@,BULLETIN OF THE ICA
“Volume 102 (2024), 93-115

Optimal ordered covering arrays via an exact
algorithm

IRENE HiEss, LubDwiG KAMPEL* AND DIMITRIS E. SIMOS

Abstract. Ordered covering arrays (orCAs) are combinatorial objects that
recently raised interest as they can be used for the generation of covering
codes in Niederreiter-Rosenbloom-Tsfasman (NRT) spaces. We present an
exact algorithm for the generation of orCAs and use this algorithm to de-
termine sizes of some optimal orCAs. With the calculated orCAs and a
theorem from Castoldi et al., J. Combin. Des., 2023, we can phrase in-
equalities giving upper bounds on the size of covering codes in NRT spaces.
We discuss these in the context of bounds that can be derived based on
results existing in the literature.

1 Introduction

Orthogonal arrays (OAs) are central combinatorial objects that have been
much studied due to their applications and versatile connections with other
combinatorial designs, see for example [10] for a thorough overview of OAs
and [7] for their connections. An OA can be described as an array with the
property that all combinations of ¢ values, i.e., all t-tuples, occur ezactly A
times in every selection of ¢ columns, for parameters A and t. A general-
ization of OAs are so called ordered orthogonal arrays (OOAs), which have
been proposed independently in [17] and [20]. OOAs generalize OAs by
weakening their defining property: instead of considering every selection of
t columns, for OOAs this defining property only has to hold on some se-
lections of ¢ columns, i.e., column selections fulfilling a certain property—
formally defined later in this paper. Covering arrays (CAs) are another
generalization of OAs, where a different part of the defining property of

*Corresponding author: lkampel@sba-research.org
Key words and phrases: covering arrays, covering codes, SAT solving
AMS (MOS) Subject Classifications: 05B15, 05B40, 68W30

Received: 14 March 2023 93
Accepted: 29 March 2023

Hiess, KAMPEL AND SIMOS

OAs is weakened: instead of requiring that all ¢-tuples occur exactly A
times in every selection of ¢ columns, it is sufficient if they occur at least
A times in every such column selection. CAs have been subject to many
studies due to their applications, most prominently in software testing [16],
where they serve as a basis for interaction testing. Their aspects with re-
gards to combinatorial designs have also been the focus of several works,
see for example [6] for a survey. The focus of this work lies on ordered cov-
ering arrays (orCAs), which can be understood a generalization of all three
structures, OAs, OOAs and CAs, since they combine the generalizations of
OOAs and CAs: in an orCA, every t-tuple has to occur at least A times on
some selections of ¢ columns, where the considered column selections are
the same as for OOAs. In [15], orCAs have been first considered, where sev-
eral constructions were investigated and their application to quasi-Monte
Carlo numerical integration was discussed. In [3] and [4] orCAs have been
further explored and applied to generate covering codes in Niederreiter-
Rosenbloom-Tsfasman (NRT) spaces. Using bounds on orCA sizes it was
possible to derive new bounds on the size of such covering codes. Addi-

tionally, constructions for orCAs are given, as well as bounds on the size of
orCAs.

In this work, we perform computational enumeration to address the prob-
lem of determining the optimal size of an orCA. With an exact algorithm we
are able to find minimal orCAs for several instances. From these, we derive
some bounds on covering codes in NRT spaces using a known construction.
These bounds are discussed briefly and put into context to existing ones.
This paper is organized as follows: Section 2 presents some preliminaries
and in Section 3 related work is discussed. In Section 4 our exact algorithm
is described, which is used to compute sizes of optimal orCAs presented in
Section 5. There we also give the derived bounds for covering codes in NRT
spaces. Section 6 summarizes this paper and outlines directions of future
work.

2 Preliminaries

Below we review preliminaries of orCAs and related notions, necessary in
the following.

CAs are a well-known combinatorial structure that is closely related to
orCAs. We define CAs analogously to [7]:

94

OPTIMAL ORDERED COVERING ARRAYS VIA AN EXACT ALGORITHM

Definition 2.1. For positive integers A, ¢, k£ and v, where 2 < t < k,
a covering array CAx(N;t, k,v) is an N X k array with entries from an
alphabet of size v, such that in every set of ¢ columns, every t-tuple over
the alphabet occurs at least A\ times as a row. The parameter t is called
the strength of the CA. When A = 1, the subscript can be omitted from the
notation.

The defining condition of CAs can also be expressed using the notion of
t-way interactions.

Definition 2.2. A t-way interaction for a CAx(N;t, k,v) is a selection of ¢
columns, together with ¢ values of the alphabet underlying the considered
CA. A t-way interaction 7 is formally written as 7 = {(p1,v1), ..., (pt, 1)}
where for all 1 <1 <t the p; are pairwise different column indices and the
v; raise from the underlying alphabet.

We say that a t-way interaction is covered by a CA A if A has a row
(r1,...,m%) with r,, = v; for 1 < ¢ < ¢. This also motivates the name
covering array, as a CA(N;t, k,v) covers all t-way interactions. A covering
array is called optimal if its number of rows is minimal when the remain-
ing parameters are fixed. The covering array number (CAN) denotes the
optimal size of a CA.

Definition 2.3. The covering array number CAN(t, k,v) is the minimum
integer N for which a CA(N;t,k,v) exists.

Variable strength covering arrays (VCAs) are a generalization of CAs,
where tuples on a specified set of column selections need to be covered,
where the size of the column selections can be varied [23]. Ordered covering
arrays can be understood as a special case of VCAs, where only a specific
set of column selections can be considered. They are defined in [4] using the
notion of Niederreiter-Rosenbloom-Tsfasman posets (NRT-posets). For the
sake of simplicity we adopt the ordered CA definition from [15], however,
we denote ordered CAs as orCA instead of OCA because OCA is also used
in the literature to denote optimal covering arrays, see [13], for example.

Definition 2.4. Given positive integers m and s, and an array with ms
columns, labelled {(i,7) : 1 <4 < m,1 < j < s}, a set T of columns is
right-justified if and only if for every j < s

(i,j) eT = (i,j+1)eT.

95

Hiess, KAMPEL AND SIMOS

When we view an array with ms columns as a juxtaposition of m arrays,
each having s columns, this motivates the above notation, since a set of
right-justified columns consists of all columns to the right of some column
for each sub-array with s columns. In the following we refer to these sub-
arrays with s columns as s-blocks. Figure 2.1 gives an illustration of an
array consisting of three such s-blocks and in equation (1) we list the cor-
responding right-justified sets of three columns.

Definition 2.5. For positive integers A, t, m, s and v, where s <t < ms,
an ordered covering array orCAN(N;t,m,s,v) is an N x ms array with
entries from an alphabet of size v, such that in every right-justified set of ¢
columns, every t-tuple occurs at least A times as a row. The parameter ¢ is
called the strength of the orCA. When A = 1, the subscript can be omitted
from the notation.

