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Vertex-magic trees with n central vertices and

kn leaves have bounded order for each k

exceeding the square root of 3

Jonathan Calzadillas and Dan McQuillan∗

Abstract. It is well-known that trees with n central vertices and more
than 2n leaves do not possess vertex-magic total labelings. Furthermore,
this restriction is tight in the sense that there are examples of vertex-magic
total labelings of trees with n central vertices and 2n leaves. In this paper
we prove that any such vertex-magic graph must satisfy n ≤ 3. This answers
a long standing open question posed by Wallis. We do this by providing an
upper bound on n for any vertex-magic graph with kn degree 1 vertices and
n other vertices, provided that k >

√
3. We then provide alternative open

questions with a related conjecture, in the same spirit as Wallis’ original
question, and begin the process of exploring them. In particular, for each
n ≥ 1, we provide an elegant vertex-magic total labeling of a tree with n
central vertices and n+ 1 leaves.

1 Introduction

A total labeling of a graph G with vertex set V and edge set E is a bijective
map λ from V ∪ E onto {1, 2, . . . , |V | + |E|}. The weight wt(v) of the
vertex v is given by wt(v) = λ(v) +

∑
λ(e) where the sum is over all edges

e incident with v. The total labeling λ is called vertex-magic if there is a
constant h such that wt(v) = h for every vertex v ∈ V . In this case, λ is
called a vertex-magic total labeling (VMTL) and h is its magic constant. A
graph that has a VMTL is called a vertex-magic graph and we will, more
simply, refer to such a graph as magic. If a graph does not have a VMTL,
we will call it non-magic. VMTLs were formally introduced in [5] where
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Figure 1: A VMTL with h = 15 for a tree with n = 2 and four leaves.

it was already shown that a tree with n central vertices and more than
2n leaves must be non-magic. Furthermore, they provide (see Figure 1) a
VMTL for a tree with two central vertices and four leaves, showing that
their bound is tight.

This paper was inspired by a problem which originally appears in the first
edition of the book [7] by W.D. Wallis (2001), throughout which research
problems are generously sprinkled. The following is the one of interest:

Research Problem 3.5 (from [7]) For each positive integer n, find a tree
with n central vertices and 2n leaves, which is vertex-magic.

The problem is repeated in the second edition [6], by A.M. Marr and W.D.
Wallis (2013), with the same wording. This suggests an anticipation that
such graphs exist. One of the goals of this paper is to prove they do not,
unless n ≤ 3. Indeed, this follows from Theorem 2.1, as the special case
with k = 2, where k is defined as the ratio of the number of leaves to the
number of central vertices. Theorem 2.1 places an upper bound on n in
terms of k, whenever k >

√
3.

In Section 3, we provide alternatives to Wallis’ Research Problem 3.5 from
[7]. In particular, we wonder if k <

√
3 is enough to guarantee that there

is a vertex-magic tree with n central vertices and kn leaves. We provide
as a special example a VMTL for a tree with n central vertices and n + 1
leaves, for all n ≥ 1. While this example does not feature k being close to√
3, it is unusually simple for a general VMTL construction.

For extra context, note that necessary restrictions for certain trees and
forests to have a VMTL are provided in [2]. Yet, interestingly, they show
that the disjoint union of s 3−vertex paths (i.e. the so-called galaxy sK1,2)
has a VMTL for every s.
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However, the presence of degree 1 vertices does provide a formidable ob-
struction to the existence of VMTLs. In his 2001 book, Wallis proves the
following:

Theorem 3.15 (from [7]): Let G be any graph of order v. If G has e edges,
then a G− sun G∗ is not vertex-magic total when

e >
−1 +

√
1 + 8v2

2

Note that, by definition, a G−sun is obtained from a graph G by adjoining
a new vertex of degree 1 to each vertex of G. The term sun graph, without
reference to an originating graph G, presumes that G is a cycle.

It is also important to mention that the special case where n = 4 of Wallis’
Research Problem 3.5 was decided via a computer search by Jag̈er and
Arnold in [3]. In that paper, the strategy was to first identify the 60
relevant trees with four central vertices and eight leaves, using NAUTY.
Then, an integer programming algorithm verified that none of them had
a VMTL. It is perhaps fortunate that we were unaware of this interesting
result at the time that our work was being done. The end result is that our
paper is self-contained and that it did not benefit from computer assistance.

Our interest in Research Problem 3.5 started with the general question of
attempting to determine the role of the degree sequence itself, in deciding
whether or not a graph is vertex-magic. Some progress was made in [1]
where, among other results, the following was shown:

Theorem 8 (from [1]): Let G be a graph with 2n vertices and 2n edges,

with n ≥ 5. If G has t =
⌊n
3

⌋
components isomorphic to K1,3 then G is

not vertex-magic.

