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A chessboard problem and irregular

domination

Gary Chartrand and Ping Zhang∗

In memory of Henda Swart

Abstract. A chessboard problem involving chess pieces called princes is
described which leads to a study of a topic called irregular domination of
graphs. A connected graph has an irregular dominating set S if the vertices
of S can be labeled with distinct positive integers in such a way that for
every vertex v of G, there is a vertex u ∈ S such that the distance from v
to u is the label assigned to u. It is shown that for infinite classes of grids
studied, all have irregular dominating sets with small exceptions.

1 Introduction

There is a familiar problem involving the chess piece queen (see [4, 9], for
example). A single move by a queen on a chessboard consists of moving
the queen along any number of vacant squares diagonally, horizontally, or
vertically. This problem is sometimes referred to as

The five queens problem

Can five queens be placed on distinct squares of the standard
8× 8 chessboard in such a way that every vacant square can be
attacked by at least one of these queens?
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It is well known that the answer to this question is yes and that this cannot
be done with four queens. In fact, five queens can be so located on a
chessboard such that either (a) each queen can be attacked by another
queen or (b) no queen can be attacked by another queen.

We now describe another problem involving a chessboard, but this involves
a different kind of chess piece that moves in a different way on a standard
8 × 8 chessboard. We refer to such a chess piece as a prince. For an inte-
ger k with 1 ≤ k ≤ 14, a k-prince is a chess piece that is permitted to move
horizontally and/or vertically a total of exactly k squares (vacant or not)
away from its current position. The k-prince is then said to have covered
or attacked the resulting square to which the k-prince has moved. A 14-
prince can only attack one square and this can occur only if the 14-prince
is located on one of the four corner squares of the chessboard, in which
case the 14-prince attacks only the opposite corner square. A 3-prince, if
properly positioned on a chessboard, can move three squares horizontally or
vertically, as a rook can do, or move two squares horizontally or vertically
followed by one square in a perpendicular direction (equivalently one square
horizontally or vertically followed by two squares in a perpendicular direc-
tion), as a knight can do. Figure 1 shows the twelve squares (marked ⋆)
that a 3-prince 3P can attack if 3P is placed on one of the four most central
squares of the chessboard.

⋆

⋆ ⋆

⋆ ⋆

⋆ 3P ⋆

⋆ ⋆

⋆ ⋆

⋆

Figure 1: Squares attacked by a 3-prince on a standard 8× 8 chessboard

This leads us to another chessboard problem.

The fourteen princes problem

Can the fourteen k-princes (k = 1, 2, 3, . . . , 14) be placed on
fourteen distinct squares of a standard 8× 8 chessboard in such
a way that every square (including each occupied square) can be
attacked by at least one prince?
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The answer to the fourteen princes problem is yes and a solution is shown
in Figure 2 where the location of a k-prince on a square is indicated by
labeling the square by k.

10 14

8

9 5 3 1 4 2 7 6

11

13 12

Figure 2: A solution to the fourteen princes problem

The fourteen princes problem is closely related to the topic of domination
in graphs. In recent decades, domination in graphs has become a popular
area of study. While this area evidently began with the work of Berge [2]
in 1958 and Ore [11] in 1962, domination did not become an active area
of research until 1977 with the appearance of a survey paper by Cockayne
and Hedetniemi [7]. Since then, a number of variations and applications of
domination have surfaced (see [9]). For a vertex v in a nontrivial connected
graph G, let N(v) denote the neighborhood of v and N [v] = {v} ∪ N(v)
the closed neighborhood of v. A vertex v in a graph G is said to dominate
a vertex u if either u = v or uv ∈ E(G). That is, a vertex v dominates
the vertices in its closed neighborhood N [v]. A set S of vertices in G is
a dominating set of G if every vertex of G is dominated by at least one
vertex in S. The minimum number of vertices in a dominating set of G is
the domination number γ(G) of G.

