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A short note on Zeckendorf type numeration

systems with negative digits allowed

Péter Hajnal∗

Abstract. Several numeral systems are known, that are based on Fibonacci
numbers. The best known is the Zeckendorf representation. Another one
is the lazy Fibonacci representation of natural numbers. Both of them use
0-1 digits. A more recent one is due to Alpert. She allows negative digits
in her representation. We introduce three more systems that use negative
digits.

1 Introduction

Denote by (Fi)
∞
i=0 the Fibonacci sequence ([12] A000045) defined as Fn =

Fn−1+Fn−2 (n ≥ 2) with F0 = 0 and F1 = 1. We refer to F2 < F3 < F4 <
· · · as the Fibonacci numbers. So when we mention Fibonacci numbers, we
mean elements of the Fibonacci sequence with indices at least 2. Using the
recursion formula one can extend the sequence to negative indices:

. . . , 13,−8, 5,−3, 2,−1, 1, 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, . . . .

Zeckendorf [15] introduced a numeral system based on Fibonacci numbers.
As a new system of numeration is introduced, several natural mathemati-
cal problems are addressed. They are considering for example algorithmic
problems of the arithmetic of numbers given by the Zeckendorf represen-
tation (for example [1], [14], [7]) and probabilistic questions on the distri-
bution of the number of digit 1’s among the numbers of given Zeckendorf
length (for example [11], [9], [5]). The beauty of the system often comes
with surprising connections. For example, the Zeckendorf representation
provides the key to the complete analysis of a version of the Nim game [16].
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Other numerical systems were introduced, and they ignited similar lines of
research. In Section 2 we give a short overview of previous notions. We
assume familiarity with positional representations and the notation used
therein. For the sake of self-containment we discuss the basics of the Zeck-
endorf representation. For a more detailed account of numerical systems
see [13]. The first systems used non-negative digits, but later systems also
used negative digits. We go further in this direction.

The main topic of this paper is to introduce new numeral systems. Our
two main results are the following two theorems.

Theorem 1.1 (Alternating representation). Every natural number n can
be written uniquely as a sum

n = Fℓ − Fi1 + Fi2 − Fi3 + · · ·+ (−1)t−1Fit−1
,

with i0 = ℓ ≫ i1 ≫ i2 ≫ · · · ≫ it−3 ≫ it−2 ≫ it−1 ≥ 2, where i ≫ j
denotes i > j+1 (i.e. i ≥ j+2) and i ≫ j denotes i > j+2 (i.e. i ≥ j+3).
This sum is called the alternating representation of n.

The parameter t denotes the number of terms. Note that n = Fℓ is an
alternating representation, but n = Fℓ − Fℓ−2 is not (in the case t = 2 the
requirement on the last two indices: it−2 ≫ it−1 must be fulfilled).

Theorem 1.2 (Even representation). Every natural number n can be writ-
ten uniquely as a sum

n = F2ℓ + ϵi1F2i1 + ϵi2F2i2 + ϵi3F2i3 + · · ·+ ϵt−1F2it−1
,

where i0 = ℓ > i1 > i2 > · · · > it−1 ≥ 1,ϵi ∈ {−1, 1} and in the sequence
ϵi0 = 1, ϵi1 , ϵi2 , . . . , ϵit−1

there are no two consecutive −1’s. This sum is
called the even representation of n.

Theorem 1.1 and Theorem 1.2 are proven in Section 3 and Section 4, respec-
tively. We finish the paper with Section 5, where we discuss the relations
between the classical and new theorems. We also introduce a third numeral
system for natural numbers, that is call odd representation.

