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Peg solitaire on corona products

Martin Kreh and Jan-Hendrik de Wiljes∗

Abstract. In 2011, Beeler and Hoilman generalised the game of peg soli-
taire to arbitrary connected graphs. Since then, peg solitaire has been
considered for quite a few graph classes as well as graph operations, such
as the Cartesian product and line graphs. In this paper, we consider peg
solitaire on corona products. We give some sufficient criteria for solvabil-
ity and present a class of graphs that are not solvable. Using some of our
results, we can completely answer a question posed by Beeler, Gray, and
Hoilman in 2012 concerning corona products of solvable graphs.

1 Introduction

In [3], Beeler and Hoilman introduced the game of peg solitaire on graphs
as a generalisation of the classical peg solitaire game:

Given a connected, undirected graph G with vertex set V (G) and edge set
E(G), we can put pegs in the vertices of G. Given three vertices u, v, w
with pegs in u and v and a hole in w such that uv, vw ∈ E(G), we can
jump with the peg from u over v into w, removing the peg in v (cf. Figure
1). This jump will be denoted as u · v⃗ ·w. In figures, vertices with pegs will
be drawn filled while vertices without pegs are drawn unfilled.

u v w u v w u v w

Figure 1: A jump in peg solitaire.

In general, we begin with a starting state S ⊆ V (G) of vertices that are
empty (i.e., without pegs). A terminal state T ⊆ V (G) is a set of vertices
that have pegs at the end of the game such that no more jumps are possible.
A terminal state T is associated to a starting state S if T can be obtained

∗Corresponding author: jan.dewiljes@math.fu-berlin.de
Key words and phrases: peg solitaire, corona product
AMS (MOS) Subject Classifications: 05C57, 05C76, 91A43

BULLETIN OF THE ICA
Volume 96 (2022), 107–118

Received: 22 October 2021
Accepted: 29 April 2022

107



from S by a series of jumps. We will always assume that the starting state
S consists of a single vertex. A configuration is a set A of vertices such that
all elements in A contain a peg and the ones in V (G) \A have a hole.

The goal of the original game is to remove all pegs but one. This is not
possible for every graph. If this is indeed possible, then we call G solvable.
There are more variants of solvability that have been considered in the
literature (see for example [3,10]), but we will not deal with those here. For
a solvable graph G, a solution process of G is a sequence of configurations
Ai, i = 1, . . . , |V (G)| − 1 with A0 = V (G) \ {v} for some v ∈ V (G) such
that Ai+1 can be reached from Ai using a single jump.

The main goal is the characterisation of solvable graphs. To this end, peg
solitaire has been considered for quite a few classes of graphs, including
path graphs, complete graphs, star graphs, double stars, and caterpillars
(for results see [2–4, 6]). Additionally, the game was examined on graphs
obtained via certain graph operations, such as Cartesian products, joins,
and line graphs (see [9–11]), leading to the construction of new solvable
graphs and graph classes.

Motivated by an open problem in [1], we consider peg solitaire on corona
products of graphs. This graph operation has been introduced by Frucht
and Harary [8] in 1970 with the goal of defining a graph product such that
the automorphism group of this product is (under certain assumptions)
connected to the wreath product of the automorphism groups of the re-
spective graphs. The corona product G ◦ H is defined as follows: Let n
be the number of vertices of G. Then G ◦H consists of the graph G and
n copies of H, where the i-th vertex of G is joined to each vertex of the
i-th copy of H. Denote the copy of H in G ◦H which is joined to vertex
v ∈ V (G) by Hv. Figure 2 shows the graph C10 ◦K5, where Cn denotes the
cycle graph and Kn the complete graph on n vertices. In general, we have
G ◦H ̸= H ◦G, i.e., ◦ is not commutative.

Note that G ◦ H is connected whenever G is connected, hence it makes
sense to consider peg solitaire on G ◦H even if H is not connected.

In this paper, we prove the solvability of G ◦ H (for arbitrary H) given
a solvable graph G and some extra condition involving solution processes
of G (Proposition 2.2). We also show, in our main result Theorem 2.3,
that G ◦ H is solvable when G is solvable (without further assumptions)
and H fulfils certain conditions. As an application, we prove that G ◦ G
is solvable for solvable G, answering the open question from [1] mentioned
above. Finally, we obtain infinite families of (connected) graphs G and
(unconnected) graphs H such that G ◦H is not solvable.
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Figure 2: The graph C10 ◦K5.