Of the many variations of domination that have been introduced, probably
the most common and most studied is total domination, introduced by
Cockayne, Dawes, and Hedetniemi [6]. In total domination, a vertex u
(totally) dominates a vertex v in a graph G if uv is an edge of G and so
a vertex does not dominate itself. It is this type of domination that we
use here, that is, in this paper, domination is total domination. A set S
of vertices in a graph G is a total dominating set of G if for every vertex v
of G, there is a vertex u ∈ S such that u dominates v. The minimum
cardinality of a total dominating set of G is the total domination number
γt(G) of G. A graph G has a total dominating set if and only if G has no
isolated vertices. The book by Henning and Yeo [10] deals exclusively with
total domination in graphs.
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Total domination, as well as other types of domination, can be described
with the aid of distance in graphs. We denote the distance (the length of a
shortest path) between two vertices u and v in a graph G by d(u, v). The
greatest distance from a vertex v to a vertex of G is its eccentricity, denoted
by e(v). The minimum eccentricity among the vertices of G is the radius
rad(G) of G and the maximum eccentricity is the diameter diam(G). There-
fore, the diameter of G is the maximum distance between any two vertices
of G. In total domination, a vertex u dominates a vertex v if d(u, v) = 1.
For a total dominating set S in a nontrivial connected graph G, one can
think of assigning each vertex of S the label 1 and assigning no label to the
vertices of G not in S. Thus, if u ∈ S, then u is labeled 1, indicating that u
dominates all vertices of G whose distance from u is 1. Thus, every vertex
of G has distance 1 from at least one vertex of S.

In [8], a generalization of (total) domination was introduced called orbital
domination. For a positive integer r and a vertex v in a connected graph G,
the r-orbit Or(v) of v is Or(v) = {u ∈ V (G) : d(u, v) = r}. A set S =
{u1, u2, . . . , uk} of vertices in a nontrivial connected graph G is an orbital
dominating set of G if each vertex ui ∈ S can be labeled with a positive
integer ri, where ri ≤ e(ui), such that

⋃k
i=1 Ori(ui) = V (G). Thus, if S is

an orbital dominating set of G, then for every vertex v of G, there exists
a vertex ui in S such that d(ui, v) = ri. Here, ui is said to dominate v.
The minimum cardinality of an orbital dominating set is called the orbital
domination number of G. This concept has been studied further in [5].

If all labels of an orbital dominating set S are the same positive integer r,
then S is an r-regular orbital dominating set. It was shown in [8] that a
nontrivial connected graph G has an r-regular orbital dominating set if and
only if 1 ≤ r ≤ rad(G). If r = 1, then S is a total dominating set.

In the book [1] various “regularity” concepts are discussed, describing how
this can lead to concepts that are in a sense opposite to these, resulting in
“irregularity” concepts. In terms of domination, if no two vertices of an
orbital dominating set S have the same label, then S is an irregular orbital
dominating set or, more simply, an irregular dominating set. Consequently,
a connected graph G has an irregular dominating set if it is possible to
assign distinct labels (positive integers) to some vertices of G in such a way
that for every vertex v of G, there is a labeled vertex u such that d(u, v) is
the label assigned to u. Such a labeling is called an irregular dominating
labeling and u is said to dominate v. While every nontrivial connected
graph has an orbital dominating set (indeed, a total dominating set), not
every graph has an irregular dominating set.
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Proposition 1.1. No connected vertex-transitive graph has an irregular
dominating set.

Proof. Let G be a connected vertex-transitive graph of order n and diam-
eter d and let x ∈ V (G). For 1 ≤ k ≤ d, let |Ok(x)| = nk. Because⋃d

k=1 Ok(x) = V (G − x), it follows that
∑d

k=1 nk = n − 1. Since G is
vertex-transitive, |Ok(u)| = |Ok(v)| = nk for every two vertices u and v
of G and every integer k with 1 ≤ k ≤ d. Hence, any vertex of G labeled k
dominates exactly nk vertices of G. Since

∑d
k=1 nk = n − 1, at least one

vertex of G is not dominated by any labeled vertex of G.

