v_{j, 1}\right) \quad(\bmod 2 a b) \\
& =1+(4 a-1)+\sum_{j=2}^{b-1}[2 j a+1] \quad(\bmod 2 a b) \\
& =1+4 a-1+(b-2)+a b(b-1)-2 a \quad(\bmod 2 a b) \\
& =a b^{2}-a b+2 a+b-2 \quad(\bmod 2 a b)
\end{aligned}
$$

$$
\begin{aligned}
& f^{*}(v)=f\left(v v_{1, b-1}\right)+f\left(v v_{b, a-1}\right)+\sum_{i=2}^{b-1} f\left(v v_{j, a-1}\right) \quad(\bmod 2 a b) \\
& =(2 a+1)+(4 a-2 a-1)+\sum_{j=2}^{b-1}[2 j a+2 a-1] \quad(\bmod 2 a b) \\
& =4 a-(b-2)+2 a(b-2)+a b(b-1)-2 a \quad(\bmod 2 a b) \\
& =4 a-b+2+2 a b-4 a+a b^{2}-a b-2 a \quad(\bmod 2 a b) \\
& =a b^{2}+a b-2 a-b+2 \quad(\bmod 2 a b) \\
& f^{*}\left(v_{j, i}\right)=f\left(v_{j, i-1} v_{j, i}\right)+f\left(v_{j, i} v_{j, i-1}\right) \quad(\bmod 2 a b) \\
& =2 j a+2(i-1)+1+2 j a+2 i+1 \quad(\bmod 2 a b) \\
& =4 j a+4 i \quad(\bmod 2 a b) ; 1 \leq i \leq a-1 ; 2 \leq j \leq b-1 \\
& f^{*}\left(v_{1, i}\right)=f\left(v_{1, i-1} v_{1, i}\right)+f\left(v_{1, i} v_{1, i+1}\right) \quad(\bmod 2 a b) \\
& =2(i-1)+1+2 i+1 \quad(\bmod 2 a b) \\
& =4 i \quad(\bmod 2 a b) ; 1 \leq i \leq a-1 \quad \\
& = \\
& =4 a-2(i-1)-1+4 a-2 i-1 \quad(\bmod 2 a b) \\
& =8 a-4 i \quad(\bmod 2 a b) ; 1 \leq i \leq a-1
\end{aligned}
$$

The labels of edges are in the set $\{1,3, \ldots, 2 a-1\} \cup\{2 a+1,2 a+3, \ldots, 4 a-$ $1\} \cup\{4 a+1,4 a+3, \ldots, 2 a b-1\}$.

Then the labels of vertices are in the set $\left\{a b^{2}-a b+2 a+b-2\right\} \cup\left\{a b^{2}+\right.$ $a b-2 a-b+2\} \cup\{4 j a+4 i \mid 1 \leq i \leq a-1 ; 2 \leq j \leq b-1\} \cup\{4 i \mid 1 \leq i \leq$ $a-1\} \cup\{8 a-4 i \mid 1 \leq i \leq a-1\}(\bmod 2 a b)$.

We observe that the vertices have distinct labels. Therefore $P_{a, b}$ is an edge odd graceful graph.

Example 3.3. An edge odd graceful labeling of $P_{5,3}$.

Now, we discuss the non existence of edge odd graceful labeling of the graph $P_{a, 2}$.

Theorem 3.4. The graph $P_{a, 2}$ is not an edge odd graceful graph when $a \geq 2$.

Proof. Suppose that, $P_{a, 2}$ admits an edge odd graceful labeling, then the labels of edges are in the set: $\{1,3,5, \ldots, 2 q-1\}$. we can get the labels of vertices as $0,2,4, \ldots, 2 q-2(\bmod 2 q)$. Then
(i) $\sum_{v \in V\left(P_{a, 2}\right)} f^{*}(v)=2 \sum_{v \in V\left(P_{a, 2}\right)} f(e) \equiv 2 q^{2} \equiv 0(\bmod 2 q)$.
(ii) $\sum_{v \in V\left(P_{a, 2}\right)} f^{*}(v)=\sum_{i=0, i-\text { even }}^{2 q-2} i \equiv q(q-1) \equiv q(\bmod 2 q)$.

The difference in the above (i) and (ii) leads to a contradiction. Therefore $P_{a, 2}$ is not an edge odd graceful graph.

We conclude this section with the subsequent open problem: Discuss the existence or non existence $P_{a, 2}$ for the remaining cases.

4 Edge odd gracefulness of $\boldsymbol{F} \boldsymbol{L}_{n}$

Definition 4.1. The Flower graph, $F L_{n}$, is the graph with $V\left(F L_{n}\right)=$ $\left\{u_{k}, v_{0}, v_{k} \mid 1 \leq k \leq n\right\}$; and $E\left(F L_{n}\right)=\left\{v_{0} u_{k}, v_{k} u_{k} \mid 1 \leq k \leq n\right\} \cup$ $\left\{v_{k} u_{k+1} \mid 1 \leq k \leq n-1\right\} \cup\left\{v_{n} u_{1}\right\}$.
Example 4.2. The graph of $F L_{6}$.

Theorem 4.3. The Flower graph $G=F L_{n}$ is an edge odd graceful graph when $n \geq 3$.