The strategy for the proof of our main theorem (in the next section) is
analogous to the one used for Theorem 8 in [1]. In that paper, the goal was
to provide degree sequences that are ambiguous in the sense that there are
both magic and non-magic graphs sharing the same degree sequence. The
sun graph was shown to be magic, and Theorem 8 was used to construct
non-magic graphs without a component isomorphic to K1,1, yet still having
the same degree sequence as the sun. (Any graph with a component of K1,1

is trivially seen to be non-magic).
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It is a noteworthy heuristic observation that graphs within a family of
graphs with similar degree sequences seem to have more VMTLs as the
order increases. Furthermore, the number of VMTLs also may grow very
quickly with the order of the graphs. For a more precise illustration of this
phenomenon, J. S. Kimberley and J. A. MacDougall ([4]) provide tables
for the numbers of a particular kind of VMTL, the so-called strong ones
for odd order 2−regular graphs, and this number grows stunningly quickly
with the order of the graph.

The next section provides an example that goes against this trend, as the
degree 1 vertices present too much of an obstacle for larger orders.

2 The main theorem

In this section we prove the following:

Theorem 2.1. Let G be a graph with l leaves and n other vertices. Assume
G has n + l − 1 edges and set k = l/n. If G is vertex-magic and k >

√
3

then

n ≤ k + 1

k2 − 3

Remark: Any tree with n central vertices and l leaves satisfies the hy-
pothesis of the theorem. Trees having l = 2n leaves (and therefore k = 2),
corresponding to n = 2 and n = 3, along with their VMTLs are shown in
Figures 1 and 2 respectively.














Figure 2: A VMTL with h = 23 for a tree with n = 3 and six leaves.
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Proof. Assume G is a graph as in the hypothesis of the theorem, with
VMTL λ having a magic constant of h. Let vi denote a leaf with adjacent
edge ei, for i = 1, 2, . . . l.

Let Sv and Se denote, respectively, the sum of all vertex labels and the
sum of all edge labels. Since there are n + l vertices and n + l − 1 edges,
we have:

Sv + Se = 1 + 2 + · · ·+ (2n+ 2l − 1)

= (n+ l)(2n+ 2l − 1)

Summing over the weights of all n+ l vertices will result in each edge label
being counted twice. Hence:

Sv + 2Se = (n+ l)h

Combining these two equations results in

h = 2n+ 2l − 1 +
Se

n+ l
(1)

Claim: h ≤ 2l + 4n− 1

Proof of Claim. We focus on the degree 1 vertices, and for each one, the
corresponding two labels that must sum to h. We can therefore choose ai
so that:

{λ(vi), λ(ei)} = {2n+ 2l − ai, h+ ai − 2n− 2l} for i = 1, 2, . . . l (2)

Notice that since the maximum label is 2n + 2l − 1, it follows that ai > 0
and furthermore we may choose the notation so that

2n+ 2l − ai > h+ ai − 2n− 2l for i = 1, 2, . . . l (3)

Therefore,
h < 4n+ 4l − 2ai for each i = 1, 2, . . . l

Since, ai ̸= aj whenever i ̸= j, it follows that there is some choice of index
i∗ so that ai∗ ≥ l. Therefore, h < 4n+ 4l − 2l = 4n+ 2l. Since h, n and l
are all integral, we see that h ≤ 4n+ 2l − 1, which proves the claim.

Next we provide a lower bound for h. We do this by providing a lower
bound for Se and then using equation (1).
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For the leaf edges, we use equation (2) and inequality (3) to see that

l∑

i=1

λ(ei) ≥
l∑

i=1

(h+ ai − 2n− 2l) (4)

The usefulness of inequality (4) is the key insight required for the proof.
The rest is straightforward. We use (1) to replace h in the above expression
with 2n+ 2l − 1 + Se

n+l . Hence:

l∑

i=1

λ(ei) ≥
l∑

i=1

(2n+ 2l − 1 +
Se

n+ l
+ ai − 2n− 2l)

=
lSe

n+ l
+

l∑

i=1

(ai − 1)

≥ lSe

n+ l
+

l∑

i=1

(i− 1)

=
lSe

n+ l
+

l(l − 1)

2

Since there are n + l − 1 edges in total, there are n − 1 other edges to
consider. The sum of their labels is (trivially) at least

1 + 2 + . . . (n− 1) = n

(
n− 1

2

)

Whence,

Se ≥
lSe

n+ l
+ l

(
l − 1

2

)
+ n

(
n− 1

2

)

i.e.
nSe

n+ l
≥ l

(
l − 1

2

)
+ n

(
n− 1

2

)

and so
Se

n+ l
≥ k

(
l − 1

2

)
+

n− 1

2

This is the desired lower bound for Se. Substituting this back into (1)
yields:

h ≥ 2n+ 2l − 1 + k

(
l − 1

2

)
+

n− 1

2

From our earlier claim, h ≤ 2l + 4n − 1. By comparing these two bounds
for h, we get:

2n+ 2l − 1 + k

(
l − 1

2

)
+

n− 1

2
≤ 2l + 4n− 1
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After slightly rearranging and canceling, we get:

−2n+
kl

2
+

n

2
≤ k

2
+

1

2

Since l = kn, we get (
k2 − 3

2

)
n ≤ k + 1

2

Since, by assumption, k >
√
3, we can divide throught by (k2 − 3)/2 to get

n ≤ k + 1

k2 − 3

as required.