The following notations and notions will be used throughout this paper.
The union of graphs is understood as their disjoint union in this paper, i.e.,
the union ofG andH has vertex set V (G)∪V (H), where V (G)∩V (H) = {},
and edge set E(G) ∪ E(H), where E(G) ∩ E(H) = {}. For a graph G and
a set of vertices W ⊆ V (G), the subgraph of G induced by W , denoted
by G[W ], is the graph with vertex set W and edge set

(
W
2

)
∩ E(G), where(

W
2

)
denotes the set of all subsets of W with exactly two elements, i.e., all

possible edges between vertices in W . A subgraph H of G is spanning if
V (H) = V (G). The path graph on n vertices is denoted by Pn and the
complete bipartite graph such that one part has m vertices and the other
n vertices is denoted by Km,n, where the special case K1,n is called a star
graph. Vertices of degree 1 are called pendant. A double star DS(L,R)
consists of two adjacent vertices cL, cR, where additionally cL is adjacent
to L pendant vertices and cR is adjacent to R pendant vertices. A matching
M of a graph G is called perfect matching if 2|M | = |V (G)|.

We will often employ the concept of double star purges, cf. [4, 5], which
are basically shortcuts defined via combining several consecutive jumps.
Consider the double star DS(L,R). If L = R, then we choose the starting
state {cL} (choosing {cR} as the starting state works similarly). Repeating
the process of alternately jumping from a pendant adjacent to cR into cL
and from a pendant adjacent to cL into cR solves this graph such that
the final peg is in cR, i.e., the centre vertex that contained a peg at the
beginning. This process is called a double star purge.
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2 Results

As a foretaste of what is to come, we start with a general result using known
facts about the solvability of even path graphs. Recall that a Hamiltonian
path in a graph G is a path that includes all vertices of G (exactly once).

Proposition 2.1. If G has an even number of vertices and contains a
Hamiltonian path, then G◦H is solvable for all (not necessarily connected)
graphs H.

Proof. It has been shown in [3] that any graph G with an even number
of vertices that has a Hamiltonian path is solvable. To solve G, take the
Hamiltonian path P = v1, v2, . . . , vn, start with a hole in v2, and jump
alternating from right to left and from left to right. This results in a
configuration where the final peg is in the vertex vn−1. Note that for any
i ∈ {1, 2, . . . , n

2 } at some point of this process there is exactly one peg and
one hole among the vertices v2i−1, v2i.

Now we can solve G◦H as follows: Start solving the graph G (as a subgraph
of G ◦H) using the Hamiltonian path P of G. For each i ∈ {1, 2, . . . , n

2 },
whenever we reach a configuration such that exactly one of v2i−1, v2i has
a peg, pause solving G. Consider the subgraph of G ◦H induced by these
two vertices and the vertices of the two copies of H attached to them.
This subgraph contains a double star as a spanning tree, which we solve as
described above, ignoring the additional edges. At the end of this process,
all vertices in the two copies of H will be empty and the situation on the
Hamiltonian path P remains the same. Hence, we can continue solving
G using P and eliminate the pegs in copies of H as soon as we reach
these copies in the solution process, using double star purges as described
above.

This result can be extended in the following two ways: by weakening the
conditions on G but not the ones on H (Proposition 2.2) or by allowing
(even) more graphs G and restricting H (Theorem 2.3). The statement
corresponding to the first extension can be proven analogously, while the
second one needs additional ideas.

Proposition 2.2. Let G be a solvable graph for which a perfect matching
M and a corresponding solution process exist such that for each uv ∈ M
there is a configuration in the solution process such that exactly one of u and
v contains a peg. Then G ◦H is solvable for all (not necessarily connected)
graphs H.
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For the second extension, we use an idea from [7] to decompose the vertex
set of a tree H in the following way: Let u be a vertex of degree 1 and v the
neighbour of u. Then H[{v}∪Nv], where Nv denotes the set of neighbours
of v with degree 1, is a star graph. Iterating this process on the connected
components of H[V (H) \ ({v} ∪ Nv)] yields vertex sets V1, V2, . . . , Vℓ (for
some positive integer ℓ), where Vi ⊆ V (H) and H[Vi] contains a spanning
star graph. This procedure can be applied to arbitrary graphs component-
wise, i.e., choose a spanning forest of H with the same number of connected
components as H; additionally to using vertices of degree 1 (as described
above), each isolated vertex of H forms one Vi. Every sequence of vertex
sets obtainable in this way is called a vertex star decomposition1 of H. The
largest possible ℓ in such a decomposition V1, V2, . . . , Vℓ is the vertex star
decomposition number vsd(H) of H and a corresponding sequence of Vi is
called a maximum vertex star decomposition of H. Note that vsd(H) = 1
if and only H is a star graph or H = K3. Also note that the number of Vi

of size 1 coincides with the number of isolated vertices in H.

