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Self-colorings of graphs

Joseph Briggs, Dean Hoffman, Sarah Heuss Holliday∗ and
Peter Johnson

Abstract. Suppose that G and H are finite simple graphs on the same
vertex set V . We will say that H is G-colorable if H is properly colorable
from the list assignment NG, i.e., the assignment of NG(v) as a list of colors
to each v ∈ V . If G itself is G-colorable, we will say that G is self-colorable.

It is shown that every graph G with no isolated vertices is self-colorable. A
necessary and sufficient condition on G for its complement to be G-colorable
is proven. Multicolorings from the NG list assignment are considered and
questions are posed.

We owe this inquiry to one of Steve Hedetniemi’s seminal questions [1].

1 Introduction

All graphs here are finite and simple. G is a graph, its vertex set will be
V (G) and its edge set is E(G). If v ∈ V (G) then NG(v) = {u ∈ V (G)|uv ∈
E(G)} is called the open neighborhood (or open neighborhood set) of v in
G. The corresponding closed neighborhood is NG[v] = {v} ∪ NG(v). If
S ⊆ V (G), NG(S) =

⋃
v∈S

NG(v).

At the Fall 2017 Clemson Mini-Conference, Steve Hedetniemi asked: for
which graphs G does the indexed collection N (G) = [NG(v)|v ∈ V (G)]
of open neighborhoods have a system of distinct representatives (SDR).
An SDR for N (G) is a one-to-one function ϕ : V (G) → V (G) such that
ϕ(v) ∈ NG(v) for all v ∈ V (G). Necessary and sufficient conditions were
found in [1].
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Theorem 1.1 (Hedetniemi, Holliday and Johnson [1]).
Suppose that G is a graph. N (G) has an SDR if and only if G has a
spanning subgraph the components of which are either single edges (K2) or
cycles.

Proof. Clearly, if G has a spanning subgraph X such that N (X) has an
SDR, then N (G) has an SDR. It is easy to see that if every component of
X is either a single edge or a cycle, then N (X) has an SDR. So the “if”
claim is settled.

Suppose that N (G) has an SDR ϕ : V → V , V = V (G). Then ϕ is a
permutation of V with no fixed points. Therefore ϕ factors into “cyclic”
permutations on pairwise disjoint subsets of V , with all cycle lengths ≥
2. Because vϕ(v) ∈ E(G) for all v ∈ V , these cyclic permutations are
associated with single edges, when the permutation is a transposition, and
graph cycles, when the permutation cycle length is > 2.

Corollary 1.2. If G is bipartite then N (G) has an SDR if and only if G
has a perfect matching.

Proof. Every even cycle has a perfect matching.

A spanning subgraph X of a graph G such that every component of X is
either an edge or a cycle will be called a (1,2)-factor of G. This terminology
is due to Tutte [4], but he means by it something a little different: in Tutte’s
definition, a (1,2)-factor of a graph is a spanning subgraph in which every
vertex has degree either 1 or 2. Therefore, our (1,2)-factors are all Tutte
(1,2)-factors, but the reverse inclusion does not hold. For instance, P3, the
path on 3 vertices, is a Tutte (1,2)-factor of itself, but does not have a
(1,2)-factor in our more restrictive sense.

Obviously Theorem 1.1 can be restated.

Theorem 1.1′. Suppose that G is a graph. N (G) has an SDR if and only
if G has a (1,2)-factor.

If it was not clear from the example of [NG(v)|v ∈ V (G)], an SDR of an
indexed collection [Ai; i ∈ I] of sets is an injective function ϕ : I → ⋃

i∈I

Ai

such that ϕ(i) ∈ Ai for all i ∈ I. There is a time-hallowed connection
between SDRs and list colorings of graphs.
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Let us explain the latter. For a set C (of colors) let F(C) denote the
collection of finite subsets of C (so F(C) = 2C if C itself is finite).

A list assignment to the vertices of a graph G is a function L : V (G) →
F(C), for some set C. For such an L, a proper L-coloring of G is a function
ϕ : V (G) → C such that, for all u, v ∈ V (G),

1. ϕ(v) ∈ L(v), and

2. if uv ∈ E(G), then ϕ(u) ̸= ϕ(v).

Lemma 1.3. If [Ai; i ∈ I] is an indexed collection of sets, then an SDR
for this collection is the same as a proper L-coloring of K(I), the complete
graph on vertex set I, if L is defined by L(i) = Ai.

Letting V = V (G) and NG : V → 2V denote the list assignment that
assigns NG(v) to each v ∈ V , we see that Theorem 1.1 gives a necessary
and sufficient condition on a graph G for the complete graph K(V ) on V
to be properly NG-colorable. This perspective immediately opens a general
question: Given G, for which graphs H with V (H) = V (G) is there a
proper NG-coloring of H?

