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Abstract. A decomposition G ={G0, G1, . . . , Gn−1} of a graph Kn,n is a
partition of the edge set of Kn,n into edge disjoint subgraphs G0, . . . , Gn−1

(called pages) in which all Gi, i ∈ {0, 1, . . . , n − 1} are isomorphic to a
specific graph G, and G is called a decomposition of Kn,n by G. A family
of decompositions {G0,G1, . . . ,Gk−1} of a complete bipartite graph Kn,n is
a collection of k mutually orthogonal graph squares (mogs) if Gi and Gj

are orthogonal for all i, j ∈ {0, 1, . . . , k − 1} and i ̸= j. For any subgraph
G of Kn,n with n edges, N(n,G) represents the greatest number k in the
largest feasible set {G0,G1, . . . ,Gk−1} of mogs of Kn,n by G. In this paper,
we present several novel results pertaining to mutually orthogonal graph
squares of the complete bipartite graph. Our focus lies in exploring starter
functions of mogs, as well as utilizing the technique of Kronecker product
of mogs to construct new mutually orthogonal sets of disjoint union stars.

Nomenclature
L(x, y) Entry in row x and column y of the square matrix L
mG m disjoint copies of G

G ∪ H Disjoint union of G and H

1 Introduction

An edge decomposition G = {G0, G1, . . . , Gn−1} of a graph Kn,n is a parti-
tion of the edge set of Kn,n into edge disjoint subgraphs G0, G1, . . . , Gn−1

(called pages) in which all Gi, i ∈ {0, 1, . . . , n − 1} are isomorphic to a
particular graph G and G is called a decomposition of Kn,n by G. For the
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collection G, we have |E(Gi) ∩ E(Gj)| = 0 for all i, j ∈ {0, 1, . . . , n − 1},
i ̸= j and

n−1⋃
i=0

E(Gi) = E(Kn,n). Two edge decompositions G and F of Kn,n

by G are orthogonal when |E(Gi)| = |E(Fj)| = n and |E(Gi) ∩ E(Fj)| = 1
for all i, j ∈ {0, 1, . . . , n−1}. A family of decompositions {G0,G1, . . . ,Gk−1}
of a complete bipartite graph Kn,n by G is considered a set of k mutu-
ally orthogonal edge decompositions if Gi and Gj are orthogonal for all
i, j ∈ {0, 1, . . . , k − 1} and i ̸= j.

Decompositions of complete bipartite graphs have a variety of uses in exper-
iment design as well as graph code generation. The authors of [13] offered
authentication codes and the authors of [6], [7] used mogs to construct
graph orthogonal arrays and build a large number of authentication codes
where there is a large number of graphs that can be used for decomposi-
tions of complete bipartite graph. Hence, if an opponent knows the used
code generated by a certain graph, then we can use another graph for the
construction of an authentication code.

A Latin square of side n is n × n matrix with entries from a set A with
n different elements, where each element of A appears once in every row
and every column. A collection of k-orthogonal Latin squares of order n
constitutes a group of k Latin squares each pair of which is orthogonal.
It is common practice to represent N(n) = max{k : ∃ k-mols}. A Latin
square of side n is identical to an edge decomposition of Kn,n by nK2 ≃
nK1,1. Two edge decompositions G and Fof Kn,n by nK2 are orthogonal
if and only if the corresponding Latin squares of side n are orthogonal
thus N(n, nK2) = N(n). The computation of N(n) is one of the most
complicated problems in combinatorial designs see the survey articles by
Colbourn and Dinitz in [3], [4]. Many studies have been published about
the mutually orthogonal Latin squares (mols) problem see [2, 5, 16] and
[17].