Throughout the paper the set {0, 1, 2, 3, . . . }, i.e. the set of natural numbers
is denoted as N. The set of positive integers is denoted by N+. For i and
j, two natural numbers i ≫ j denotes i > j + 1 (i.e. i ≥ j + 2) and i ≫ j
denotes i > j+2 (i.e. i ≥ j+3). The intervals are always intervals of Z, so
]2, 6] = (2, 6] = {3, 4, 5, 6}, [2, 2] = {2}. A∪̇B denotes A ∪ B and contains
the additional information that A and B are disjoint. A∪̇B∪̇C∪̇ denotes
A ∪ B ∪ C ∪ · · · and contains the additional information that A,B,C, . . .
are pairwise disjoint.
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2 Representations of natural numbers based
on Fibonacci numbers

Every natural number can be written as a sum of Fibonacci numbers. The
claim is true since n = n · F2 = F2 + F2 + · · · + F2 (0 is considered as an
empty sum).

Observation 2.1. Every natural number can be written as a sum of distinct
Fibonacci numbers.

To see the claim consider an arbitrary positive integer n and take all the
possible terms 1 < 2 < 3 < 5 < · · · < Fℓ−1 < Fℓ (≤ n < Fℓ+1). We sketch
two possible strategies/algorithms to come up with a representation:

(1) Eager or Greedy strategy/rule: Take Fℓ as the first term and try to
complete the representation, continuing with n− Fℓ.

(2) Lazy strategy/rule: If the sum of the numbers Fℓ−1 > · · · > 5 > 3 >
2 > 1 is at least n we throw away Fℓ and try to recursively complete
the representation. If the sum is smaller than n, we are forced to take
Fℓ as the first term and proceed with n− Fℓ.

When we have a representation of n as in Observation 2.1 we can code n us-
ing place-value notation. The places/positions correspond to the Fibonacci
numbers: . . . , 8, 5, 3, 2, 1 and the Fibonacci digits are 0, 1. For example,

2021 = F17 + F14 + F9 + F7 = F16 + F15 + F14 + F9 + F7

= F16 + F15 + F13 + F11 + F10 + F8 + F7 + F6 + F5 + F4 + F3 + F2

can be coded as:

2021 = 1001000010100000F = 111000010100000F = 110101101111111F .

In this paper, ℓ(n) denotes the maximum index in the sum with respect to
the representation of n.

Two representations play a central role in further research.

Theorem 2.2 (Brown [3]). Every natural number has a unique representa-
tion as a sum of Fibonacci numbers such that except for the highest indexed
term no two consecutive Fibonacci numbers are missing.
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Theorem 2.3 (Zeckendorf [15]). Every natural number has a unique rep-
resentation as a sum of nonconsecutive Fibonacci numbers.

The existence in Theorem 2.2 can be proven by applying the Lazy rule
repeatedly. The proof of uniqueness is standard (for example see [3]). The
representation is called the lazy Fibonacci representation. The existence
in Theorem 2.3 can be proven by applying the Eager rule repeatedly. The
proof of uniqueness is standard (for example see [15]). The representation
is called the Zeckendorf representation.

Sometimes these representations are called dense, resp. sparse representa-
tions.

To emphasize the two special forms we use Z, ℓF subscripts in the case of
Zeckendorf, resp. lazy Fibonacci representation:

2021 = 1001000010100000Z = 110101101111111ℓF .

In 1992 Bunder [4] introduced a Zeckendorf type representation using Fi-
bonacci numbers with negative indices. He proved that every integer has a
unique representation as a sum of nonconsecutive Fibonacci numbers with
negative indices. Using F−i = (−1)i+1Fi, Bunder’s theorem can be rewrit-
ten as follows.

Theorem 2.4 (Bunder [4]). Every integer number n can be written uniquely
as a sum

n = ϵi0Fi0 + ϵi1Fi1 + ϵi2Fi2 + ϵi3Fi3 + · · ·+ ϵt−1Fit−1
,

where i0 ≫ i1 ≫ i2 ≫ · · · ≫ it−1 ≥ 1 and ϵij = 1, when ij is odd, ϵij = −1,
when ij is even.