In this work we only consider orCAs with A = 1. The ordered covering
array number (orCAN) is defined analogously to CAN.

Definition 2.6. The ordered covering array number orCAN(¢,m,s,v) is
the minimum integer N for which an orCA)(N;t,m, s,v) exists.

As also pointed out in [3], for the case s = 1 an orCA(N;t,m,1,v) is
a CA(N;t,m,v). The difference of orCAs to CAs is that not all t-way
interactions need to be covered, but only those occurring on right-justified
sets of columns. An example of an orCA(10;3,3,2,2), that is not a CA, is
given in Figure 2.1. While the array is not a CA of strength 3 (for example
the tuple (0,0, 1) is not covered in the sub-array consisting of the columns
labeled with (1,1), (2,1) and (3,1)), it is an orCA of strength 3, because
in every right-justified set of three columns, every 3-tuple over a binary
alphabet occurs at least once, i.e., all 3-way interactions in the following
column sets are covered:

{(]" 2)7 (27 2)’ (37 2)}7 {(17]‘)’ (1’ 2)7 (2’ 2)}’ {(]" 1)7 (]‘7 2)’ (37 2)}7
{(1,2),(2,1),(2,2)},{(2,1),(2,2),(3,2)},{(1,2), (3, 1), (3,2)}, (1)
{(27 2)7 (37 1)7 (37 2)}

)

Remark 2.7. Clearly, as for s > t the left-most columns of an s-block
do not appear in any of the right-justified column selections, we are only
interested in orCAs with s < ¢. A basic property of orCAs is given in
[3, Corollary 1], that says an orCA(N;t,m,t,v) exists if and only if an
orCA(N; t,m,t—1,v) exists, which implies orCAN(N; ¢, m, t,v) = orCAN(N;
t,m,t — 1,v). Thus we can further focus on orCAs with s < .

96

OPTIMAL ORDERED COVERING ARRAYS VIA AN EXACT ALGORITHM

(L) (1,2)1(2,1) (2,2)1 (1) (3,2
0 0 1 0 0 1 0 0
0 0o . 1 0 .+ 1 0
1 0+ 0 0 .+ 1 1
1 0 . 1 1 0 0
0 0 0 1 1 0 1
0 1 10 0+ 0 0
1 1 1 0 1 0 1
1 1 1 0 1 1 0
0 1 1 1 01 1
1 1 1 0 1 1 1

Figure 2.1: An orCA(10;3,3,2,2): An orCA of strength 3 with 10 rows, 3
s-blocks with s = 2 and a binary alphabet.

For the special case t = s, s > 3, v a prime power and 2 < m < v + 1 the
orCANs were determined in [4] as orCAN(s, m, s,v) = v*.

3 Related work

Ordered covering arrays were first introduced in Krikorian’s Master the-
sis [15] as special case of variable strength covering arrays (VCAs), where
several combinatorial constructions of orCAs were described. In [3] a con-
nection between orCAs and covering codes in NRT spaces was established.
In addition to theoretical results and constructions for orCAs and covering
codes in NRT spaces, ways to derive upper bounds on covering codes in
NRT spaces from orCANs were presented. Those results were extended in
[4]. In particular, additional constructions for orCAs were given, together
with a table of upper bounds on covering codes in NRT spaces that can be
derived from the presented theoretical results for orCANs.

Ordered orthogonal arrays were first considered in [17] and [20], where their
equivalence to (t,m, s)-nets was shown. Martin and Stinson [18] general-
ized the Rao bound for OAs so that it applies also for OOAs, which lead
to improvements of the strongest bounds for several parameter settings. In
[22] Panario et al., use linear feedback shift register sequences defined by
polynomials for the generation of OOAs. An interesting result is that for
some parameter settings the primitivity of the polynomial can hinder the

97

Hiess, KAMPEL AND SIMOS

generation of an OOA achieving best coverage when using their construc-
tion.

While not much literature exists on orCAs, CAs are related structures that
have been much studied. Due to their importance in combinatorial testing
(a branch of software testing) many algorithms and tools for CA genera-
tion exist. Below we briefly describe some related work on exact algorithms
for CA generation. One of the first exact approaches for the generation of
CAs was presented in [11]. Using a translation of the CA generation prob-
lem for given parameters N,t, k,v to a CSP formulation, the existence of
a CA(N;t, k,v) was determined using a complete CSP solver. A negative
result (no solution satisfying the CSP formulation exists) allowed to derive
a lower bound on a covering array number. Further, a SAT formulation for
CA generation was described, however, only incomplete local search SAT
solvers were applied to the SAT formulation. SAT solving has also been
applied to generate closely related structures, such as CAs with constraints
[21]. A study on bounds on CANs and bounds on the size of another
generalization of CAs (namely radius-covering arrays) can be found in [§].
Theoretical bounds and computational results are presented therein and
used to derive new lower and upper bounds on some CANs. Additionally,
for several instances a classification of CAs and radius-covering arrays is
given. In [14] a concept of balance for CAs was introduced, together with a
classification algorithm that works as follows: Starting with an empty array
and a fixed number of rows, using depth-first search the array is extended
step-by-step with additional columns. Using backtracking the complete
search space is explored and all CAs of the given size are visited during
the search. After every extension step a SAT or pseudo-boolean solver is
used to calculate the columns feasible for the next extension. Symmetry
breaking is included in the generated SAT formulas for search space re-
duction. An additional feasibility check is performed to break remaining
symmetries. Taking this algorithm as a starting point, the algorithm pre-
sented in the next section makes also use of these techniques, adapted for
orCA generation.

4 Algorithm

In this section we present our exact algorithm orCA-EXT, which is a modi-
fied version of the classification algorithm for CAs described in [14], adapted
for finding an orCA(N; ¢, m, s,v) for given parameters N, t, m and s and a
binary alphabet (v = 2). In contrast to the work in [14], we are not inter-

98

OPTIMAL ORDERED COVERING ARRAYS VIA AN EXACT ALGORITHM

ested in a classification of all orCAs of a given size but only in determining
orCAN bounds. Thus our algorithm terminates after finding some orCA of
the desired size instead of enumerating all solutions. We first outline the
algorithm, detail thereafter how SAT solving is used and how the feasibility
check for symmetry breaking is employed by the algorithm.

A pseudo-code of orCA-EXT can be found in Algorithm 4.1. This algorithm
recursively branches over all possible columns (vectors of length N) that
can be added to a given array, and might be part of a final solution, i.e.,
the orCA to be constructed (lines 5 and 6). The columns that might be
part of a solution are calculated in line 4 and stored in a variable columns.
This calculation of admissible columns uses a two-step approach consisting
of a SAT solver and an algorithmic verification of each column. More
details on this are explained in Section 4.1. If an orCA of the desired
size is found or the given array is already an orCA(N;t,m,s,2), the orCA
is immediately reported and the algorithm terminates (lines 1-3 and 7-
9). If the whole search tree is enumerated and no solution was found, the
algorithm returns that no solution exists (line 11). When starting with an
empty array, i.e., orCA-EXT(Q, N, t,m,s), the output of the algorithm is
either an orCA(N;t,m,s,2) or FALSE if no orCA(N;t,m, s,2) exists.