2 G-colorability

Throughout, G and H will be graphs on the same vertex set V . We will say
that H is G-colorable if there is a proper NG-coloring of H. In other words,
H is G-colorable if is a function ϕ : V → V such that, for all u, v ∈ V

1. ϕ(v) ∈ NG(v), and

2. if uv ∈ E(H) then ϕ(u) ̸= ϕ(v).

The following proposition gives some straightforward basics about
G-colorability. Proofs are omitted.

Proposition 2.1. Suppose that G, H, and X are graphs on the same vertex
set V .

(1) If G has an isolated vertex, then no graph on V is G-colorable.
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(2) If H is G-colorable and X is a spanning subgraph of H, then X is
G-colorable.

(3) If H is G-colorable and G is a spanning subgraph of X, then H is
X-colorable.

Two types of extremal problems arise from Proposition 2.1 (2) and (3).

1. Given G, find the maximal graph or graphs H which are G-colorable.

2. Given H, find the minimal graph or graphs G such that H is
G-colorable.

In these problems, “maximal” and “minimal” refer to the partial order on
these graphs (with the same vertex set) of inclusion of edge sets.

Example 2.2. Let G = K1,3, the “claw”, depicted with vertices labeled in
Figure 1.

z

x

u y

Figure 1: The claw

G is G-colorable: set u = ϕ(x) = ϕ(y) = ϕ(z) and let ϕ(u) ∈ {x, y, z}.
Further, G is the unique maximal graph on V = {u, x, y, z} among the G-
colorable graphs. (Verification left for the pleasure of the reader.) However,
although G is minimal in Q(G) = {X|X is a graph on V and G is X-
colorable}, because deleting any edge of G creates an isolated vertex, G is
not the unique minimal graph in Q(G); the 3 different perfect matchings
on V are also minimal in Q(G).

Intriguing as we find these questions of maximality and minimality, we
postpone further inspection of them for now.

If a graph G is G-colorable, we will say that G is self-colorable.
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Theorem 2.3. A graph G is self-colorable if and only if G has no isolated
vertices.

Proof. The “only if” claim follows from Proposition 2.1.

Suppose that G has no isolated vertices. We can assume that n = |V (G)| ≥
3 and proceed by induction on n. Therefore, we can assume that G is
connected.

If v ∈ V (G) has degree 1 then its neighbor w has degree ≥ 2, as G is
connected on at least 3 vertices. Then G − v has no isolated vertices. By
the induction hypothesis, G− v has a self-coloring. Extend this coloring to
G by coloring v with w, to obtain a self-coloring of G.

So now we can assume that all vertices of G have degree at least 2 in G.
Take any v ∈ V (G) . Then G − v has no isolated vertex, and is therefore
self-colorable, by the induction hypothesis. Consider any such coloring of
G − v. If any w ∈ NG(v) does not appear as a color on any other vertex
of NG(v), then color v with w. Otherwise, every w ∈ NG(v) appears as
a color on some other x ∈ NG(v) in our supposed self-coloring of G − v.
Therefore, this coloring restricted to NG(v) is a permutation of NG(v).
Take any w ∈ NG(v), recolor w with v and color v with the color formerly
on w to obtain a G-coloring of G.

Now we know which graphs G are self-colorable, and for which G the com-
plete graph on V (G) is G-colorable. A natural next question is: for which G
is its complement G-colorable? We do not know the answer to this question,
but we do have a necessary condition.

Let the complement of a graph G be denoted G.

Lemma 2.4. If G is G-colorable, then for every U ⊆ V = V (G) which is
independent in G, |NG(U)| ≥ |U |.

Proof. Let ϕ : V → V be a G-coloring of G. If U ⊆ V is independent in G,
then G[U ], the subgraph of G induced by U , is a complete graph. Therefore
ϕ restricted to U is a one-to-one function from U into NG[U ].

A matching M in a graph G saturates a set U ⊆ V (G) if each vertex of U
is incident to an edge of M .

Briggs, Hoffman, Holliday and Johnson

110



Lemma 2.5. If B is a bipartite graph with bipartition U,W , then there is a
matching in B which saturates U if and only if for all S ⊆ U , |NB(S)| ≥ |S|.

This is the well known “matchings in bipartite graphs” version of Hall’s
Theorem on SDRs; see [4].

For the next lemma, and therefore for the hard part of the proof of the
theorem following it, we are indebted to L. Levine [2].

Lemma 2.6. Suppose that G is a graph on vertex set V and B is the
bipartite graph with bipartition V, V ′ = {v′|v ∈ V }, with E(B) = {uv′|uv ∈
E(G)}. Then G has a (1,2)-factor if and only if B has a perfect matching.