In 2009 Alpert [2] created a new way to represent natural numbers (in fact
Theorem 2.5 can be extended to work on integers), that will be important
for us. She also uses Fibonacci numbers as places, but the digits are −1, 0, 1
(as in the case of our interpretation of Bunder’s theorem).

Theorem 2.5 (Alpert [2]). Every natural number n can be written uniquely
as a sum

n = Fℓ + ϵi1Fi1 + ϵi2Fi2 + ϵi3Fi3 + · · ·+ ϵt−1Fit−1
,

where i0 = ℓ > i1 > i2 > · · · > it−1 ≥ 2 and ϵi0 = 1, ϵi1 , ϵi2 , . . . ϵt−1 ∈
{−1, 1}. Furthermore if ϵij = ϵij+1

, then ij − ij+1 ≥ 4; if ϵij = −ϵij+1
, then

ij − ij+1 ≥ 3.
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The parameter t, in the theorem, is the number of terms in the represen-
tation. Note that t = 0 and t = 1 are possible. Hence 0 and the Fibonacci
numbers can be represented as stated in the theorem. We will denote the
−1 digit as 1̄ and we use subscript A when representing n using place-value
notation.

For example,

2021 = 2584− 610 + 55− 8

= F18 − F15 + F10 − F6

= 1001̄00001001̄0000A.

3 Alternating representation, proof of Theo-
rem 1.1

In this section, we prove Theorem 1.1.

Assume
n = Fℓ − Fi1 + Fi2 − Fi3 + · · ·+ (−1)t−1Fit−1 ,

ℓ ≫ i1 ≫ · · · ≫ it−2 ≫ it−1 ≥ 2.

Observation 3.1. n ≤ Fℓ.

Indeed, the first term is Fℓ, the remainder terms can be paired:

n = Fℓ − (Fi1 − Fi2)− (Fi3 − Fi4)− · · · .

All pairs (a sum of two signed Fibonacci numbers) and the possible last
term are negative. Hence n ≤ Fℓ.

Observation 3.2. n ≥ Fℓ − Fℓ−2 + 1 = Fℓ−1 + 1.

The cases ℓ = 2, 3, 4 easy, since n = Fℓ is the only choice. If t = 1, the
estimate is correct. If t = 2 (n = Fℓ − Fi1), then ℓ ≫ i1 and the bound is
true. If t ≥ 3, i.e. we have at least three terms then we can pair the terms
after:

n = Fℓ − Fi1 + (Fi2 − Fi3) + (Fi4 − Fi5) + · · · .
All pairs and the possible last term are positive. Hence n > Fℓ − Fi1 ≥
Fℓ − Fℓ−2.
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N+ is the disjoint union of all intervals of the form (Fℓ−1, Fℓ], i.e. n ∈
(Fℓ−1, Fℓ] and we have that ℓ is unique. The two observations give us that
if n can be written as required, then the first term of the representation
can be determined.

Lemma 3.3. Each natural number n has an alternating representation.

Proof. We use induction on n. For n = 0, 1, 2, 3 the claim can be checked.
Assume that n ∈ [Fℓ−1 + 1, Fℓ] (ℓ ≥ 5). Consider Fℓ − n. We know that
0 ≤ Fℓ − n ≤ Fℓ − (Fℓ−1 + 1) = Fℓ−2 − 1. We distinguish two cases.

Case 1: 0 ≤ Fℓ − n ≤ Fℓ−3. Then by the induction hypothesis, we know
that the representation of Fℓ−n exists and its first term is Fk, where
k is at most ℓ−3. Rearranging the equality we obtain a representation
of n.

Case 2: Fℓ−3 +1 ≤ Fℓ −n ≤ Fℓ−2 − 1. Again by the induction hypothesis
we know that the representation of Fℓ − n exists and its first term
must be Fℓ−2. Furthermore, we also know that the number of terms
is at least two. The end of the proof of existence is as above.

Lemma 3.4. For each natural number n the alternating representation is
unique.