Taking k = 2 gives us the following:

Corollary 2.2. Let G be a tree with n central vertices and 2n leaves. If G
is vertex-magic then n ≤ 3.

3 A vertex-magic tree with n central vertices
and n + 1 leaves

The goal of this section is to provide alternatives to Wallis’ original Research
Problem 3.5 (discussed in the introduction) and then begin the process of
finding partial answers for one of them.

Problem 3.1. For which pairs of integers (n, l) is there a vertex-magic
tree with n central vertices and l leaves?

We know from Theorem 2.1 that l/n >
√
3 provides a limitation. We do

not know exactly what happens if l/n <
√
3 or even if

√
3 is the correct

constant to consider. Therefore, we ask the following:

Problem 3.2. If possible, find the largest constant κ such that l/n ≤ κ
guarantees that there is a tree with n central vertices and l leaves.

Theorem 2.1 suggests a candidate for κ, namely
√
3. Furthermore, Theorem

2.1 implies that, for each choice of k >
√
3, there are at most finitely many

trees with n central vertices and kn leaves. Note that this observation still
allows for the possibility that the total over all such k is infinite. However,
it is conceivable that κ <

√
3. We propose the following:
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Conjecture 3.3. There are only finitely many pairs of positive integers
(n, l) with l/n >

√
3 such that there is a vertex-magic tree with n central

vertices and l leaves.






Figure 3: A VMTL with h = 111 for a tree with 15 central vertices and 26
leaves.

If Conjecture 3.3 is incorrect, then the labeling in Figure 3 provides an
infinitesimal piece of evidence against the conjecture, as l/n = 26/15 >

√
3

for the magic tree shown there. In any case, it provides part of an answer
for Problem 3.1.

It may be quite difficult to find enough explicit general constructions to
solve Problem 3.2. We expect that solutions of these problems will require
existence proofs.

We conclude by providing a VMTL for a tree with n central vertices and
n + 1 leaves (see Figure 4). The original motivation for looking at this
example was to begin the process of understanding Problems 3.1 and 3.2.
We include it due to its surprising simplicity and elegance, as well as the
fact that it generalizes a well-known VMTL for a path with three vertices,
by taking n = 1.

Theorem 3.4. Let Tn be the tree with n central vertices vi, i = 1, 2, · · ·n
and n+ 1 leaves wi, i = 1, 2, · · ·n+ 1 with edges vivi+1, 1 ≤ i ≤ n− 1 and
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Figure 4: A VMTL for a tree with n central vertices and n+ 1 leaves.

viwi, 1 ≤ i ≤ n and vnwn+1. Then, for each n ≥ 1 there is a vertex-magic
total labeling λ of Tn with magic constant h = 5n+ 1.

Proof. Starting with the leaves, set λ(wi) = 3n + i for 1 ≤ i ≤ n + 1 and
λ(viwi) = 2n + 1 − i for 1 ≤ i ≤ n with λ(vnwn+1) = n. Evidently the
weight of every leaf is 5n+ 1 as claimed in the statement of the theorem.

For the central vertices, set λ(vi) = 3n+1− i for 1 ≤ i ≤ n and if i < n set
λ(vivi+1) = i. It follows that for i > 1, λ(vi−1vi) = i− 1. Thus the weight
wt(vi) of these vertices, for 1 < i < n, satisfies:

wt(vi) = λ(vi) + λ(vi−1vi) + λ(vivi+1) + λ(viwi)

= (3n+ 1− i) + (i− 1) + i+ (2n+ 1− i)

= 5n+ 1

For the remaining two vertices, note that

wt(v1) = λ(v1) + λ(v1v2) + λ(v1w1)

= 3n+ 1 + 2n

= 5n+ 1

Also,

wt(vn) = λ(vn) + λ(vn−1vn) + λ(vnwn+1) + λ(vnwn)

= (2n+ 1) + (n− 1) + n+ (n+ 1)

= 5n+ 1
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It remains to show that λ is bijective. For the convenience of the reader, we
provide the following table, providing the use of each integer 1, 2, · · · 4n+1.

Labels Corresponding object(s)
1, 2, · · · , n− 1 central edges

n the edge vnwn+1

n+ 1, n+ 2, · · · , 2n the leaf-adjacent edges viwi

2n+ 1, 2n+ 2, · · · , 3n central vertices
3n+ 1, 3n+ 2, · · · , 4n, 4n+ 1 leaves
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