Algorithm 4.1 oRCA-EXT(A, N,t,m,s)

1: if A is an orCA with ms columns then
2 return A > Report found orCA and terminate
3: end if

4: columns < admissible columns of A

5: for all col € columns do

6 result < ORCA-EXT([A, col], N,t,m,s) > Recursively extend A
7 if result is an orCA then

8 return result

9: end if

10: end for

11: return FALSE

The difference between CAs and orCAs is that not all t-way interactions
have to be covered in an orCA. The reduced coverage requirement leads
to some columns being highly constrained as they occur in many right-
justified sets of columns, while other columns occur only in a small number
of t-way interactions and therefore allow for more freedom when choosing
a column. For a column with index (i,7), the greater j is, the higher
is the number of right-justified column sets containing this column. To
reduce the effort of searching for an orCA, it is advantageous to have fewer

99

Hiess, KAMPEL AND SIMOS

branches at higher levels of our search tree. To achieve this, we generate
the columns of the orCA such that highly constrained columns, i.e., those
occurring in many t-way interactions, are generated first. More specifically,
for an orCA(N;t,m, s,2) we define a bijective function ¢, s : {1,...,m} x
{1,...,s} = {1,...,ms} mapping a column label (i, 7) to a column index
as follows: @, s((4,7)) := m(s—j)+i. Our algorithm generates columns in
the order given by ¢, s, for example for an orCA(N;2,2,2,2) the column
(1,2) is processed first because ¢25((1,2)) = 1. We denote with ¢, !, the
inverse function of ¢y, s, where ¢ (n) = (((n—1) mod m)+1,s—[21]).
In the remainder of this section we depict all (partial) orCAs with columns
permuted according to ¢y, s, €., they appear in the ordering used by our
algorithm.

Example 4.1. Assume we want to generate an orCA(4;2,2,2,2). Starting
with an empty array, a first set of admissible columns is generated. These
columns are (0,0,0,1)7, (0,0,1,1) and (0,0,0,0)”. One-by-one, a column
is added to the orCA and the next set of admissible columns is generated.
In case (0,0,0,1) is the first column it is not possible to add another
column that adheres to the coverage condition of an orCA, therefore the
algorithm backtracks and replaces the first column with the next column in
the list columns, that is (0,0,1,1)7. The algorithm continues with depth-
first search, generating a new set of admissible columns at every recursion
level and branching accordingly until finally, at recursion depth four, a
fourth column is successfully added to the array, resulting in the following
orCA:

L2) 22 (L1 (@1

— =0 O
—_ o = ol
O = = Olw~
O = = Ol

Because an orCA of the desired size is found, the algorithm immediately
terminates and no further columns in the columns lists of the different
recursion depths are examined. For example the column (0,0, 0,0)7 in the
initially computed column list is never added to an array.

4.1 Finding admissible columns for extension

In order for a column to be admissible for extension to the “current array”
A, it must be ensured that the resulting array is still an orCA, i.e., all

100

OPTIMAL ORDERED COVERING ARRAYS VIA AN EXACT ALGORITHM

relevant t-way interactions are covered if the column is added to the array.
Since in general there are many possibilities for the array to be extended, we
additionally apply symmetry breaking to reduce the search space. Second,
the column has to adhere to some (partial) symmetry breaking constraints
which are encoded in the SAT formula, in order to reduce the effort for the
later applied feasibility check, which only accepts the column that results
in the lexicographic smallest orCA up to equivalence. For CAs permuta-
tions of rows, columns or permuting the symbols of a column leaves their
defining property invariant. Therefore, CAs obtained via these actions are
called equivalent in the literature, see also [8] or [14] for more details. Simi-
larly, the defining properties of orCAs remain invariant under permutations
of rows and permutations of symbols within columns. Due to the differ-
ent coverage requirements it is in general not possible to freely permute
columns. Nevertheless, it is still possible to permute the s-blocks.

The symmetries induced by these actions can be removed with appropriate
SAT encodings, which we describe more closely below. However, the combi-
nation of the actions mentioned above lead to additional symmetries which
are not removed by the constraints encoded in the SAT formula. Hence,
finding all columns admissible for extension (line 4 of Algorithm 4.1) is per-
formed in two steps. First, a call to a SAT solver returns all columns that
achieve coverage of all t-way interactions of interest and obey to the par-
tial symmetry breaking constraints. Second, a lex-leader feasibility check
removes remaining equivalent solutions, as it only accepts the column that
results in the lexicographic smallest orCA in its equivalence class. The par-
tial symmetry breaking via the SAT formula reduces the effort for the later,
computationally more costly, feasibility check. The process of finding the
set of admissible columns is exemplified in Example 4.2.

In the following we elaborate more detailed on the SAT formula used to
find possible assignments for the k-th column of an orCA(N;t,m, s,2), i.e.,
the column with label o; ! (k). We consider the extension of an array
A=(a;;)forie{l,...,N},je{l,...,k— 1} with a k-th column, where
column j of the array A is labeled with cp;ﬁs (j) for 5=1,...,k—1. For
this it is helpful to define the set of all (¢ — 1)-way interactions, where the
set of involved columns is right-justified when adding column ¢! (k) and
their column index obtained via ¢, s is smaller than k. More specifically,
let

Zr—l,t—l = {{(p1,v1), -+, (Pt—1,v¢-1)} :
1<@msp) <kfori=1,...,t—1,
and {gafn}s(k),pl, ..., Pt—1} is right-justified}.

101

Hiess, KAMPEL AND SIMOS
Further, let A 1, denote the set of indices of rows of A that cover the
interaction 7, i.e., for 7 = {(p1,v1),..., (pt,v¢)} let
A= {r Sapp, =0, forallie {1,... ,t}}.