Proof. Let $V(G)=\left\{u_{k}, v_{0}, v_{k} \mid 1 \leq k \leq n\right\}, E(G)=\left\{v_{0} u_{k}, v_{k} u_{k} \mid 1 \leq k \leq\right.$ $n\} \cup\left\{v_{k} u_{k+1} \mid 1 \leq k \leq n-1\right\} \cup\left\{v_{n} u_{1}\right\}$ as shown in Figure 3. Therefore, $p=|V(G)|=2 n+1$ and $q=|E(G)|=3 n$.

Figure 3: The graph of $F L_{n}$.

Case (i): When $n=3$.

The labeling of the graph given in Figure 4 shows that, $F L_{3}$ is an edge odd graceful graph.

Case (ii): When $n>3$.

Define a labeling f from $E(G)$ to the set $\{1,3,5, \ldots, 2 q-1\}$ by,

$$
\begin{aligned}
f\left(v_{k} u_{k}\right) & =2 k-1 ; 1 \leq k \leq n \\
f\left(v_{k} u_{k+1}\right) & =2 n+2 k-1 ; 1 \leq k \leq n-1 \\
f\left(v_{0} u_{1}\right) & =4 n+1 ; \\
f\left(v_{0} u_{k}\right) & =6 n-2 k+3 ; 2 \leq k \leq n
\end{aligned}
$$

The induced mapping is given by,

$$
\begin{aligned}
f^{*}\left(v_{k}\right) & =f\left(v_{k} u_{k}\right)+f\left(v_{k} u_{k+1}\right) \quad(\bmod 6 n) \\
& =(2 k-1)+(2 n+2 k-1) \quad(\bmod 6 n) \\
& =2 n+4 k-2 \quad(\bmod 6 n) ; 1 \leq k \leq n
\end{aligned}
$$

Figure 4: An edge odd graceful labeling of $F L_{3}$.

$$
\begin{gathered}
f^{*}\left(u_{1}\right)=f\left(v_{1} u_{1}\right)+f\left(v_{0} u_{1}\right)+f\left(u_{1} v_{n}\right) \quad(\bmod 6 n) \\
=1+(4 n+1)+(4 n-1) \quad(\bmod 6 n) \\
=8 n+1 \quad(\bmod 6 n)=2 n+1 \quad(\bmod 6 n) \\
f^{*}\left(u_{k}\right)=f\left(v_{k} u_{k}\right)+f\left(v_{0} u_{k}\right)+f\left(v_{k} u_{k+1}\right) \quad(\bmod 6 n) \\
=(2 k-1)+(6 n-2 k+3)+(2 n+2(k-1)-1) \quad(\bmod 6 n) \\
=2 n+2 k-1 \quad(\bmod 6 n) ; 2 \leq k \leq n \\
f^{*}\left(v_{0}\right)=f\left(v_{0} u_{1}\right)+\sum_{k=2}^{n} f\left(v_{0} u_{k}\right) \quad(\bmod 6 n) \\
=4 n+1+\sum_{k=2}^{n}[6 n-2+3] \quad(\bmod 6 n) \\
=4 n+1+6 n(n-1)+3(n-1)-n(n-1) \quad(\bmod 6 n) \\
=5 n^{2} \quad(\bmod 6 n)
\end{gathered}
$$

The labels of the edges are in the set $\{1,3, \ldots, 2 n-1\} \cup\{2 n+1,2 n+$ $3, \ldots, 4 n-1\} \cup\{4 n+1\} \cup\{4 n+3,4 n+5, \ldots, 6 n-1\}$. Then the labels of vertices in the set $\{2 n+2,2 n+6, \ldots, 6 n-2\} \cup\{2 n+1\} \cup$ $\{2 n+3,2 n+5, \ldots, 4 n-1\} \cup\left\{5 n^{2}\right\}(\bmod 6 n)$.
We observe that, the vertices have distinct labels.

Therefore $F L_{n}$ is an edge odd graceful graph.

Example 4.4. An edge odd graceful labeling of $F L-6$.

Acknowledgement:

The authors would like to thank the referees for their useful suggestions and comments.

References

[1] R. Balakrishnan and R. Sampahkumar, Decompositions of regular graphs into $K_{n}^{c} \vee 2 K_{2}$, Discrete Math., 156 (1996), 19-28.
[2] V.N. Bhat-Nayak and S.K. Gokhale, Validity of Hebbare's conjecture, Util. Math., 29 (1986), 49-59.
[3] S.N. Daoud, Edge odd graceful labeling of Cylinder and Torus Grid graphs, IEEE Access, 7 (2019), 1-25.
[4] Z. Gao, Odd graceful labelings of some union graphs, J.Nat. Sci. Heilongjiang Univ., 24 (2007), 35-39.
[5] K.M. Kathiresan, Two classes of graceful graphs, Ars Combin., 55 (2000), 129-132.
[6] S.P. Rao-Hebbare, Graceful cycles, Util. Math., 10 (1976), 307-317.
[7] M.A. Seoud and M.A. Salim, Further results on edge odd graceful graphs, Turkish J. Math., 40 (2016) 3, 647-656.
[8] S. Singhun, Graph with edge odd graceful labeling, Math. Forum, 8 (2013) 577-582.
[9] A. Solairaju and K. Chitra, Edge odd graceful labeling of some graphs, Proceedings of ICMCS, 1 (2008), 101-107.
[10] A. Solairaju and K. Chitra, Edge odd graceful graphs, Electron. Notes Discrete Math. 33 (2009),15-20.

[^0]: *Corresponding author.
 Key words and phrases: Edge odd graceful graphs, Join Path
 AMS (MOS) Subject Classifications: 05C78