Vertex star decompositions of H induce, when considering G ◦H, in some
sense (see Subcase 2.3.1 of the upcoming proof) the following graph class,
which plays a major role in the proof of our main result. A windmill variant
W(P,B) is a graph with a universal vertex u, i.e., a vertex adjacent to every
other vertex, P pendant vertices, which are only adjacent to u, and B blades
consisting of two vertices each, such that these two vertices are adjacent.
Furthermore, W(B) = W(0, B) is called a windmill graph. An example, the
graph W(2, 3), is displayed in Figure 3.

Figure 3: The windmill variant W(2, 3).

1This is not to be confused with the star decomposition of a graph, which works with a
partition of the edge set.
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Theorem 2.3. Let G be solvable and H be a graph with at most 1
2 |V (H)|−1

isolated vertices such that H is not one of the following:

• K2 or K3,
• union of K1,n and mK1 (m ∈ Z≥0) such that n−m is even,
• union of an odd number of K1 and an arbitrary number of K2.

Then G ◦H is solvable.

Proof. Fix a solution process of G. We characterise the vertices of G in
the following way: Let x1, x2, . . . , xq be those vertices which do not have a
neighbour containing a peg whenever they are empty. For each xi there is
a unique vertex yi for which xi · y⃗i ·wi, for some vertex wi, is the last jump
involving either one of xi, yi. Note that we even have yi ̸= yj if i ̸= j. Let
Z denote the set of vertices of G that do not occur as xi or yi.

Start solving G (as a subgraph of G ◦H). We pause this process in one of
the following two cases to eliminate all pegs from certain copies of H.

Case 1: Suppose the next jump would be xi · y⃗i · wi and this would be the
last jump involving either one of xi, yi. Then we instead jump from a vertex
of Hyi

over yi into wi. Next we perform a double star purge on the graph
induced by V (Hxi

) ∪ V (Hyi
) ∪ {xi, yi} until there are only pegs in some

a ∈ V (Hxi), some b ∈ V (Hyi), and yi. Jump wi · y⃗i · xi, a · x⃗i · yi, b · y⃗i · wi

and continue solving G.

Case 2: Now we deal with the situation when some z ∈ Z, for the first time
in the solution process, does not contain a peg but one of its neighbours,
say u, does. In each of the forthcoming subcases, we empty Hz completely
while keeping the peg situation in G as it was before. After that, proceed
solving G.

Subcase 2.1: If Hz is a star graph, then denote by c its centre and by p an
arbitrary pendant and jump p · c⃗ · z, u · z⃗ · c. As the number 2r of pegs in
Hz \ {p, c} is even and at least 2, the configuration in G[{z}] ◦ H can be
reduced (using a double star purge: the centres are c and z, the vertices
fromHz\{p, c} are viewed as r+1 of them belonging to c and r−1 belonging
to z) such that only two pegs remain, namely in z and some neighbour v
of c. Jump v · z⃗ · u to empty Hz.

Subcase 2.2: SupposeHz is the union of one star graphK1,n (n ≥ 1), denote
its centre by c, and m ≥ 1 graphs K1. If m ≤ 1

2 |V (H)| − 2, then we get

Kreh and DE Wiljes

112



m ≤ n − 3. In this case, we can remove all pegs from vertices which are
isolated in Hz by successively jumping with a peg from K1,n into z and
with a peg from such an isolated vertex over z into c. Since n −m is odd
and at least 3, we can continue as if Hz was a star graph (see previous
subcase). If m = 1

2 |V (H)| − 1, then we get m = n− 1. In this case, we use
the same jumps as above until we arrive at the situation depicted in Figure
4, which can be solved such that the final peg is in u.

zu

Figure 4: Base case for Subcase 2.2 when m = n− 1.