The propositional formula used to derive admissible columns for extending
the considered array with a k-th column consists of the following clauses:

V oo for every 71 € T{ 11,)
re€Al,_,
\/ T, for every 7,1 € T3 1 41, (3)
r€Alr,_,
2y V Tyg1, for each r where (ar,j)?;ll = (arﬂ,j)?;ll, (4)
v\ e, fk<m,Vrefl,... N}witha =1, (5)
1<r'<r—1,

A, j,—1=0

x1, the clause consisting of the singleton ;. (6)

As mentioned above, the propositional formula incorporates clauses ensur-
ing coverage of all required ¢-way interactions (clauses (2) and (3)), together
with certain clauses for symmetry breaking: Additionally, we use clauses
ensuring that all rows are ordered lexicographically increasing (clauses (4)).
Further, the clauses in (5) ensure that the last column of every s-block (the
column with index ¢, s(4, s)), i.e., the first column in the s-block that is
considered by our algorithm, is lexicographically larger than the last col-
umn of the previous s-block (the column with index ¢y, s(i — 1,s)). Since
Om,s(i —1,8) = oms(i,s) — 1 and @, 5(i,8) < m for all i € {2,...,m},
the clauses in (5) enforce that the k-th column is lexicographically larger
than the (k — 1)-th column if £ < m. To explain these clauses, recall that
ar x—1 denotes the value in row r of the (k—1)-th column considered by the
algorithm, i.e., column ;! (k — 1). For every row index r with a, y—1 =1
a clause is added, ensuring that either a,; > a,x—1 = 1 or there exists a
row with lower index ' < r and a, , < ar, i.€., arp =1 and a, x_1 = 0.
Finally, to break symmetries resulting from symbol permutations within a
column, we set the first row of every column to the symbol ‘0’ (clause (6)).
There are two main differences to the formula used in [14] for binary CAs:
First, in clauses (2) and (3) coverage is only enforced for ¢-way interac-
tions on right-justified sets of columns. Second, the clauses for column
lexicographic order are only added for the first m columns generated by
the algorithm, which become the last columns of every s-block of the final
orCA. We omit more details on the derivation of the SAT-formulas and
refer the interested reader to [14] for a closer explanation.

102

OPTIMAL ORDERED COVERING ARRAYS VIA AN EXACT ALGORITHM

As mentioned before the symmetry breaking clauses included in the propo-
sitional formula are not sufficient to break all symmetries, therefore an
additional feasibility check is conducted on every potential column for ex-
tension, i.e., on every column that is a solution to the propositional formula.
For that we adapt the feasibility check that is also used in [14], such that
only permutations of s-blocks are considered instead of arbitrary column
permutations. The feasibility check is executed for every candidate column
to be added to the array A and works as follows: A linear ordering on
all arrays with N rows is defined. In our case, we linearize the arrays by
column-major order and compare the linearized arrays lexicographically.
With respect to this linear ordering there is a smallest array in every equiv-
alence class. The feasibility check refuses a candidate column c in case the
extension of A with column c is not the smallest array in its equivalence
class. For this, all orCAs that can be obtained via s-block permutations or
symbol permutations within a column are generated and for each of those
generated arrays the rows are sorted lexicographically. If any of those per-
mutations leads to a lexicographically smaller array than A extended with
the column ¢, then c is discarded as a candidate row.

Example 4.2. Assume we want to extend the 4 x 3 array in the left upper
corner of Figure 4.1 with a column, such that the resulting array con-
stitutes an orCA(4;2,2,2,2), where the columns are indexed according to
¢2.2. This corresponds to the step in Example 4.1 where a fourth column
(i.e., a column labeled by ¢;5(4) = (2,1)) is added to the array. A SAT
formula encoding coverage requirements and the partial symmetry break-
ing constraints is generated, for example the clause (z1 V z3) ensures that
one of the first two rows contains the symbol ‘1’ and therefore coverage of
the 2-way interaction {((1,2),0),((2,1),1)} is enforced for every solution
of the SAT formula. Using a SAT solver, all solutions for the generated
formula are found, in this case there are only two solutions: (0,0,1,1) and
(0,1,1,0). The feasibility check executed in a second step determines that
only (0,1,1,0) is an allowed solution, and (0,0,1,1) is deleted from the
solution list, as it results in an orCA that is not lexicographically smallest
in its equivalence class. Finally, the algorithm branches for every remaining
solution and derives an orCA column from it. In the given example only
the solution (0, 1,1,0) is available and the algorithm replaces the variables
in the column with label (2,1) of the orCA with appropriate values from
the solution.

Using the exact algorithm described above, we can determine the min-
imal number of rows for which an orCA exists for given parameters as
follows: If for some N, ¢, m, s and v an orCA(N;t,m,s,v) exists and
the exact algorithm determines that no orCA(N — 1;¢,m, s, v) exists, then

103

Hiess, KAMPEL AND SIMOS

(L,2) (2,2) [(L) (2,1)
0 0 0 1 translate SAT instance:
0 1 1 To
1 0 1 I~ {(xl ng),...,ﬁxl}
1 1 0 T4 solve with SAT solveri
SAT models:
(0,0,1,1)
(0,1,1,0)
(1,2) (2,2) ‘ (L1 (2,1) apply feasibility checki
0 0 0 0 Admissible models:
0 1 1 1 -~ (O 11 0)
1 0 1 1 derive extension 4L,
1 1 0 0

Figure 4.1: Finding the set of admissible columns for the fourth column of
an orCA(4;2,2,2,2).

orCAN(t,m, s,v) = N. By executing the exact algorithm for different values
of NV, it is hence possible to determine the exact value of orCANs. For cov-
ering arrays, this strategy was applied in several works to prove optimality
of some CAN bounds [11, 12].

5 Computational results

We implemented our algorithm in C++ and executed it on a machine with
an AMD EPYC 7502P processor with 32 cores at 2.5 GHz base clock and
3.35 GHz boost clock and 128 GB of RAM. For computing the admissible
columns in the procedure in line 4 of Algorithm 4.1 we use clasp 3.3.6 [9]
for solving the occurring SAT problems.

Below we present the results of our computations. First we present tables
that give the sizes of the newly found optimal orCAs. Afterwards we present
and discuss bounds for covering codes in NRT spaces that can be derived
using the newly found orCAs. For each individual computation we specified
a time limit of two weeks.