Proof. We use induction on n. For small values the claim is obvious. 0
can be represented as of the empty sum and that is the only way to do
(Observation 3.2). For the induction step assume that n ∈ [Fℓ−1+1, Fℓ]. We
prove by contradiction. Assume that we have two different representations.
Since the first term of both representations are Fℓ, we have

n = Fℓ − Fi1 + Fi2 − Fi3 + · · ·+ (−1)t−1Fit−1

= Fℓ − Fj1 + Fj2 − Fj3 + · · ·+ (−1)s−1Fjs−1 ,

Fℓ − n = Fi1 − Fi2 + Fi3 − · · ·+ (−1)t−2Fit−1

= Fj1 − Fj2 + Fj3 − · · ·+ (−1)s−2Fjs−1 .

We obtained two different representations of Fℓ−n that is a natural number
smaller than n: Fℓ − n ≤ Fℓ − (Fℓ−1 + 1) ≤ Fℓ−2 − 1 < n. That is a
contradiction with the induction hypothesis.

Lemma 3.3 and Lemma 3.4 imply Theorem 1.1.
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An algorithm for finding the representation of n can be easily deduced from
the proof: If n = 0, the representation is the empty sum. The first term Fℓ

can be determined from Observation 3.1 and 3.2. Then apply the algorithm
recursively for Fℓ − n. Take this representation and then subtract (flip the
1’s and −1’s) in the representation of and add the representations digit wise
to Fℓ.

Theorem 1.1 (existence and uniqueness) leads to a new numeration system,
where the positions correspond to Fibonacci numbers and the digits are
1̄ ≡ −1, 0 and 1. We use the subscript Alt to denote that we use this
representation of numbers. We finish the section with examples

1 = 1Alt 2 = 10Alt 3 = 100Alt 4 = 1001̄Alt

5 = 1000Alt 6 = 1001̄0Alt 7 = 10001̄Alt 8 = 10000Alt

9 = 101̄001Alt 10 = 1001̄00Alt 11 = 10001̄0Alt.

4 Even representation, proof of Theorem 1.2

Let
n = F2ℓ + ϵi1F2i1 + ϵi2F2i2 + ϵi3F2i3 + · · ·+ ϵt−1F2it−1

, (1)

satisfying ϵij ∈ {−1, 1} and there are no two consecutive −1’s in the se-
quence of ϵ’s.

Observation 4.1. n ≤ F2ℓ + F2ℓ−2 + F2ℓ−4 + · · ·+ F2 = F2ℓ+1 − 1.

We can upper bound n with the sum of all possible positive terms. The
last equality is well-known (see [10], Corollary 5.1, page 83).

Observation 4.2. n ≥ F2ℓ − F2ℓ−2 = F2ℓ−1.

Pair each negative term with the previous one (a necessarily positive term).
We put each difference into one bracket, and consider the brackets as one
term of a sum. With this view, the first term in the representation of n
is at least F2ℓ − F2ℓ−2, the further terms are positive. The observation is
proven.

N+ is the disjoint union of all intervals of the form [F2ℓ−1, F2ℓ+1), i.e. n ∈
[F2ℓ−1, F2ℓ+1) and we have that ℓ is unique, i.e. if n can be written as
required, then ℓ can be determined.
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Existence: We use induction on n. For n = 0, 1, 2, 3 the claim is obvious.
Assume that n ∈ [F2ℓ−1, F2ℓ+1 − 1] (ℓ ≥ 2). We distinguish two cases for
proving the induction step.

Case 1: n ∈ [F2ℓ, F2ℓ+1 − 1]. Write n as F2ℓ + n′. Note that 0 ≤ n′ ≤
F2ℓ−1−1(< n). Hence by induction n′ has a representation that starts
with F2i, where n′ ∈ [F2i−1, F2i+1). We know that n′ ≤ F2ℓ−1 − 1, so
i < ℓ. The representation of n′ give us the representation of n.