For any subgraph G of Kn,n with n edges, N(n,G) denotes the maxi-
mum number k in a largest possible set {G0,G1, . . . ,Gk−1} of mutually or-
thogonal graph squares (mogs) of Kn,n by G. Mutually orthogonal graph
squares have deep links to core topics such as finite algebra, encryption,
finite geometry and the design of experiments. El-Shanawany proved the
relationship N(n,G) ≤ n for n ≥ 2 in [8]. He also conjectured that if
n is a prime number, then N(n, pn+1) = n. This supposition has been
proven using two approaches, see [9], [15]. MacNeish [14] has proved
that if N(m,mK2) = k1and N(n, nK2) = k2 and min{k1, k2} = k, then
there are k-mols of order mn. El-Shanawany has shown in [10] that if
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N(m,mK2) = k and N(n,G) = k, then N(mn,mG) ≥ k. Numerous au-
thors investigated (mogs) of Kn,n by G, where G ̸= nK2 (see the survey
articles [9], [10], [12] and [15]). To describe the many constructions for sets
of mogs, we must first address basic concepts for graph squares (see also
[8], [9]). The formal definitions of a G-square over additive group Zm are
given below.

Definition 1.1 (El-Shanawany, [10]). Let G be a subgrap h of Km,m with
m edges. A square matrix L of order m is called a G-square if every
element in Zm occurs precisely m times and the graphs Gi, i ∈ Zm with
E(Gi) =

{
(x, y) : L(x, y) = i, x, y ∈ Zm

}
are isomorphic to the graph G.

For an edge decomposition Gi we may associate bijectively an m × m-
square with entries belonging to Zm indicated by Li = Li(x, y), 0 ≤ i ≤
k − 1, x, y ∈ Zm with

Li(x, y) = γ ⇔ (x, y) ∈ E(Giγ), γ ∈ Zm. (1)

In a similar way to Definition 1.1, we define:

Definition 1.2. Let i, j be distinct positive integers. Two square matrices
Li and Lj of order m are said to be orthogonal if for any ordered pair (a, b),
there is precisely one position (x, y) for Li(x, y) = a, and Lj(x, y) = b. That
is, the two graph squares have the property that, when superimposed, every
ordered pair appears precisely once.

Now we mention some constructions that we can use.

Definition 1.3 (El-Shanawany, [8]). Let F be a subgraph of Km,m with
m edges and G be a subgraph of Kn,n with n edges. Then the composite
graph F [G] is a subgraph of Kmn,mn with mn edges defined by

E(F [G]) =
{
(x, y) : (x, y) = (na+c, nb+d), (a, b) ∈ E(F ), (c, d) ∈ E(G)

}
.

Note that acording of Defination 1.1 each F [G]-square represents edge de-
composition of Kmn,mn by F [G] .

El-Shanawany et al., presented the following result in [11].

Proposition 1.4 (El-Shanawany and El-Mesady, [11]). If there are k-mogs
of order m of the graph G and k-mogs of order n of the graph H, then there
are k-mogs of order mn of the graph H [G] .
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Following that, if N(m,G1) = k1 and N(n,G2) = k2 and min{k1, k2} = k,
we can generate k-mogs by Proposition 1.4 of order mn, where k < mn.
Hence, Proposition 1.4 is a generalization to MacNeish and El-Shanawany’s
previous results. In this study, we are concerned with a branch of combi-
natorial design theory that deals with mutually orthogonal graph squares
mogs. We compute several generalisations of the well-known N(n,G) =
k ≥ 3, where G represents disjoint union of smaller subgraphs of Kn,n each
being a star. In addition, we provide some results based on the Kronecker
product in Proposition 1.4.

All graphs in this study are finite, simple and undirected, the elements
of Zq × Z2 utilised to label the vertices of Kq,q where (v, j) ∈ Zq × Z2

will be written vj which refers to the corresponding vertex and the edge
{xi, yj} ∈ E(Kq,q) if and only if x, y ∈ Zq and i, j ∈ Z2 such that i ̸= j. If
there is no possibility of ambiguity, we shall write (x, y) instead of {x0, y1}
for the edge between the vertices x0 and y1 refer to Figure 1.1. The results
in [15],[10] and [9] motivated us to consider mogs for the disjoint union of
certain complete bipartite graphs. In [9] El-Shanawany provides the formal
basic definitions of subgraph of Kn,n produced by a function over Zn as the
following.