2 Irregular domination in grids

The fourteen princes problem can therefore be looked at as a problem in
graph theory. A standard 8× 8 chessboard can be represented by a graph
whose 64 vertices are the squares of the chessboard and where two vertices
are adjacent if the corresponding squares have a side in common. The
resulting graph is the Cartesian product P8 □ P8 of the path P8 of order 8
with itself. The fourteen Princes problem then becomes

Is there an irregular dominating labeling of the graph G = P8 □ P8?

The solution to the fourteen princes problem given in Figure 2 is the irreg-
ular dominating labeling of G = P8 □ P8 shown in Figure 3.

The graphs of the type Pm □ Pn are called m× n grids. This brings up a
question:

For which pairs m,n of positive integers, is there an irregular
dominating labeling of Pm □ Pn (in addition to m = n = 8)?
That is, for which pairs m,n of positive integers, is there a solu-
tion to the m+n−2 princes problem on the m×n chessboard?

In [3], it was shown that every path Pn has an irregular dominating labeling
for all n ≥ 4 except n = 6. By Proposition 1.1, there is no an irregular
dominating labeling of P2 □ P2. For n = 3, 5, 6, 7, the grid Pn □ P2 has
an irregular dominating labeling, as shown in Figure 4. However, the grid
P4 □ P2 does not possess such a labeling.
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Figure 3: A labeling of P8 □ P8
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Figure 4: Irregular dominating labelings of Pn □ P2 for n = 3, 5, 6, 7

Proposition 2.1. The grid P4 □ P2 has no irregular dominating labeling.

Proof. Let G = P4 □ P2 be the graph consisting of two disjoint paths
(x1, x2, x3, x4) and (y1, y2, y3, y4) together with the edges xiyi for 1 ≤ i ≤ 4.
The graph G is a bipartite graph of diameter 4 with partite sets U =
{x1, x3, y2, y4} and W = {x2, x4, y1, y3}. Assume, to the contrary, that
there exists an irregular dominating labeling of G in which four (or fewer)
vertices of G are assigned labels from the set [4] = {1, 2, 3, 4}. Observe that
any vertex of G assigned an even-numbered label dominates only vertices
in the partite set to which it belongs, while any vertex of G assigned an
odd-numbered label dominates only vertices in the partite set to which it
does not belong.
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Since the four vertices of any partite set cannot be dominated by a single
vertex, it follows that the four vertices in each partite set must be dominated
by exactly two labeled vertices. In particular, some vertex of G must be
labeled 4; in fact, some vertex of degree 2 in G must be labeled 4. We may
assume that x1 is labeled 4. Hence x1 dominates y4 only. Necessarily, the
remaining three vertices x1, x3 and y2 of U must be dominated by a single
vertex. The only possibility for this is to have x2 labeled 1. Therefore, the
vertices of U are dominated by x1 and x2. Consequently, each of the four
vertices of W must be dominated by a vertex w labeled 2 or a vertex u
labeled 3. Necessarily, w ∈ W and u ∈ U . Since only u can dominate w, it
follows that d(u,w) = 3. If w = x4 or w = y1, then w does not dominate
either x4 or y1 and no vertex labeled 3 can dominate both x4 and y1.
Therefore, w ̸= x4 and w ̸= y1. Since x2 ∈ W has already been labeled 1, it
follows that w = y3. Since the only vertex at distance 3 from y3 in G is x1

and x1 is already labeled, it is impossible that u = x1. This implies that
w = y3 is not dominated by any labeled vertex, which is a contradiction.

In order to describe additional grids having an irregular dominating label-
ing, we first verify the following lemma.

Lemma 2.2. For each integer n ≥ 8, there is an irregular dominating
labeling of Pn = (u1, u2, . . . , un) such that

(1) at least one end-vertex of Pn is not labeled and there is at least one
element in [n− 1] that is not used as a label and

(2) for 2 ≤ i ≤ n−1, either ui−1 is dominated by a vertex uk where k ≥ i
or ui+1 is dominated by a vertex uj where j ≤ i.