Subcase 2.3: For any other Hz, fix a maximum vertex star decomposition
V1, V2, . . . , Vvsd(Hz) of it. Without loss of generality we may arrange the Vi

such that some integer k > 1 with |Vi| ≥ 2 for all i ≤ k and |Vi| = 1 for
all i > k exists (note that we can choose k = vsd(Hz) if Hz has no isolated
vertices). Furthermore, in case Hz has a vertex of degree at least 2, say v,
assume v ∈ V1. Denote the isolated vertices of Hz by b1, b2, . . . , bvsd(H)−k.
Our main goal is to reach one of the situations displayed in Figures 5 and
6, which are all solvable with final peg in u.

z
u

z
u

z
u

Figure 5: Base cases for Subcase 2.3 when P is even.

z
u

z
u

z
u

z
u

Figure 6: Base cases for Subcase 2.3 when P is odd.
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To this end, we first eliminate as many pegs from isolated vertices of Hz as
possible while still keeping at least two pegs in each Vi with i ≤ k. As long
as some Vi contains more than two pegs and some bj is not empty, jump
from a pendant in Vi over its centre into z and with the peg from bj back
into the centre of Vi.

We reach one of two situations: Either at least one bi contains a peg or all
bi are empty.

Subcase 2.3.1: In the first case, the subgraph of G ◦ H induced by {v ∈
(V (Hz) \ V1) : v contains a peg } ∪ {z} contains a subgraph which is iso-
morphic to some windmill variant W(P, k − 1), where P ≤ 2k − 2 holds
by the restriction on the number of isolated vertices of H. Using the ideas
from [4], namely removing all pegs from one blade and two pendants or
blades pairwise as soon as only one or no bi contains a peg (cf. Figure 7),
this reduces to one of the solvable situations given in Figures 5 and 6.

z z z z

Figure 7: Reduction of blades and pendants.

Note that we keep exactly one or two blades full (i.e., they contain two
pegs), and the additional blade shown in Figures 5 and 6 comes from V1.
Also note that we have to use v and the additional edge, when, after the
reduction, exactly one of the bi still contains a peg; hence we had to exclude
the graph unions given in the statement of Theorem 2.3.

Subcase 2.3.2: In the latter case, we can successively remove pegs from the
Vi until we reach a solvable situation given in Figure 5 in the following
way. Start by removing pegs from every Vi containing at least four pegs by
repeatedly jumping from the centre of Vi into z and back into the centre
(compare top part of Figure 8) until only two or three pegs remain in Vi.

Then, for every i, j ≥ 1 with i ̸= j and the number of pegs in Vi, Vj being
three each, remove one peg from Vi and Vj using a double star purge given
on the bottom part of Figure 8. Now at most one Vi contains three pegs.
As before, using the results from [4], we can successively empty blades
pairwise until we reach one of the solvable situations given in Figure 5 (if
no Vi contains three pegs) or Figure 9 (if some Vi contains three pegs).
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z

Vi

z

Vi

z

Vi Vj

z

Vi Vj

Figure 8: The top picture displays the reduction of pegs in Vi to 2 or 3.
The bottom picture illustrates the iterative reduction of the pegs in Vi, Vj ,
where i ̸= j, to only 2. The red edges form the double star DS(1, 1) that is
used for the reduction.

z u z u

Figure 9: Base cases for Subcase 2.3.2 when there is a Vi that contains
three pegs.

The graph G ◦G, i.e., the special case of G ◦H where G = H, is called the
corona of G in the literature. The following result, which is a straightfor-
ward corollary of Theorem 2.3 when realising that K2 ◦ K2, P3 ◦ P3, and
K3 ◦K3 are solvable, resolves a problem posed in [1].

Theorem 2.4. The corona G ◦G of a solvable graph G is also solvable.

For the remaining cases of connected H in Theorem 2.3, i.e., H = K1, H =
K2, H = K3 or H = K1,n with even n, the arguments used in the proof
do not work. At least for H = K2 however, we believe the statement in
the theorem still to be true. This conjecture is supported by the following
proposition which shows that G◦K2 is even solvable for star graphs G, i.e.,
for graphs that are in some sense furthest away from being solvable.
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Proposition 2.5. 1. K1,n ◦K2 is solvable for all n.