104

OPTIMAL ORDERED COVERING ARRAYS VIA AN EXACT ALGORITHM

5.1 New optimal ordered covering arrays

In Tables 5.1-5.3 we display the computational results determined with our
implementation of Algorithm 4.1. Table 5.1 shows results for orCAN(¢, m, s, 2)
for strength ¢t = 3, Table 5.2 shows results for strength ¢ = 4 and Table 5.3
for t = 5. We performed experiments for s from 2 to t — 1 and for m start-
ing from 3. For the considered range of s, recall Remark 2.7, which says
that it is sufficient to focus on the case s < ¢, because orCAN(t,m, s,v) =
orCAN(t,m,t — 1,v) for s > t. We can consider m > 3, since in [4]
for s > 3, v a prime power and m < v + 1 orCAN was determined as
orCAN(s,m, s,v) = v®, and with v* < orCAN(t,m, s,v) < orCAN(t,m,t,v)
we get orCAN(t,m,s,2) = 2¢ for all s when ¢t > 3 and m < 3. We also
added table entries for s = 1, where this special case corresponds to CAs.
The corresponding CAN values are known and can be found, for example
in [8] or [14]. A table entry for t,m, s contains the value orCAN(¢, m, s, 2)
or, in case we were only able to derive a lower bound on orCAN, an en-
try ‘> N’ for a value N < orCAN(¢,m, s,2). Each orCAN entry N in the
tables is derived from two results of our algorithm: a positive result for
orCA-EXT(0, N,t,m,s), i.e., an orCA(N;t,m, s, 2) was found, and a nega-
tive result for orCA-EXT(0, N — 1,¢,m, s), i.e., the algorithm determined
that no orCA(N — 1,¢,m, s,2) exists. We display orCANs already known
in the literature (from [4]) as normal text—the entries in the first column
of the respective table—while new results found by our algorithm are dis-
played as bold text. For some instances, for example m = 15 in Table 5.1,
our algorithm does not terminate within the time limit of two weeks and
we are only able to give a lower bound on the corresponding orCAN. Such
a lower bound > N is derived from a negative algorithm result for orCA-
EXT(@, N —1,t,m, s). The generated orCAs are available for download at
[19].

Table 5.1 shows that for m from 3 to 13 the value of orCAN(3,m,2,2) is
equal to CAN(3,m + 1,2). For any m, an orCA(N;3,m,2,2) with N =
CAN(3,m + 1,2) rows can be constructed with the construction given in
the proof of [15, Theorem 4.3.1]. However, for m = 14 our algorithm finds a
smaller orCA: orCAN(3,14,2,2) = 16, while CAN(3,15,2) > 17 and hence
[15, Theorem 4.3.1] yields an orCA(17; 3,14, 2, 2). This shows that the upper
bound following from the construction in [15, Theorem 4.3.1] is not tight.
Fort = 3,s = 2,m = 15 and N = 17 our algorithm does not terminate
within the time limit. However, we know that no orCA(16; 3, 15,2, 2) exists.

In Table 5.2 our orCAN results for ¢ = 4 are shown. Here we can see
that orCAN is not directly related to CAN. While orCAN(4,m,s,2) =

105

Hiess, KAMPEL AND SIMOS

Table 5.1: Minimal number of rows of binary orCAs of strength three for
given values of m and s: orCAN(t = 3,m, s,v = 2).

31 4|56 7, 8910111213 |14 15

10 |12 (12 |12 |12 |12 |12 |15 | 16 | 16 17
8§ 110 |12 |12 |12 |12 |12 |12 |15 |16 |16 |16 |>17

[t
oo
oo

CAN(4,m + 2,2) for m = 3,5, 6, this relationship neither holds for m = 4
nor m = 7. Interestingly, the rows for different s all show the same val-
ues, that means for the computed instances whenever an orCA(N;4,m, 2,2)
exists, there is also an orCA(N;4,m, 3,2). Currently, we neither have a the-
oretical explanation for this, nor found an explanation in the literature. We
expect this behavior to change for larger instances, but unfortunately we
are not able to compute such large instances due to scalability issues of our
algorithm.

Table 5.2: Minimal number of rows of binary orCAs of strength four for
given values of m and s: orCAN(t = 4,m, s,v = 2).

3| 4) 6 7 8 9

16 | 16 | 21 |24 | 24 | 24
16 | 22 [24 | 24 | 27 | >27 | >27
16 | 22 [24 | 24 | 27 | >27 | >27

WD | ®»

The same observation can be made for ¢ = 5, see Table 5.3, however, in
this case we are not able to compute any new values within the time limit.
While our algorithm finds the (already known) minimal orCA for m = 3,
for m = 4 we are not able to find an orCA and only manage to compute a
lower bound of 43, i.e., orCAN(5,4,s,2) > 43.

Our computational search results show that we can find new optimal orCAs,
with the presented exact column extension algorithm. These results also
show that some known bounds on the size of optimal orCAs are not tight.
Further, our results for ¢t = 4 show that there is at least no obvious relation
between orCAN and CAN that holds in general.

106

OPTIMAL ORDERED COVERING ARRAYS VIA AN EXACT ALGORITHM

Table 5.3: Minimal number of rows of binary orCAs of strength five for
given values of m and s: orCAN(t = 5,m, s,v = 2).

32 | >43 | >43
32 | >43 | >43
32 | >43 | >43

W N ®»

5.2 Derived bounds on covering codes in NRT spaces

The computed optimal orCAs allow to construct covering codes in NRT
spaces. We briefly revisit the most important notions pertaining covering
codes in NRT spaces from [4]. Given a partially ordered set ([m-s], <) con-
sisting of m disjoint chains with s elements each, i.e., [m-s] ;== {1,...,ms},
and (1 —1)s+1=... Risfori=1,...,m, the NRT metric dg is defined

on ZZ]"S as

dr(x,y) = [(supp(x —y))| = |({i - @ # vi})l,

where (A) denotes the ideal of smallest cardinality that contains A for
A C [m-s]. An NRT space can be defined as Zj'* equipped with the NRT
metric. A covering code with radius R in an NRT space Z;'® is a subset
C C Zy** with the property that for every z € Z;'® there exists an element
¢ € C with dg(z,¢) < R. The smallest cardinality of a covering code with
radius R of Zg'* is denoted by K, f(m, s, R). For more details on covering
codes in NRT spaces, we refer the reader to [4] or [1]. Using a combinatorial
construction presented in [4], which has been used in previous works to
improve bounds for some covering codes in NRT spaces, it is possible to
construct new covering codes in NRT spaces from orCAs and other covering
codes in NRT spaces over a smaller alphabet. The authors of [4] use this
construction to establish the following bound on covering codes in NRT
spaces:

Theorem 5.1 (A.G. Castoldi et al., [4, Theorem 16]). Let v,q, m,s, R be
positive integers such that 0 < R < ms. Then

R R
Ky (m, s, R) < orCAN(ms — R,m,s,v) K (m,s, R). (7)

q

Clearly, provided the respective structures exist, this result yields an upper
bound on K 17,% (m, s, R). However, for some of the cases presented below we

107

Hiess, KAMPEL AND SIMOS

only know the exact value of orCAN(ms — R, m, s,v), while the appearing
K} (m,s,R) is not known (to us). In this case we still denote the up-
per bound on K (m, s, R) as a function of K¥(m, s, R). In Table 5.4 we
present the inequalities that can be derived using our orCAN results pre-
sented in the previous subsection, in combination with [4, Theorem 16]. In
the column ‘ub’ an upper bound for K;g(m, s, R) is given, where m, s and
R are given in the respective table columns and ¢ > 2 is an arbitrary inte-
ger. The listed upper bounds are derived from an orCAN, multiplied with
a covering code size ng(m7 s, R). In the right-most column of the table,
headed by ‘Used orCAN result’, the orCANs required for computing the
bounds are listed. Additionally, we note that Table 5.4 could be extended
with further rows, as follows. As stated in Remark 2.7, for s > t we have
orCAN(t,m, s,v) = orCAN(¢,m,t — 1,v). Thus, our orCAN results can be
used to derive additional upper bounds on K;% (m, s, ms —t):