Proof. We proceed by induction. An irregular dominating labeling of P8

with the desired property is shown in Figure 5 and so the statement is true
for n = 8.

65 3 1 4 2

Figure 5: An irregular dominating labeling of P8

Assume that this statement is true for some path Pn of order n ≥ 8.
We show that this statement is true for the path Pn+1. Let Pn+1 =
(u1, u2, . . . , un, un+1). Then Pn+1 − un+1 = (u1, u2, . . . , un) ∼= Pn. By
the induction hypothesis, there is an irregular dominating labeling f ′ of Pn

using elements from the set [n− 1] such that

chessboard problem and irregular domination

49



(i) at least one end-vertex of Pn is not labeled and there is t ∈ [n − 1]
that is not used as a label by f ′ and

(ii) for 2 ≤ i ≤ n−1, either ui−1 is dominated by a vertex uk where k ≥ i
or ui+1 is dominated by a vertex uj where j ≤ i.

We may assume that say u1 is not labeled by f ′. We now extend the
labeling f ′ of the path Pn to a labeling f of Pn+1 by assigning the label n
to u1. We show that f is an irregular dominating labeling of Pn+1. Let
L′ be the set of all vertices of Pn labeled by f ′. Then L = L′ ∪ {u1} is
the set of all vertices of Pn+1 labeled by f . If v = ui for some integer i
with 1 ≤ i ≤ n, then v is dominated by a vertex in L′. If v = un+1, then
d(v, u1) = n and f(u1) = n and so v is dominated by u1 ∈ L.

It remains to show that f has the desired properties. First, the end-
vertex un+1 of Pn+1 is not labeled by f . By (i), there is an element t ∈ [n−1]
that is not used by f ′. Since L = L′ ∪{u1} and f(u1) = n, it follows that t
is also not used by f . It remains to show that for 2 ≤ i ≤ n, either ui−1 is
dominated by a vertex uk where k ≥ i or ui+1 is dominated by a vertex uj

where j ≤ i.

⋆ If 2 ≤ i ≤ n− 1, then it follows by (ii) that either ui−1 is dominated
by a vertex uk where k ≥ i or ui+1 is dominated by a vertex uj where
j ≤ i.

⋆ If i = n, then un+1 is dominated by u1.

Consequently, the irregular dominating labeling f of Pn+1 has the desired
properties.

We are now in a position to describe all those grids Pn □ P2, n ≥ 3, having
an irregular dominating labeling.

Theorem 2.3. For each integer n ≥ 3, the grid Pn □ P2 has an irregular
dominating labeling except when n = 4.

Proof. Since the grid Pn □ P2 has an irregular dominating labeling for
n = 3, 5, 6, 7, we may assume that n ≥ 8. Let G = Pn □ P2 where
P = (u1, u2, . . . , un) and Q = (v1, v2, . . . , vn) are two copies of Pn in G and
uivi ∈ E(G) for i = 1, 2, . . . , n. Let f0 be an irregular dominating labeling
of P = (u1, u2, . . . , un) with the properties described in Lemma 2.2 and
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let U0 be the set of labeled vertices of P . We may assume that u1 is not
labeled by f0. Let t ∈ [n− 1] such that t is not used by f0. We now define
a labeling f : U0 ∪ {u1, vt+1} → [n] of G by

f(ui) = f0(ui), where ui ∈ U0

f(u1) = n

f(vt+1) = t.

Next, we show that every vertex of G is dominated by a vertex labeled
by f . Since f0 is an irregular dominating labeling of P , each vertex of P is
dominated by a vertex labeled by f0 (and so by f). Since (1) d(vn, u1) = n
and f(u1) = n and (2) d(v1, vt+1) = t and f(vt+1) = t, it follows that vn is
dominated by u1 and v1 is dominated by vt+1. It remains to show for 2 ≤
i ≤ n−1 that the vertex vi is dominated by a labeled vertex. By Lemma 2.2,
either ui−1 is dominated by a vertex uk where k ≥ i or ui+1 is dominated
by a vertex uj where j ≤ i. First, suppose that ui−1 is dominated by
a vertex uk where k ≥ i. Since d(ui−1, uk) = d(vi, uk), it follows that
vi is also dominated by uk. Next, suppose that ui+1 is dominated by a
vertex uj where j ≤ i. Since d(ui+1, uj) = d(vi, uj), it follows that vi is
also dominated by uj . Hence, every vertex of G is dominated by a vertex
labeled by f . Hence, f is an irregular dominating labeling of G.