Definition 1.5 (El-Shanawany, [9]). Let G be a subgraph of Kn,n and
f : Zn → Zn. Then G is called an f -starter if

E(G) =
⋃

x∈Zn

(
x, f(x)

)
,

and is denoted by Gf .

Definition 1.6 (El-Shanawany, [9]). Assume Gf is an f -starter graph and
let η ∈ Zn. Then the graph

Gf + η =
{
(x, f(x) + η) : (x, f(x)) ∈ E(Gf )

}

is called the (η, f)-translate of Gf .

In [9] the following theorem has been proven by El-Shanawany.

Theorem 1.7 (El-Shanawany, [9]). The union of all translates of Gf yields
an edge decomposition of Kn,n. (i.e.

⋃
η∈Zn

E(Gf + η) = E(Kn,n)).

The following example demonstrates a direct application of Definition 1.1
and Equation (1).
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Figure 1.1: Mutually orthogonal graphs 2K1,2 ∪K2 with respect to Z5.

Example 1.8. The subgraph G ≃ 2K1,2∪K2 of K5,5 is an f -starter graph
Gf induced by the function f : Z5 → Z5 defined by f (x) = x2 + (2 +
i)x+1, for all i, x ∈ Z5 as illustrated in Figure 1.1. Applying Definition 1.1
with n = 5 and for all 0 ≤ s ≤ 4 there exist five mutually orthogonal
decompositions of K5,5 by 2K1,2∪K2 and we have Ls(x, y) = y−f(x)−sx,
x, y ∈ Z5 and 0 ≤ s ≤ 4. That means there are 5-mogs of K5,5 as follows:

L0 =




4 0 1 2 3
1 2 3 4 0
1 2 3 4 0
4 0 1 2 3
0 1 2 3 4



, L1 =




4 0 1 2 3
0 1 2 3 4
4 0 1 2 3
1 2 3 4 0
1 2 3 4 0



,

L2 =




4 0 1 2 3
4 0 1 2 3
2 3 4 0 1
3 4 0 1 2
2 3 4 0 1



, L3 =




4 0 1 2 3
3 4 0 1 2
0 1 2 3 4
0 1 2 3 4
3 4 0 1 2




L4 =




4 0 1 2 3
2 3 4 0 1
3 4 0 1 2
2 3 4 0 1
4 0 1 2 3



.
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Note that every figure in Figure 1.1 and its translations represents edge
decompositions of K5,5 by (2K1,2 ∪K2). That is equivalent Li squares i =
0, 1, 2, 3, 4, and in each square every row contains one x, where x ∈ Z5, and
there are exactly two columns have two x-entry (in other words, 2 vertices
x

1
have degree two) and one column has one x-entry (that is, one vertex

x1has degree one) and two columns have no x-entry (2 vertices x1have
degree zero) and all vertices x0 have degree one.

The remainder of this paper is divided as follows: Section 2 is dedicated to
construct mogs based on starters function. Section 3 introduced numerous
additional large mogs constructions depending on the Kronecker product
in Proposition 1.4. The fourth section is dedicated to the conclusion and
future work.

2 Main results

We employ the starter function technique in this section to offer some
novel direct constructions for N(n,G) = k ≥ 3, where G represents a
disjoint union of certain complete bipartite graphs. That is, in the follow-
ing constructions we obtain more flexibility results than in construction of
El-shanawany et al., [12].