K;fl(m, s,ms —t) < orCAN(t,m,t — 1, 2)K;2(m, s,ms —t),

yielding additional rows in Table 5.4 for arbitrary ¢ > 2, all s > t and m
where orCAN(t,m,t — 1,2) is known. For some values K*(m, s, R) in (7)
there exist explicit bounds in the literature. For ¢ = 2 explicit bounds can
be found in [1], which we can use to derive explicit bounds for KJX(m, s, R)
applying inequality (7). We summarize the thus obtained bounds in Table
5.5, and further discuss them below. Similarly to Table 5.4, an upper
bound for KJ*(m, s, R) is given in the column headed by ‘ub’, for m,s, R
as specified in the respective table columns. The upper bound is calculated
via [4, Theorem 16] from the orCANs given in the column ‘used orCAN
result’, together with the exact value or upper bound of KJ¥(m, s, R) given
in column ‘used CC bound’, which can be found in the source specified in
column ‘Reference’.

5.3 Upper bounds on KX(m,s, ms —t):
contextualization to existing results

Assessing the quality of the obtained upper bounds on covering codes in
NRT spaces given in Table 5.5, is not straight forward, as to the best of
our knowledge there does not exist a resource providing a comprehensive
overview. For the binary case several bounds can be found in [1], however,
for the non-binary case such a reference seems to be absent. This also
explains why Table 5.5 is only given for ¢ = 4. In order to get an under-
standing of the quality of the derived upper bounds on covering codes in
NRT spaces, we have examined the—to the best of our knowledge—entire

108

OPTIMAL ORDERED COVERING ARRAYS VIA AN EXACT ALGORITHM

Table 5.4: Bounds on the size K';%(m7 s, R) of covering codes in the NRT
space (Z’{f;‘s, dr), for arbitrary ¢ € N and m, s, R.

m s R ub Used orCAN result

4 2 5 10KF(4,2,5) orCAN(3,4,2,2) = 10
5 2 7 12KF(5,2,7) orCAN(3,5,2,2) = 12
6 2 9 12K7X(6,2,9) orCAN(3,6,2,2) = 12
72 11 12KF(7,2,11) orCAN(3,7,2,2) = 12
8 2 13 12K[F(8,2,13) orCAN(3,8,2,2) = 12
9 2 15 12K[](9,2,15) orCAN(3,9,2,2) = 12
10 2 17 12KJF(10,2,17) orCAN(3,10,2,2) = 12
11 2 19 15K](11,2,19) orCAN(3,11,2,2) = 15
12 2 21 16KX(12,2,21) orCAN(3,12,2,2) = 16
13 2 23 16K7(13,2,23) orCAN(3,13,2,2) = 16
14 2 25 16K(14,2,25) orCAN(3,14,2,2) = 16
4 2 4 22KF(4,2,4) orCAN(4,4,2,2) = 22
5 2 6 24K[(5,2,6) orCAN(4,5,2,2) = 24
6 2 8 24KX(6,2,8) orCAN(4,6,2,2) = 24
7 2 10 27K}(7,2,10) orCAN(4,7,2,2) = 27
4 3 8 22K[(4,3,8) orCAN(4,4,3,2) = 22
5 3 11 24K[F(5,3,11) orCAN(4,5,3,2) = 24
6 3 14 24K7X(6,3,14) orCAN(4,6,3,2) = 24
7 3 17 27K[F(7,3,17) orCAN(4,7,3,2) =27

Table 5.5: Bounds on the size KX(m, s, R) of covering codes in the NRT
space (Z]**,dr), for m, s and R as specified in the respective columns.

m s R ub used orCAN result used CC bound Reference
4 2 5 30 orCAN(3,4,2,2) =10 KF(4,2,5)<3 [L, Tab. 5|
5 2 7 24 orCAN(3,5,2,2)=12 K}(5,2,7)=2 [1, Thm. 13|
4 3 9 30 orCAN(3,4,3,2) =10 5(4 3,9)<3 [1, Tab. 6]
5 3 12 24 orCAN(3,5,3,2) =12 KZJ(5,3,12) =2 [1, Thm. 13]
4 4 13 30 orCAN(3,4,4,2) =10 KJ(4,4,13) <3 [1, Tab. 6]
5 4 17 24 orCAN(3,5,4,2) =12 KJ}(5,4,17)=2 [1, Thm. 13]
4 2 4 176 orCAN(4,4,2,2) =22 KR(4,2,4)<8 [1, Tab. 5|
4 3 8 154 orCAN(4,4,3,2) =22 KF(4,3,8)<7 [, Tab. 6]
4 4 12 154 orCAN(4,4,4,2) =22 KJ(4,4,12) <7 [, Tab. 6]

109

Hiess, KAMPEL AND SIMOS

related literature ([1], [3], [4], [2]) on covering codes in NRT spaces. Al-
though these works are limited in number, there are numerous constructions
and bounds presented therein, which can be combined in manifold ways. In
Table 5.6 we compare our bounds with other bounds, where most of them
require a combination of more than one result, for example they rely on
other, smaller covering codes in NRT spaces. Only for some bounds, such
as the trivial upper bound (8), the value can be computed directly. Below
we list the inequalities found in the literature we used to compute the upper
bounds on covering codes in NRT spaces given in Table 5.6:

The trivial upper bound as also given in [1, Proposition 6] gives a bound
for m,s,q > 2 and 0 < R < ms:

R —R
K (m,s, R) < q™ 7, (8)
the directed sum bound from [1, Theorem 15]: for Ry < ms and Ry < mas
K(;R(ml + ma, S, R1 + Rz) S K;z(ml, S, Rl)K;a(mg, S, Rg), (9)

and the following bounds for n < m and R < ns found in the respective
references:

Kf(rms,R) < q(m*”)sK,?(n,s,R), see [1, Corollary 16] (10)
R R "
K, (m,s,R) < K, (m—n,s,R—ns), see [l, Proposition 17] (11)
the bound found in [1, Proposition 18], for r < s and R < mr:
R m(s—r R
Kq (m, S, R) <q ()Kq (mm, R), (12)
from [1, Proposition 21], for r < s and R < myr:
R R
K, (m,s,R) < K (m,s —r,R—mr), (13)

the bound from [1, Theorem 30]: if there is an MDS code in the NRT space
Zq'* with minimum distance d + 1, then for every r > 2

R ms—d R
qu(m7s7d) Sq Kr (m787d)7 (14)
and the bound from [3, Corollary 7 (3)], for ¢ a prime power:
K(E—l)v(q + 17t7qt) < (qt - 2),01‘/72(1)2 - 1) (15)

Lastly, the ball covering bound is a basic lower bound for K;z(m7 s, R), see
for example [1, Proposition 7]:

ms

q

KR P
q (m7 87R) — ‘/;R(m7 87 R)’

(16)

110

OPTIMAL ORDERED COVERING ARRAYS VIA AN EXACT ALGORITHM

where V,®(m, s, R) is the cardinality of a sphere of radius R in (Z]'%, dg).
Let ©; (i) be the number of ideals of the NRT poset [m - s], with cardinality
i and exactly j maximal elements. Then

R min{m,i}

V(msR—1+Z Z (g —1)79Q,(i).