The irregular dominating labeling of Pn □ P2 described in the proof of
Theorem 2.3 gives rise to an irregular dominating labeling of Pn □ P3.

Theorem 2.4. For each integer n ≥ 3, the grid Pn □ P3 has an irregular
dominating labeling.

Proof. For 3 ≤ n ≤ 6, an irregular dominating labeling of Pn □ P3 is shown
in Figure 6. Thus, we may assume that n ≥ 7.

Let G = Pn □ P3 where Qi = (ui,1, ui,2, . . . , ui,n) is a copy of Pn in G
for 1 ≤ i ≤ 3 and ui,jui+1,j ∈ E(G) for i = 1, 2 and 1 ≤ j ≤ n. Then
H = G − V (Q1) ∼= Pn □ P2. Let f0 be the irregular dominating labeling
of H described in the proof of Theorem 2.3 such that (i) u2,1 is not labeled
and (ii) f0(u3,t+1) = t ∈ [n− 1]. Let L0 be the set of labeled vertices of H.
We now define a labeling f : L0∪{u2,1, u3,n} → [n+1] of G by f(u) = f0(u)
if u ∈ L0, f(u2,1) = n, and f(u3,n) = n+ 1. Observe that

(1) f(u2,1) = n and so u2,1 dominates u1,n and u3,n,

(2) f(u3,n) = n+ 1 and so u3,n dominates u1,1, and
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Figure 6: Irregular dominating labelings of Pn □ P3 for 3 ≤ n ≤ 6

(3) f(u3,t+1) = t and so u3,t+1 dominates u3,1.

Thus, the corner vertices of G are dominated by labeled vertices of G.
Then, by symmetry, an argument similar to the one used in the proof of
Theorem 2.3 shows that f is an irregular dominating labeling of G.

Next, we show for n ≥ 3 that the grids Pn □ P4 and Pn □ P5 have an
irregular dominating labeling. It can be shown that every irregular domi-
nating labeling of P9 must use at least six elements in [8] and so at most
two elements in [8] are not used as labels. On the other hand, the irregular
dominating labeling of P10 shown in Figure 7 uses six labels in [9] and so
three elements in [9] are not used as labels. In fact, an argument similar to
the proof of Lemma 2.2 provides the following lemma.

75 3 1 4 2

Figure 7: An irregular dominating labeling of P10

Lemma 2.5. For each integer n ≥ 10, there is an irregular dominating
labeling of Pn = (u1, u2, . . . , un) such that

(1) at least one end-vertex of Pn is not labeled and there are at least three
elements in [n− 1] that are not used as labels and

(2) for 2 ≤ i ≤ n−1, either ui−1 is dominated by a vertex uk where k ≥ i
or ui+1 is dominated by a vertex uj where j ≤ i.
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We are now prepared to present the following.

Theorem 2.6. For each integer n ≥ 3, the grids Pn □ P4 and Pn □ P5

have an irregular dominating labeling.

Proof. For 3 ≤ n ≤ 8, the result is true by Theorems 2.3 and 2.4. Figure 8
shows an irregular dominating labeling f of P9 □ P5. Since each label
belongs to [11] and no vertices in the first row (and the last row) of P9 □ P5

are labeled by f , it follows that f gives rise to an irregular dominating
labeling of P9 □ P4 by deleting the first row from P9 □ P5.