Let q be an odd prime number and f : Zq → Zq then Gf is a starter
function of Kq,q with q edges and N(n,Gf ) denotes the maximum number
k in a largest possible set {G0,G1, . . . ,Gk−1} of mogs of Kq,q by Gf . For
all x, y ∈ Zq, let Ls(x, y) = j, where y = f(x) + sx + j and x, j ∈ Zq this
implies that j = y − f(x)− sx and we have

Ls(x, y) = y − f(x)− sx, (2)

for all 0 ≤ s ≤ k − 1. That is, there are k-mogs of Kq,q. Our goal is to
demonstrate the orthogonality of graph squares. It is simply demonstrated
that for all different 0 ≤ s, r ≤ k − 1 the pair(Ls, Lr) is orthogonal under
the condition:

(
Ls(x, y), Lr(x, y)

)
= (y − f(x)− sx, y − f(x)− rx)∀x, y ∈ Zq. (3)

The following result was shown in [8], but here we retrieve it by new tech-
nique.
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Theorem 2.1. Let p be an odd prime number. Then

N

(
p,

(
p− 1

2

)
K1,2 ∪K1,1

)
= p.

Proof. Let f : Zp → Zp be a function defined by

f(x) = x2 + 2x+ 1, (4)

is a starter function of the subgraph (p−1
2 )K1,2 ∪ K1,1of Kp,p. Assume

Ls(x, y) = j, with y = f(x) + sx + j such that s, j ∈ Zp. Hence, j = y −
f(x)− sx. Now, we shall construct p-mutually orthogonal (p−1

2 )K1,2∪K1,1

squares of order p as follows Ls(x, y) = y−f(x)−sx for all 0 ≤ s ≤ p−1. It
is easy to check that the squares (Ls, Lr) are orthogonal under the condi-
tion (Ls(x, y), Lr(x, y)) = (y − f(x)− sx, y − f(x)− rx)∀x, y ∈ Zp, for all
different 0 ≤ s, r ≤ p− 1. Hence the squares Ls, 0 ≤ s ≤ p− 1 are mutually
orthogonal. It remains to prove the isomorphism of Gs

f , 0 ≤ s ≤ p−1 to the

subgraph ((p−1
2 )K1,2 ∪K1,1) of Kp,p. Now, we show that Gs

f formed from

the i-entries in Ls induce a copy of (p−1
2 )K1,2 ∪K1,1 for all s, i ∈ Zp. It is

clear that every row contains one i there are exactly (p−1
2 ) columns have

two i-entry (in other words, (p−1
2 ) vertices x

1
have degree two), one column

has one i-entry (that is, one vertex x
1
has degree one) and (p−1

2 ) columns

have no i-entry (in other words, (p−1
2 ) vertices x1have degree zero). Hence

we get that every graph Gi
f+sx, 0 ≤ s ≤ p−1 is isomorphic to the subgraph

(p−1
2 )K1,2 ∪K1,1 of Kp,p.

As a direct construction of Theorem 2.1 for p = 5 then

N(5, 2K1,2 ∪K1,1) ≥ 5,

(see Example 1.8 ) there exist 5-mogs of K5,5 by 2K1,2 ∪K2 with respect
to Z5, which are represented by the graphs in Figure 1.1 where G0

f+sx
∼=

(2K1,2 ∪ K1,1) is the graph corresponding to the entry 0 in the square
Ls, 0 ≤ s ≤ 4.

In the upcoming theorem, we delve into a broader scope of mogs in com-
parison to the Theorem 2.1.

Theorem 2.2. Let p, q be odd prime integers such that p ̸= q. Then
N(pq,G) ≥ k = min{p, q}, where

G ∼=
((

p− 1

2

)(
q − 1

2

)
K1,4 ∪

(
p+ q − 2

2

)
K1,2 ∪K1,1

)
.
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Proof. Using the technique presented in Theorem 2.1, the result follows
by applying Equations (2), (3) and (4) for all distinct 0 ≤ s, r ≤ k − 1
and x, y ∈ Zpq. Now we show that the subgraph G0

f produced from the

0-entries of L0 is isomorphic to (p−1
2 )( q−1

2 )K1,4 ∪ (p+q−2
2 )K1,2 ∪ K1,1. A

similar strategy may indeed be presented for the other subgraphs Gi
f+sx

which produced from the i-entries of Ls, 0 ≤ s ≤ k − 1, i ∈ Zpq. It is clear
that every row contains one zero, there are exactly (p−1