Proof. Suppose that B has a perfect matching M . Because |M | = |V ′|,
M saturates both V and V ′. By the way adjacency is defined in B, if
uv′ ∈ E(B), then u ̸= v.

Define f : V → V by: for u ∈ V , let f(u) = v ⇐⇒ uv′ ∈ M . Because M
is a perfect matching, f is well-defined and injective. Therefore, since V is
finite, f is a permutation of V with no fixed points. Also, vf(v) ∈ E(G)
for all v ∈ V . Therefore, as in the proof of Theorem 1.1, the disjoint
permutation cycles that f the permutation factors into correspond to vertex
disjoint edges and cycles in G, and it follows that G has a (1,2)-factor – a
spanning subgraph whose components are single edges or cycles.

Now suppose that G has a (1,2)-factor F . We form a perfect matching M in
B as follows: for each single-edge component uv of F , put both uv′ and vu′

in M . For each component of F which is a cycle, C, say C = u1u2 . . . uku1,
put the edges u1u

′
2, u2u

′
3, . . ., uku

′
1 in M . (Or, you could add edges to

M by going around the cycle the other way, but don’t do both!) It is
straightforward to see that if every component of F is processed per these
instructions, the resulting M will be a perfect matching in B.

Theorem 2.7. Suppose that G is a graph on finite vertex set V and K(V )
is the complete graph on V . The following are equivalent:

(a) G has a (1,2)-factor;

(b) K(V ) is G-colorable;

(c) G is G-colorable.

Proof. Since N (G) having an SDR is, as explained earlier, equivalent to
K(V ) being G-colorable, we have, by Theorem 1.1, that (a) and (b) are
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equivalent. Also, by Proposition 2.1 part (2), (b) implies that all graphs
on V are G-colorable, and that implies (c). Therefore, to finish the proof
it suffices to prove that (c)⇒(a).

Let B be the bipartite graph with bipartitition V, V ′ defined with reference
to G as in Lemma 2.6. By that lemma, to prove (a), assuming (c), it suffices
to show that B has a perfect matching. Because |V | = |V ′|, it suffices to
show that B has a matching saturating V , and therefore, by Lemma 2.5, it
suffices to show that |NB(S)| ≥ |S| for all S ⊆ V .

Suppose that S ⊆ V . Let I = {v|v is an isolated vertex in G[S]} and
let Q = S\I. For any subset U ⊆ V , let U ′ = {u′|u ∈ U} ⊆ V ′. Note
that |U ′| = |U | for each such U . Assuming (c), by Lemma 2.4 we have
|NG(I)| ≥ |I|. Since I is the set of isolated vertices in G[S], NG(I)∩Q = ∅
and Q ⊆ NG(Q). Thus, |NB(S)| = |(NG(I)∪NG(Q))′| = |NG(I)∪NG(Q)|
≥ |NG(I) ∪Q| = |NG(I)|+ |Q| ≥ |I|+ |Q| = S.

Corollary 2.8. Let G and V be as in Theorem 2.7. Then (a)- (c) in
Theorem 2.7 are also equivalent to each of: for every set U ⊆ V independent
in G,

(d) |NG(U)| ≥ |U |;

(e) there is a matching in G which saturates U .

Proof. This is a corollary of Theorem 2.7 and of its proof. But first, note
that if U ⊆ V is independent in G, then no edge of G is incident to more
than one u ∈ U . Therefore (e) ⇒ (d). For the reverse implication, observe
that if U ⊆ V is independent in G then so is each set S ⊆ U . Thus (d)
applied to the bipartite graph with bipartition U,NG(U), induced by the
U −NG(U) edges of G, implies (e), by Lemma 2.5. Thus, (d) and (e) are
equivalent.

Lemma 2.4 says that (c) implies (d), and the proof of Theorem 2.7 shows
that (d) implies (a).

The surprising fact that the G-colorability of G implies the G-colorability
of K(V ) = G ∪G leads us to:

Conjecture 2.9. If G and H are graphs on the same vertex set, and H is
G-colorable, then G ∪H is G-colorable.
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3 Graph-referential multicolorings

G, H, and V will be as before and we add to the mix functions f : V →
N = {0, 1, 2, . . .}. For such a function f , a (G, f)-coloring of H is a function
ϕ : V → 2V such that, for all u, v ∈ V ,

1. ϕ(v) ⊆ NG(v);

2. |ϕ(v)| = f(v); and

3. if uv ∈ E(H) then ϕ(u) ∩ ϕ(v) = ∅.
When f is a constant function, say f(v) = k for all v ∈ V , we will write
(G, k) instead of (G, f). Clearly, a (G, 1)-coloring is a G-coloring. A (G, k)-
coloring of G will be called a k-self-coloring of G. For instance, every
cycle Cn on n > 3 vertices is 2-self-colorable; further, there is exactly one
(Cn, 2)-coloring of Cn.