2. Pn ◦K2 is solvable for all n.

Proof. 1. Denote the vertex in K1,n ◦ K2 corresponding to the centre
of K1,n by c, the pendants by xi, the vertices corresponding to K2

adjacent to xi by yi and zi, and the vertices corresponding to K2

adjacent to c by c1 and c2. For n = 1, Proposition 2.1 tells us that
K1,1 ◦K2 is solvable. If n = 2, start with a hole in c and jump

y1 · x⃗1 · c, x2 · c⃗ · x1, z1 · x⃗1 · c, y2 · z⃗2 · x2, x2 · c⃗ · x1, c1 · c⃗2 · c, x1 · c⃗ · c1,

ending with a peg in c1.

If n = 3, use the same jumps as for n = 2 after which the only pegs
left are in c1, x3, y3, z3. Jump

y3 · x⃗3 · c, c1 · c⃗ · x3, z3 · x⃗3 · c

to solve the graph.

Let now n ≥ 4 and start again with a hole in c. Then the jumps

c1·c⃗2·c, xn·c⃗·c1, yn−1·x⃗n−1·c, c1·c⃗·xn−1, zn−1·x⃗n−1·c, zn·y⃗n·xn, xn·c⃗·c2

followed by

yn−2 · x⃗n−2 ·c, xn−3 · c⃗ ·xn−2, zn−3 · y⃗n−3 ·xn−3, zn−2 · x⃗n−2 ·c, xn−3 · c⃗ ·c1

empty four copies of K1 ◦ K2 corresponding to pendants in K1,n.
Iterating this reduction eventually yields one of the base cases K1,n′ ◦
K2 with n′ ∈ {1, 2, 3, 4}. The first three cases have already been
discussed, while if n′ = 4, then we finally jump c1 · c⃗2 · c to solve the
graph.

2. If n is even, then the statement follows from Proposition 2.1, so let n
be odd from now on. If n = 3, then we have P3 = K1,2, so P3 ◦K2 is
solvable due to the first statement of this proposition.

If n > 3, then we can proceed as described in Proposition 2.1 – the
difference being that we cannot empty all vertices of Pn and not all
vertices attached to them. We are left with a subgraph of Pn ◦ K2

isomorphic to P3 ◦K2 which can be solved as described above.

Proposition 2.5 does not answer the question of whether G ◦K2 is solvable
for solvableG, but it might help in the following way: SupposeG is solvable,
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then we can consider a spanning tree T of G and decompose T into path
and star graphs which may lead to a way, incorporating Proposition 2.5,
to solve G ◦K2. A similar idea has been used in [10] to show that certain
Cartesian products are solvable. To this end, it was necessary to prove
that certain base cases, which for corona products are the ones mentioned
in Proposition 2.5, are super freely solvable (meaning that we can freely
choose the position of the starting hole and the final peg). It is unclear
whether the corona products given in Proposition 2.5 have this property.

Although it might be reasonable to suspect that all corona products G ◦H
with connected G are solvable, this is not the case. There is at least one
family of counterexamples, which, not surprisingly, involves star graphs.
Recall that G denotes the complement of the graph G.

Consider the graph K1,n ◦ Kk which is a tree of diameter four if n > 1,
i.e. for any two vertices a path between them of length at most 4 exists.
The solvability of these trees has been examined in [6]. In the notation of
that article, K1,n ◦Kk is the graph K1,n(k; k, . . . , k). This graph is solvable
if and only if 0 ≤ k + n − kn ≤ n + 1 and k ≥ 2. Since kn > k + n for
n, k ≥ 2, (n, k) ̸= (2, 2), it is only solvable if (n, k) = (2, 2). Thus, we have
established the following result.

Proposition 2.6. Let n and k be integers greater than 1. The graph K1,n◦
Kk is not solvable unless (n, k) = (2, 2).

3 Concluding remarks

The following two aspects should be part of future research. It would be
desirable to settle the cases in Theorem 2.3 where H is one of the forbidden
graphs. At least for all H without isolated vertices we believe the statement
still to be true. Note however that, in view of Proposition 2.6, the statement
cannot be true for arbitrary H as G = K1,2 = P3 is solvable but P3 ◦Kk is
not for k > 2. Moreover, is it possible to construct more unsolvable corona
products G ◦ H with connected G, e.g., if G is a star graph? We suspect
such graphs to be rare.
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