2 )( q−1
2 ) columns

have four 0-entry, there are exactly (p+q−2
2 ) columns have two zeros, one

column has one zero and ( 3pq−p−q−1
2 ) columns have no zero. Hence we

get that every graph Gi
f+sx, 0 ≤ s ≤ k − 1, i ∈ Zpq is isomorphic to the

subgraph (p−1
2 )( q−1

2 )K1,4 ∪ (p+q−2
2 )K1,2 ∪K1,1 of Kpq,pq.

The following example illustrates the aforementioned theory.

Example 2.3. To illustrate Theorem 2.2 if we take p = 3 and q = 5, we
have 3 mutually orthogonal (2K1,4 ∪ 3K1,2 ∪K1,1)-squares Ls(x, y), s ∈ Z3

and x, y ∈ Z15 we get squares, Ls(x, y), s ∈ Z3 as follows:

L0(x, y) =




14 0 1 2 3 4 5 6 7 8 9 10 11 12 13
11 12 13 14 0 1 2 3 4 5 6 7 8 9 10
6 7 8 9 10 11 12 13 14 0 1 2 3 4 5

14 0 1 2 3 4 5 6 7 8 9 10 11 12 13
5 6 7 8 9 10 11 12 13 14 0 1 2 3 4
9 10 11 12 13 14 0 1 2 3 4 5 6 7 8

11 12 13 14 0 1 2 3 4 5 6 7 8 9 10
11 12 13 14 0 1 2 3 4 5 6 7 8 9 10
9 10 11 12 13 14 0 1 2 3 4 5 6 7 8
5 6 7 8 9 10 11 12 13 14 0 1 2 3 4

14 0 1 2 3 4 5 6 7 8 9 10 11 12 13
6 7 8 9 10 11 12 13 14 0 1 2 3 4 5

11 12 13 14 0 1 2 3 4 5 6 7 8 9 10
14 0 1 2 3 4 5 6 7 8 9 10 11 12 13
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14




,
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L1(x, y) =




14 0 1 2 3 4 5 6 7 8 9 10 11 12 13
10 11 12 13 14 0 1 2 3 4 5 6 7 8 9
4 5 6 7 8 9 10 11 12 13 14 0 1 2 3

11 12 13 14 0 1 2 3 4 5 6 7 8 9 10
1 2 3 4 5 6 7 8 9 10 11 12 13 14 0
4 5 6 7 8 9 10 11 12 13 14 0 1 2 3
5 6 7 8 9 10 11 12 13 14 0 1 2 3 4
4 5 6 7 8 9 10 11 12 13 14 0 1 2 3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 0

11 12 13 14 0 1 2 3 4 5 6 7 8 9 10
4 5 6 7 8 9 10 11 12 13 14 0 1 2 3

10 11 12 13 14 0 1 2 3 4 5 6 7 8 9
14 0 1 2 3 4 5 6 7 8 9 10 11 12 13
1 2 3 4 5 6 7 8 9 10 11 12 13 14 0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 0




,

L2(x, y) =




14 0 1 2 3 4 5 6 7 8 9 10 11 12 13
9 10 11 12 13 14 0 1 2 3 4 5 6 7 8
2 3 4 5 6 7 8 9 10 11 12 13 14 0 1
8 9 10 11 12 13 14 0 1 2 3 4 5 6 7