There is an obvious generalization of Proposition 2.1 to (G, k)-colorings.
Let δ(G) denote the minimum degree in G.

Proposition 3.1. Suppose that G, H, and X are graphs on the same vertex
set V , and k is a non-negative integer.

1. If there is a (G, k)-coloring of H, then δ(G) ≥ k.

2. If there is a (G, k)-coloring of H, and X is a subgraph of H, then
there is a (G, k)-coloring of X.

3. If there is a (G, k)-coloring of H, and G is a subgraph of X, then
there is an (X, k)-coloring of H.

4. If k > 0 and there is a (G, k)-coloring of H, then there is a (G, k−1)-
coloring of H.

The question of k-self-colorability is just one of the many that arise from the
definition of (G, k)- (more generally, of (G, f)- ) coloring, but it is the one
that we will primarily focus on for the remainder of this paper. Noting that
for every graph G, every simple graph on V (G) is (G, 0)-colorable (color
each vertex with ∅), we define hh(G) = max[k ∈ N;G is k-self-colorable].

Theorem 2.3 can be restated; hh(G) ≥ 1 if and only if G has no isolated
vertices.
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For a graph H, ω(H) denotes the clique number of H, the greatest order
of a complete subgraph of H, and α(H) is the vertex independence number
of H, α(H) = ω(H).

Proposition 3.2. Suppose that G and H are graphs on a vertex set V , k

is a positive integer, and H is (G, k)-colorable. Then ω(H) ≤ |V |
k .

Proof. This proof will resemble that of Lemma 2.4. If ϕ : V → 2V is a
(G, k)-coloring of H, and U ⊆ V induces a complete graph in H, then
the sets ϕ(u), u ∈ U , are pairwise disjoint k-subsets of V . Therefore,
k|U | ≤ |V |.

Corollary 3.3. If k > 1 is an integer, then for no graph G is the complete
graph K(V ) on V = V (G) (G, k)-colorable.

Corollary 3.4. Suppose G is a graph on a vertex set V , and k is a positive

integer. If G is k-self-colorable then ω(G) ≤ ⌊ |V |
k ⌋. If G is (G, k)-colorable,

then α(G) ≤ ⌊ |V |
k ⌋.

Corollary 3.5. For any graph G, hh(G) ≤ min[δ(G), ⌊|V (G)|/ω(G)⌋].

Example 3.6. The graph G in Figure 2 has hh(G) = 1, while δ(G) =
|V (G)|/ω(G) = 2.

Figure 2: A graph for which the inequality in Corollary 3.5 is strict.

If we add 2 edges in Figure 2, we can get the “prism,” depicted in Figure 3.

Figure 3: The prism
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It is easy to see that the prism is 2-self-colorable, but it is not 3-self-
colorable, by Corollary 3.5. This raises a question: is the inequality in
Corollary 3.5 always equality when G is regular and connected? Turns out
the answer is no.

Proposition 3.7.

(1) If G is triangle-free, then G is δ(G)-self-colorable.

(2) If G is r-regular then G is r-self-colorable if and only if G is triangle-
free.

We leave the proofs to the reader.

By Proposition 3.7 (2), to find a counterexample to the conjecture that
for every r-regular connected graph, equality in Corollary 3.5 holds, it will
suffice to find a connected r-regular graph G with |V (G)|/ω(G) ≥ r, with
ω(G) ≥ 3. Possibly there are many such examples, but here is an entire
family of them, one for each r ≥ 4.

Example 3.8. For r ≥ 3, let the vertices of Cr be replaced by Kr−1’s
and let Kr−1’s corresponding to adjacent vertices on the Cr be joined by a
matching consisting of r − 1 edges.

The resulting graph G is r-regular, with ω(G) = r − 1. G is triangle-free
⇐⇒ r = 3. In all cases, |V (G)|/ω(G) = r(r − 1)/(r − 1) = r.

Therefore, for r ≥ 4, G is not triangle-free, whence hh(G) < r = δ(G) =
|V (G)|/ω(G). .

So, what is hh(G)? The reader should note that what we are calling G
here could be any one of a number of non-isomorphic graphs, depending on
how those matchings are installed. We leave as a recreation the verification
that if r > 3, then hh(G) = 3 for every such G. When r = 3 then there
are exactly two non-isomorphic choices for G, one with triangles, the other
without. When G is the triangle-free one, hh(G) = 3, by Proposition 3.7.
Also by Proposition 3.7, when G is the one with triangles, hh(G) < 3. We
leave it as a puzzle whether hh(G) =1 or 2 in this case.

Here is another puzzle: can an r-regular, connected graph G be found such
that

hh(G) <

⌊ |V (G)|
ω(G)

⌋
< r?
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