Case 2: n ∈ [F2ℓ−1, F2ℓ − 1]. Write n as F2ℓ − F2ℓ−2 + n′. Note that
0 ≤ n′ ≤ F2ℓ−2 − 1(< n). Similar to Case 1 n′ has a representation
that starts with F2i, where i < ℓ:

n′ = F2i + ϵi1F2i1 + ϵi2F2i2 + ϵi3F2i3 + · · ·+ ϵt−1F2it−1 .

Hence

n = F2ℓ − F2ℓ−2 + F2i + ϵi1F2i1 + ϵi2F2i2 + ϵi3F2i3 + · · ·+ ϵt−1F2it−1 .

Either 2i = 2ℓ− 2 or 2i < 2ℓ− 2. We are done in both cases.

The two cases cover all possibilities, hence the proof of existence is complete.

Uniqueness: We use induction on n. For small values the claim is obvious.
For the induction step assume that n ∈ [F2ℓ−1, F2ℓ+1 − 1]. We prove by
contradiction. Again we distinguish two cases:

Case 1: n ∈ [F2ℓ, F2ℓ+1 − 1]. Similar to Lemma 3.4 write n as F2ℓ +
n′. Both representations of n start with F2ℓ and is followed with a
representation of n′. This leads to two different representations of
n′(< n). This contradicts the hypothesis of the induction step.

Case 2: n ∈ [F2ℓ−1, F2ℓ − 1].

n =F2ℓ + ϵi1F2i1 + ϵi2F2i2 + ϵi3F2i3 + · · ·+ ϵt−1F2it−1

=F2ℓ + ϵ′i′1F2i′1 + ϵ′i′2F2i′2 + ϵ′i′3F2i′3 + · · ·+ ϵ′t−1F2i′t−1
.

We can conclude that

n− F2ℓ + F2ℓ−2 =F2ℓ−2 + ϵi1F2i1 + ϵi2F2i2 + · · ·+ ϵt−1F2it−1

=F2ℓ−2 + ϵ′i′1F2i′1 + ϵ′i′2F2i′2 + · · ·+ ϵ′t−1F2i′t−1
.
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We see two different representations of n− F2ℓ + F2ℓ−2(< n), a con-
tradiction.

The two cases cover all possibilities, hence the proof of uniqueness is com-
plete.

This finishes the proof of Theorem 1.2.

The interested reader may formulate a simple, efficient algorithm for de-
termining the even representation of a given n that follows the logic of the
proof.

The Theorem 1.2 (existence and uniqueness) leads to a new numeration
system, where the positions correspond to Fibonacci numbers with even
indices (. . . , 121, 55, 21, 8, 3, 1) and the digits are 1̄ ≡ −1, 0 and 1. We use
the subscript Even when we use this representation of numbers. We finish
the section with examples

1 = 1Even, 2 = 11̄Even, 3 = 10Even, 4 = 11Even,
5 = 11̄0Even, 6 = 11̄1Even, 7 = 101̄Even, 8 = 100Even,
9 = 101Even, 10 = 111̄Even, 11 = 110Even, 12 = 111Even,
13 = 11̄00Even, 14 = 11̄01Even, 15 = 11̄11̄Even, 16 = 11̄10Even.

5 Relations between different Zeckendorf
type numeration systems

In this section, we look at the relationships between different Zeckendorf
type numeration systems. So far we have not assumed knowledge of any
other (the original or Alpert’s one) Zeckendorf type numeration system in
our proofs. However, many readers might be familiar with the Zeckendorf
representation. In this case, the question of finding a representation of a
given number n may arise, starting from the Zeckendorf representation. We
can also think the other way round. We can derive the Zeckendorf numeral
system from one of the introduced new representations.