12 13 14 0 1 2 3 4 5 6 7 8 9 10 11
14 0 1 2 3 4 5 6 7 8 9 10 11 12 13
14 0 1 2 3 4 5 6 7 8 9 10 11 12 13
12 13 14 0 1 2 3 4 5 6 7 8 9 10 11
8 9 10 11 12 13 14 0 1 2 3 4 5 6 7
2 3 4 5 6 7 8 9 10 11 12 13 14 0 1
9 10 11 12 13 14 0 1 2 3 4 5 6 7 8

14 0 1 2 3 4 5 6 7 8 9 10 11 12 13
2 3 4 5 6 7 8 9 10 11 12 13 14 0 1
3 4 5 6 7 8 9 10 11 12 13 14 0 1 2
2 3 4 5 6 7 8 9 10 11 12 13 14 0 1




,

which are represented by graphs in Figure 2.1 where G0
f+sx

∼= (2K1,4 ∪
3K1,2 ∪ K1,1) is the graph corresponding to the zero entry in the square
Ls(x, y), s ∈ Z3.

In Theorem 2.2 when p = q, we obtain a novel construction of p-mutually
orthogonal (K1,p ∪ (p−1

2 )K1,2)-squares of order p2 as demonstrated in the
following theorem.
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11 10 60 71 120 40 90 91 61 140

00 30 100 130 41 101 20 110 50 80 01
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111 40 80 130 140 00 120 41 51 60

20 50 70 100 141 11 30 90 10 110 101
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f+x

11 20 90 120 140 40 70 71 61 130

00 50 60 110 131 31 30 80 10 100 121

G0
f+2x

Figure 2.1: mogs of K15,15 by (2K1,4 ∪ 3K1,2 ∪K1,1).

Theorem 2.4. Let p be an odd prime number. Then

N
(
p2,K1,p ∪ p(p−1

2 )K1,2

)
≥ p.

Proof. Using the technique presented in Theorem 2.1, the result follows
by applying Equations (2), (3) and (4) for all different 0 ≤ s, r ≤ p − 1
and x, y ∈ Zp2 . Now we show that the subgraph G0

f produced from the

0-entries of L0 is isomorphic to
(
K1,p ∪ p(p−1

2 )K1,2

)
. A similar argument

may be applied to the other subgraphs Gs
f which produced from the i-

entries of Ls, 0 ≤ s ≤ p− 1, i ∈ Zp2 . It is obvious that every row includes
one zero, there is precisely one column that has p zeros, there are precisely

(p−1
2 ) columns that have two zeros and (p

2+p−2
2 ) columns have no zero.

Theorem 2.4 can be exemplified through the following example.

Example 2.5. Serving as a direct instantiation of Theorem 2.4 for p = 3
we observe that N(9,K1,3 ∪ 3K1,2) ≥ 3, indicating the existence of three
mutually orthogonal K1,3 ∪ 3K1,2-squares Ls of order 9, s ∈ Z3, these
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20 50 80 00 70 10 60 30 40

01 11 41 71

G0
f

00 30 60 20 40 10 50 70 80

11 21 51 71

G0
f+x

10 40 70 00 50 20 30 60 80

61 11 41 71

G0
f+2x

Figure 2.2: 3-mogs of K9,9 by (K1,3 ∪ 3K1,2).

squares are defined as follows:

L0 =




8 0 1 2 3 4 5 6 7
5 6 7 8 0 1 2 3 4
0 1 2 3 4 5 6 7 8
2 3 4 5 6 7 8 0 1
2 3 4 5 6 7 8 0 1
0 1 2 3 4 5 6 7 8
5 6 7 8 0 1 2 3 4
8 0 1 2 3 4 5 6 7
0 1 2 3 4 5 6 7 8




, L1 =




8 0 1 2 3 4 5 6 7
4 5 6 7 8 0 1 2 3
7 8 0 1 2 3 4 5 6
8 0 1 2 3 4 5 6 7
7 8 0 1 2 3 4 5 6
4 5 6 7 8 0 1 2 3
8 0 1 2 3 4 5 6 7
1 2 3 4 5 6 7 8 0
1 2 3 4 5 6 7 8 0




,

L2 =




8 0 1 2 3 4 5 6 7
3 4 5 6 7 8 0 1 2
5 6 7 8 0 1 2 3 4
5 6 7 8 0 1 2 3 4
3 4 5 6 7 8 0 1 2
8 0 1 2 3 4 5 6 7
2 3 4 5 6 7 8 0 1
3 4 5 6 7 8 0 1 2
2 3 4 5 6 7 8 0 1




.