9

1 210

11

5 7 4 3 6 8

Figure 8: An irregular dominating labeling of P9 □ P5

Thus, we may assume that n ≥ 10. We first show that Pn □ P5 has an irreg-
ular dominating labeling. Let G = Pn □ P5 where Qi = (ui,1, ui,2, . . . , ui,n)
is a copy of Pn in G for 1 ≤ i ≤ 5 and ui,jui+1,j ∈ E(G) for 1 ≤ i ≤ 4 and
1 ≤ j ≤ n. Then diam(G) = n+3. We begin with Q3

∼= Pn. By Lemma 2.5,
there is an irregular dominating labeling f0 of Q3 that satisfies condi-
tions (1) and (2) as described in Lemma 2.5. Let U0 is the set of labeled ver-
tices ofQ3. We may assume that u3,1 is not labeled by f0. Let a, b, c ∈ [n−1]
that are not used by f0 such that a < b < c. Thus, a ≤ n−3. We now define
a labeling f : U0 ∪ {u3,1, u2,a+1, u4,b+1, u5,n−c, u2,n−1, u4,1, u5,n} → [n + 3]
of G by

f(u) = f0(u), if u ∈ U0, f(u3,1) = n,

f(u2,a+1) = a, f(u4,b+1) = b, f(u5,n−c) = c,

f(u2,n−1) = n+ 1, f(u4,1) = n+ 2, f(u5,n) = n+ 3.

Next, we show that every vertex of G is dominated by a vertex labeled
by f . Since f0 is an irregular dominating labeling of Q3, each vertex of Q3

is dominated by a vertex labeled by f0 (and so by f). Let

U = {u1,1, u1,2, u1,n−1, u1,n, u2,1, u2,n, u4,1, u4,n, u5,1, u5,2, u5,n−1, u5,n}.
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Then every vertex of U is dominated by a vertex labeled by f by observing
that

⋆ f(u3,1) = n and so u3,1 dominates u1,n−1, u2,n, u4,n, and u5,n−1,

⋆ f(u2,n−1) = n+ 1 and so u2,n−1 dominates u5,1,

⋆ f(u4,1) = n+ 2 and so u4,1 dominates u1,n,

⋆ f(u5,n) = n+ 3 and so u5,n dominates u1,1,

⋆ f(u2,a+1) = a and so u2,a+1 dominates u1,2 and u2,1,

⋆ f(u4,b+1) = b and so u4,b+1 dominates u5,2 and u4,1, and

⋆ f(u5,n−c) = c and so u5,n−c dominates u5,n.

Finally, it remains to show that every vertex u ∈ V (G) − (V (Q3) ∪ U) is
dominated by a labeled vertex. In fact, we show that every such vertex is
dominated by a labeled vertex in Q3. By symmetry, we may assume that
either u = u2,i where 2 ≤ i ≤ n − 1 or u = u1,i where 3 ≤ i ≤ n − 2. We
consider these two cases.

Case 1. u = u2,i, where 2 ≤ i ≤ n− 1.

By Lemma 2.5, either u3,i−1 is dominated by a vertex u3,k, where
k ≥ i or u3,i+1 is dominated by a vertex u3,j , where j ≤ i. First,
suppose that u3,i−1 is dominated by a vertex u3,k, where k ≥ i. Since
d(u3,i−1, u3,k) = d(u2,i, u3,k), it follows that u2,i is also dominated
by u3,k. Next, suppose that u3,i+1 is dominated by a vertex u3,j ,
where j ≤ i. Since d(u3,i+1, u3,j) = d(u2,i, u3,j), it follows that u2,i is
also dominated by u3,j .

Case 2. u = u1,i, where 3 ≤ i ≤ n− 2.

Then 2 ≤ i − 1 ≤ n − 3. By Lemma 2.5, either u3,i−2 is dominated
by a vertex u3,k, where k ≥ i − 1 or u3,i+2 is dominated by a ver-
tex u3,j , where j ≤ i+ 1. First, suppose that u3,i−2 is dominated by
a vertex u3,k, where k ≥ i− 1. Since d(u3,i−2, u3,k) = d(u1,i, u3,k), it
follows that u1,i is also dominated by u3,k. Next, suppose that u3,i+2

is dominated by a vertex u3,j , where j ≤ i+1. Since d(u3,i+2, u3,j) =
d(u1,i, u3,j), it follows that u1,i is also dominated by u3,j .