We use the ball covering bound to show that some existing bounds in the
literature are weaker than the bounds obtained using orCANs, i.e., via the
inequality in (7).

The first three columns of Table 5.6 specify the covering code and the con-
sidered NRT space, where the alphabet size ¢ = 4 in all cases. In the
column headed by ‘orCAN’ we denote the bound obtained from Tables 5.1
and 5.2, together with [4, Theorem 16] and the upper and lower bounds of
KJ(m, s, R) according to [1]. Hence, since [4, Theorem 16] gives an upper
bound for KJ¥(m, s, R) depending on K3X(m, s, R), the resulting table en-
tries give a range of the upper bound achievable with inequality (7). We
denote this by x — y, where y is a guaranteed upper bound obtained via in-
equality (7), while 2 only provides an upper bound in the best case scenario
that KJ*(m, s, R) is equal to the lower bound given in [1]. Note that = does
not represent a lower bound on KJ(m, s, R). A simple entry x in column
‘orCAN’ simply means that the upper bound is z. This is the case when
KJ(m, s, R) is known. In the three columns headed by ‘Weaker Bounds’
we give the respective value and the required input needed to obtain this
value using the inequality listed in the column with the sub-heading ‘ineq’.
These are weaker bounds on K X(m,r, R) than the one in column ‘orCAN’.
Analogously, in the columns headed by ‘Tighter Bounds’ we display the
respective information of tighter upper bounds on KX(m,r, R). The tight-
est bound is displayed bold. Finally the two columns headed by ‘Other
applicable Bounds’ give the respective required input that would be needed
in order to obtain an explicit value via the inequality given in the column
with the sub-heading ‘ineq’. Due to the absence of the required input, or
a sufficiently strong bound on it, we are not able to compute this bound.

Table 5.6 shows that the bounds on K¥(m, s, R) obtained through orCANs
and inequality (7) are stronger than some of the bounds derived based on
existing results in the literature, but in all cases it was possible to derive a
stronger bound based on these results. However, in some cases there seems

to be potential to improve bounds based on inequality (7), depending on
the size of KJX(m, s, R).

111

Hiess, KAMPEL AND SIMOS

Table 5.6: A comparison of existing upper bounds on KJ*(m, s, R) for R = ms—t, i.e., the size of covering codes in NRT spaces

73", dr) with radius R, with the upper bounds derived via orCA(N; R — ms, m, s,2) using [4, Theorem 16].
4 5 AR ’ ;)))
m s R orCAN Weaker Bounds Tighter Bounds Other Applicable Bounds
ub value required input Tneq | value | required input Tneq required input Tneq
4 2 5 20 — 30 > 32 K(3,2,5) > 2 (10) 24 KX(4,1,1) = 24 (13) N%?S,?ﬁik%?ﬁ@,wmv (9)
by (16) KJ¥(4,1,1) = Kq(4,1) [1]
K4(4,1) = 24 [5, Table 6.3]
64 (8) KI¥(3,2,3) (11)
> 256 (12) MDS code in (Z3 2, dg): [4,2,3,6]s (14)
5 2 7 24 64 8 24 KIX(4,2,5) < 24 11 KR (mq,s, R{)K X (msy, s, R 9
(8) 4 (4,2,5) < q 1 1)K, 2 2
> 32 KJ(4,2,7) > 2 (10) 16 fra, 1,2) < 16 (13) MDS code in (Z3 %, dR): [5,2,3, 8]2 (14)
by (16) KR(5,1,2) = K4(5,2) [1]
K4(5,2) < 16 [5, Table 6.3]
> 1024 12)
4 3 9 20 — 30 64 (8) 24 KX(4,2,5) < 24 (13) N%ASH,?@:X%?;N;;NMV (9)
> 64 (10) K% (3,3,6) (11)
> 256 MSW MDS code in (233, dg): [4,3,3,10]5 (14)
75 5
5 3 12 24 64 (8) 24 KJX(4,3,9) < 24 (11) Nwwgpifmiwmwﬁz@.fmmv (9)
> 64 (10) 16 K1X(5,2,7) < 16 (13) MDS code in (235, dg): [5,3,3, 18]y (14)
> 1024 [€5))
4 4 | 13 20 — 30 64 (8) 24 KX(4,3,9) < 24 (13) KR (m R1)KR(Roy) (9)
4 (4,3,9) = g (mi,s, R1)K " (mg, s, Ry
> 256 (10) K%(3,4,9) (11)
> 256 (12) MDS code in (21 %, dg): [4,4,3,14]5 (14)
5 a4 | 17 24 64 8 24 KRR (4,4,13) < 24 11 KR (my,s, R)KX(mg, s, R 9
4 = q 1 1)K " (mg 2
> 256 MEW 16 K1%(5,3,12) < 16 (13) MDS code in (23'%, dg): [5,4,3, 18]y (14)
> 1024 12
4 2 4 66 — 176 256 (8) 144 KI¥(2,2,2) < 12 (9) 16K 3 (3,2, 4) (10)
by (7), [1, Table 3] and
orCAN(2, 2,2, 2) = 4 [4]
> 256 (12) KI¥(3,2,2) (11)
> 256 (13) MDS code in (Z3 2, dR): [4,2,4,5]5 (14)
4 3 8 66 — 154 | 256 (8) 144 KX(4,2,4) < 144 (13) EMNNQ: 3, 8) (10)
> 256 (12) K% (3,3,5) (11)
MDS code in (23 3, dg): [4,3,4,9]3 (14)
4 4 12 44 — 154 256 (8) 144 KX(4,3,8) < 144 (13) KX(3,4,8) (11)
> 256 (10) MDS code in (3%, dg): [4,4,4,13]5 (14)
> 256 a2
3048 (15)

112

OPTIMAL ORDERED COVERING ARRAYS VIA AN EXACT ALGORITHM

6 Conclusion and future work

Using our exact algorithm we are able to derive 19 new orCANSs, i.e., the
number of rows of optimal ordered CAs, for small values of t,m,s and a
binary alphabet v = 2. Additionally, we provide lower bounds for some or-
CANSs. Our results show that some bounds on the size of optimal orCAs are
not tight, and that there exists at least no obvious relation between orCAN
and CAN, i.e., the size of optimal CAs. These two observations underpin
that orCAs are combinatorial objects that deserve to be examined indepen-
dently from closely related combinatorial designs, such as covering arrays,
orthogonal arrays and ordered orthogonal arrays. Our investigation of the
construction of covering codes in NRT spaces using ordered CAs shows that
the newly computed optimal orCAs cannot be used to improve any upper
bound on the size of covering codes in NRT spaces. However, such bounds
derived from orCAs are tighter than several existing ones, or match them.
In some cases there remains even potential for an improvement.