Perhaps the simplest such idea is the rewriting of even representations.
It was implied in the proof that the even representation of an arbitrary
natural number n can be conceived of as a sum, in which the terms are in
the form of F2i and (F2j−F2k). The second type of terms can subsequently
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be rewritten by the following well-known identity:

F2j − F2k = F2j−1 + F2j−3 + · · ·+ F2k+1,

assuming j > k. After the transformation we obtain a Zeckendorf repre-
sentation of n.

This insight can be reversed. Represent n using the Zeckendorf numeral
system. Extract the Fibonacci numbers with odd indices and divide them
into maximal segments containing consecutive odd indices. These segments
can be summed based on the above identity and replaced by terms of the
form F2i − F2j . We have thus sketched a new proof of the existence of an
even representation based on the knowledge of the Zeckendorf system.

Uniqueness can be discussed similarly.

Note that the Alpert’s and our alternating systems can be relatively easily
rewritten into each other. Consider the Alpert representation of n. If the
signs alternate, we stop. If they don’t alternate, take the first two successive
like-signed terms. We assume that they are both positive

n = · · · − Fs + Fi + Fj ± Ft + · · ·
where s ≥ i+ 3 and i ≥ j + 4. Then, we can rewrite the identity apply the
basic Fibonacci recursion:

n = · · · − Fs + Fi+1 − Fi + Fj ± Ft + · · · .
Similar rewriting is possible when the first two successive like-signed terms
are both negative. We can continue the process for the next pair of suc-
cessive like signs until we are done. We have constructed the alternative
representation of n. This process is reversible. So if the alternate represen-
tation of n is given, we could then create Alpert’s representation.

We have not followed this path. We always reasoned from the ground up,
without reference to other systems. For many people the above rewrit-
ing ideas are more natural than the proofs we presented. Thinking them
through is a productive work. For example, the idea of rewriting the Zeck-
endorf representation to an even representation, and the well-known iden-
tity

F2j+1 − F2k+1 = F2j + F2j−2 + · · ·+ F2k+2,

assuming j > k, lead to the introduction of an odd representation.

Theorem 5.1 (Odd representation). Every natural number n can be writ-
ten uniquely as a sum

n = F2ℓ+1 + ϵi1F2i1+1 + ϵi2F2i2+1 + ϵi3F2i3+1 + · · ·+ ϵt−1F2it−1+1 + ϵ,
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where i0 = ℓ > i1 > i2 > · · · > it−1 ≥ 1,ϵi ∈ {−1, 1}, ϵ ∈ {0,−1} and in
the sequence ϵi0 = 1, ϵi1 , ϵi2 , . . . , ϵit−1 , ϵ there are no two consecutive −1’s.
This sum is called the odd representation of n.

The “rewriting proof” and “decoding the first term and do induction” are
two straightforward ways to prove the theorem. The exact argument is left
to the reader.

In the case of odd representation we can use place-value notation again.
The digits are 1, 0, 1̄, the places are the odd indexed Fibonacci numbers
. . . , F7 = 13, F5 = 5, F3 = 2. In the case of ϵ = 0 we do not need anything
more. In the case of ϵ = −1 we finish the place-value code with “.1̄”. We
use the subscript Odd to denote that we use this representation of numbers.

We finish the section with examples

1 = 1.1̄Odd, 2 = 1Odd, 3 = 11̄Odd, 4 = 10.1̄Odd,
5 = 10Odd, 6 = 11.1̄Odd, 7 = 11Odd, 8 = 11̄0Odd,
9 = 11̄1.1̄Odd, 10 = 11̄1Odd, 11 = 101̄Odd, 12 = 100.1̄Odd,
13 = 100Odd, 14 = 101.1̄Odd., 15 = 101Odd, 16 = 111̄Odd.

6 Conclusion

We have presented three numeral systems based on Fibonacci numbers.
There are not too many of these. They are natural systems but one must
recognize their existence. We hope that these natural and beautiful systems
will stimulate further research. The discussions of algorithmic, probabilis-
tic, and computational issues require new techniques and ideas.
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