Therefore, f is an irregular dominating labeling of G ∼= Pn □ P5.
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We now consider Pn □ P4. Let f be the irregular dominating labeling
of G = Pn □ P5, as described above. Let U be the set of labeled vertices
of G. Observe that (1) no vertices of Q1 in G are labeled by f and (2) the
vertex labeled n+ 3, namely u5,n, dominates only u1,1. Let

F = G− V (Q1) ∼= Pn □ P4.

Then the labeling f gives rise to an irregular dominating labeling

g : V (F ) → [n+ 2]

of F defined by g(u) = f(u) for each u ∈ U −{u5,n} with all other vertices
unlabeled.

We are now in a position to determine all subgrids Pm □ Pn of the 8 × 8
grids that possess an irregular dominating labeling with 2 ≤ n ≤ m ≤ 8.

Proposition 2.7. For integers m and n with 2 ≤ n ≤ m ≤ 8, the m× n
grid Pm □ Pn has an irregular dominating labeling except when (m,n) ∈
{(2, 2), (4, 2)}.

Proof. By Theorems 2.3, 2.4, and 2.6, we may assume that n ≥ 6. Figure 9
shows an irregular dominating labeling of P6 □ P6. Thus, we may assume
that m ∈ {7, 8} and n ∈ {6, 7}.

8

10

6 3

2

4 1 5

79

Figure 9: Irregular dominating labelings of P6 □ P6

First, suppose that m = 7. Let Gn = P7 □ Pn, where

Qi = (ui,1, ui,2, . . . , ui,7)

is a copy of P7 in Gn for 1 ≤ i ≤ n and ui,jui+1,j ∈ E(G) for 1 ≤ i ≤ n− 1
and 1 ≤ j ≤ 7.
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⋆ For n = 6, an irregular dominating labeling f6 of G6 can be defined
by f6(u3,1) = 6, f6(u3,3) = 2, f6(u3,4) = 4, f6(u3,5) = 1, f6(u3,6) = 3,
f6(u3,7) = 5, f6(u4,7) = 7, f6(u1,4) = 8, and f6(u5,6) = 9 with all
other vertices of G6 not labeled.

⋆ For n = 7, an irregular dominating labeling f7 of G7 can be defined
by f7(u4,1) = 6, f7(u4,3) = 2, f7(u4,4) = 4, f7(u4,5) = 1, f7(u4,6) = 3,
f7(u4,7) = 5, f7(u5,7) = 7, f7(u2,4) = 8, f7(u7,4) = 9, and f7(u6,7) =
10 with all other vertices of G7 not labeled.

Next, suppose that m = 8. Let Hn = P8 □ Pn, where

Ti = (ui,1, ui,2, . . . , ui,8)

is a copy of P8 in Hn for 1 ≤ i ≤ n and ui,jui+1,j ∈ E(G) for 1 ≤ i ≤ n− 1
and 1 ≤ j ≤ 8.

⋆ For n = 6, an irregular dominating labeling h6 ofH6 can be defined by
h6(u1,7) = 11, h6(u2,8) = 8, h6(u4,1) = 9, h6(u4,2) = 5, h6(u4,3) = 3,
h6(u4,4) = 1, h6(u4,5) = 4, h6(u4,6) = 2, h6(u4,8) = 6, h6(u6,3) = 10,
and h6(u6,4) = 7 with all other vertices of H6 not labeled.

⋆ For n = 7, an irregular dominating labeling h7 ofH7 can be defined by
h7(u1,8) = 13, h7(u3,8) = 8, h7(u5,1) = 9, h7(u5,2) = 5, h7(u5,3) = 3,
h7(u5,4) = 1, h7(u5,5) = 4, h7(u5,6) = 2, h7(u5,7) = 7, h7(u5,8) = 6,
h7(u6,1) = 11, h7(u6,8) = 10, and h7(u7,2) = 12 with all other vertices
of H7 not labeled.