The presented algorithm performs well for small instances, however, for
larger instances it does not terminate within reasonable time. In order to
improve the execution time of our algorithm, for satisfiable instances, i.e.,
parameters N,¢,m and s, where an orCA(N;¢,m, s,2) exists, the selection
of admissible columns could be improved with a guiding heuristic. For
example, prioritizing columns leading to a more balanced array, where bal-
anced means that all i-way interactions occur evenly often, for some i < ¢.
For unsatisfiable instances, on the other hand, it would be needed to speed
up solution enumeration. A possible approach to achieve this would be by
search space reduction, for example with better symmetry breaking in the
SAT formula, in order to reduce the number of solutions that have to be
considered. In the future we intend to generalize our algorithm to higher
alphabet sizes v > 2. Additionally, we intend to explore the applicability of
balance, as introduced in [14] for CAs, to orCAs. While our exact algorithm
allowed us to produce orCAs for some instances and lower bounds for the
orCAN of some other instances, a heuristic algorithm could be of interest
to produce orCAN upper bounds also for larger instances.

Acknowledgments

SBA Research (SBA-K1) is a COMET Centre within the framework of
COMET—Competence Centers for Excellent Technologies Programme and
funded by BMK, BMDW, and the federal state of Vienna. The COMET
Programme is managed by FFG.

113

Hiess, KAMPEL AND SIMOS

References

[1]

A.G. Castoldi and E.L. Monte Carmelo, The covering problem in
Rosenbloom-Tsfasman spaces, Electron. J. Combin., 22 (2015), paper
3.30, https://doi.org/10.37236/4974.

A.G. Castoldi, E.L. Monte Carmelo and R. da Silva, Partial sums of
binomials, intersecting numbers, and the excess bound in Rosenbloom-
Tsfasman space, Comput. Appl. Math., 38 (2019), article 55, https:
//doi.org/10.1007/s40314-019-0828-2.

A.G. Castoldi, E.L. Monte Carmelo, L. Moura, D. Panario and B.
Stevens, Bounds on covering codes in RT spaces using ordered covering
arrays, Lecture Notes in Comput. Sci., 11545 (2019), 100-111.

A.G. Castoldi, E.L. Monte Carmelo, L. Moura, D. Panario and B.
Stevens, Ordered covering arrays and upper bounds on covering codes,
J. Combin. Des., 31 (2023), 304-329.

G. Cohen, I. Honkala, S. Litsyn and A. Lobstein, Covering codes,
Elsevier, 1997.

C.J. Colbourn, Combinatorial aspects of covering arrays, Matematiche
(Catania), 59(1,2) (2004), 125-172.

C.J. Colbourn and J.H. Dinitz, Handbook of combinatorial designs,
Taylor & Francis Group, CRC Press, 2007.

C.J. Colbourn, G. Kéri, P.P. Rivas Soriano and J.-C. Schlage-Puchta,
Covering and radius-covering arrays: Constructions and classification,
Discrete Appl. Math., 158 (2010), 1158-1180.

M. Gebser, B. Kaufmann and T. Schaub, Conflict-driven answer set
solving: From theory to practice, Artificial Intelligence, 187—188
(2012), 52-89.

A.S. Hedayat, N.J.A. Sloane and J. Stufken, Orthogonal arrays: theory
and applications, Springer, 2012.

B. Hnich, S.D. Prestwich, E. Selensky and B.M. Smith, Constraint
models for the covering test problem, Constraints, 11 (2006), 199-219.

I. Izquierdo-Marquez and J. Torres-Jimenez, New optimal covering
arrays using an orderly algorithm, Discrete Math. Algorithms Appl.,
10 (2018), 1850011.

L. Kampel and D.E. Simos, A survey on the state of the art of complex-
ity problems for covering arrays, Theoret. Comput. Sci., 800 (2019),
107-124.

114

OPTIMAL ORDERED COVERING ARRAYS VIA AN EXACT ALGORITHM

[14] L. Kampel, I. Hiess, I.S. Kotsireas and D.E. Simos, Balanced covering

arrays: A classification of covering arrays and packing arrays via exact
methods, J. Combin. Des., 31 (2023), 205-261.

[15] T. Krikorian, Combinatorial constructions of ordered orthogonal ar-

rays and ordered covering arrays, M.S. thesis, Department of Mathe-
matics, Ryerson University, 2011.

[16] D.R. Kuhn, R.N. Kacker and Y. Lei, Introduction to Combinatorial

Testing, Taylor & Francis Group, 2013.

[17] K.M. Lawrence, A combinatorial characterization of (¢, m, s)-nets in

base b, J. Combin. Des., 4 (1996), 275-293.

[18] W.J. Martin and D.R. Stinson, A Generalized Rao Bound for Ordered

Orthogonal Arrays and (¢, m, s)-Nets, Canad. Math. Bull., 42 (1999),
359-370.

[19] MATRIS, Webpage: Optimal Ordered Covering Arrays, https://sr

d.sba-research.org/data/orcas/ Accessed: 2024-03-15.

[20] G.L. Mullen and W.Ch. Schmid, An equivalence between (¢, m, s)-nets

and strongly orthogonal hypercubes, J. Combin. Theory Ser. A, 76
(1996), 164-174.

[21] T. Nanba, T. Tsuchiya and T. Kikuno, Using satisfiability solving

for pairwise testing in the presence of constraints, IEICE TRANSAC-
TIONS on Fundamentals of Electronics, Communications and Com-
puter Sciences, E95-A(9) (2012), 1501-1505.

[22] D. Panario, M. Saaltink, B. Stevens and D. Wevrick, A general con-

struction of ordered orthogonal arrays using LFSRs, IEEE Trans. In-
form. Theory, 65 (2019), 4316-4326.

[23] S. Raaphorst, L. Moura and B. Stevens, Variable strength covering

arrays, J. Combin. Des., 26 (2018), 417-438.

IRENE HIESS
SBA RESEARCH, MATRIS, VIENNA, AUSTRIA
ihiess@sba-research.org

Lupwic KAMPEL
SBA RESEARCH, MATRIS, VIENNA, AUSTRIA
lkampel@sba-research.org

DimiTrIS E. SIMOS
SBA RESEARCH, MATRIS, VIENNA, AUSTRIA
dsimos@sba-research.org

115