Consequently, there is a solution to the (m+n− 2) princes problem on the
m × n chessboard for 2 ≤ n ≤ m ≤ 8 except when (m,n) ∈ {(2, 2), (4, 2)}
by Propositions 1.1, 2.1 and 2.7.

3 Concluding remarks

Another well-known chessboard problem deals with the chess piece knight.

The knight’s tour problem Can a knight make a round trip
on an 8× 8 chessboard visiting each square exactly once?
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Such a round trip is called a knight’s tour. The answer to this problem is
yes and both the problem and answer have been known for centuries. A
discussion of this problem is given in [12]. Because of the knight’s tour
problem and its known solution, it follows that for the graph G = P8 □ P8,
there exists a cycle C = (v1, v2, . . . , v64, v65 = v1), visiting every vertex of G
exactly once such that every edge vivi+1 (1 ≤ i ≤ 64) of C corresponds to
a move of a knight on the square vi to the square vi+1. Necessarily, the
distance d(vi, vi+1) = 3 between vi and vi+1 for each i = 1, 2, . . . , 64 on the
graph G. Since a 3-prince on a vertex x of a graph can only dominate a
vertex y if d(x, y) = 3, it follows that there exists a 3-Prince’s tour on the
8×8 chessboard as well. Indeed, a tour by a 3-prince is less restrictive since
an edge vivi+1 in a resulting cycle C made by a 3-prince allows vi and vi+1

to be in the same row or column, which is not permitted by a knight in a
knight’s tour. This, however, brings up the following question.

Problem 3.1. For which integers k with 1 ≤ k ≤ 14, does there exist a
k-prince’s tour on an 8× 8 chessboard?

If there is a k-prince’s tour on an 8× 8 chessboard, then for the graph G =
P8 □ P8, there is a cycle C = (v1, v2, . . . , v64, v65 = v1) where d(vi, vi+1) = k
for each i = 1, 2, . . . , 64. We have already seen that such a tour exists if
k = 3 and clearly such a tour exists for k = 1. No such tour exists if k is even
since G is a bipartite graph and every two vertices vi and vi+1 for which
d(vi, vi+1) = k must belong to the same partite set of G. Furthermore, since
the radius of G is 8, no k-prince’s tour is possible for k ≥ 9. Consequently,
we are left with only two questions. Does there exist a 5-prince’s tour and
a 7-prince’s tour on an 8× 8 chessboard? In the case of a 5-prince’s tour,
the answer is yes. Such a tour is given in Figure 10. Whether there exists
a 7-prince’s tour is not known to us.

21 6 29 10 55 36 59 44

14 25 16 31 34 49 40 51

9 18 3 22 43 62 47 56

28 1 20 7 58 45 64 37

5 32 13 26 39 52 33 60

24 15 30 11 54 35 50 41

19 8 17 2 63 48 57 46

12 27 4 23 42 61 38 53

Figure 10: A 5-prince’s tour on an 8× 8 chessboard
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In conclusion, let us return to the fourteen princes problem. The solution
given in Figure 2 has the characteristic that if any prince is removed from
the chessboard, then not all squares are attacked. This suggests other
problems.

Problem 3.2. Can the 64 squares of an 8×8 chessboard be attacked without
using all 14 princes? If so, which prince (or princes) can be avoided?

Problem 3.3. What is the minimum number of distinct princes that can
be placed on an 8 × 8 chessboard so that all squares of a chessboard are
attacked?

In addition to the solutions of the (m + n − 2) princes problems given in
Theorems 2.3, 2.4, 2.6, and Proposition 2.7, there are solutions to many
other (m+n−2) princes problems. This suggests the following conjecture.

Conjecture 3.4. All (m+n−2) princes problems on an m×n chessboard
for m ≥ n ≥ 2 have a solution except when (m,n) ∈ {(2, 2), (4, 2)}.
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