Hence, we get 3 mutually orthogonal K1,3 ∪ 3K1,2-squares, which are rep-
resented by the graphs in Figure 2.2, where G0

f+sx
∼= K1,3 ∪ 3K1,2, i ∈ Z9

is the graph corresponding to the entry 0 in the square Ls, s ∈ Z3.

Note that every figure in Figure 2.2 and its translations represents edge
decompositions of K9,9 by (K1,3 ∪ 3K1,2). That is equivalent Li squares
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i = 0, 1, 2 and in each square, for all x ∈ Z9, every row contains one x,
there are exactly one column with three x-entries, three columns have two
x-entries and five columns have no x-entry.

In the next theorem we consider the more general mogs with respect to
the previous results, Theorems 2.1 and 2.2, by a similar way.

Theorem 2.6. Let p, q, r be distinct odd prime integers. Then

N(pqr,G) ≥ k = min{p, q, r},

where

G ∼=
(
p−1
2

)(
q−1
2

)(
r−1
2

)
K1,8

∪
((

p−1
2

)(
q−1
2

)
+
(
p−1
2

)(
r−1
2

)
+
(
q−1
2

)(
r−1
2

))
K1,4

∪
(
p+q+r−3

2

)
K1,2 ∪K1,1.

Proof. The result follows by applying Equations (2), (3) and (4) for all
different 0 ≤ s, r ≤ k−1 and x, y ∈ Zpqr. Now, we prove that the subgraph
G0

f produced from the 0-entries of L0 is isomorphic toG. A similar reasoning
may be made to the other page in Ls, 0 ≤ s ≤ k − 1. It is obvious that
every row includes one zero, there are precisely

(p− 1

2

)(q − 1

2

)(r − 1

2

)

columns that have eight zeros, there are exactly

(p− 1

2

)(q − 1

2

)
+
(p− 1

2

)(r − 1

2

)
+
(q − 1

2

)(r − 1

2

)

columns have four zeros, there are exactly

(p+ q + r − 3

2

)

columns have two zeros, one column has one zero and

(
7pqr − pq − pr − qr + 3p+ 3q + 3r − 1

2

)

columns have no zero.

The following theorem introduces a novel construction of p-mutually or-
thogonal (p−1

2 )K1,2p ∪K1,p ∪ (p−1
2 ) p2K1,2- squares of order p

3.
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Theorem 2.7. Let p be an odd prime number. Then

N
(
p3, (p−1

2 )K1,2p ∪K1,p ∪ (p−1
2 ) p2K1,2

)
≥ p.

Proof. Using the technique presented in Theorem 2.1, the result follows by
applying Equations (2), (3) and (4) for all different 0 ≤ s, r ≤ p − 1 and
x, y ∈ Zp3 . Now we wish to show that the subgraph G0

f produced from the

0-entries of L0 is isomorphic to
(
(p−1

2 )K1,2p ∪K1,p ∪ (p−1
2 ) p2K1,2

)
. Also,

a similar argument can be applied to the other pages in Ls, 0 ≤ s ≤ p− 1.
It is obvious that every row includes one zero, there are precisely (p−1

2 )
columns have 2p zeros, there is precisely one column that has p zeros, there

are exactly (p−1
2 ) p2 columns with two zeros and (p

3+p2−p−1
2 ) columns have

no zero.

As a straightforward application of Theorem 2.7 for p = 3 we get

N(27,K1,6 ∪K1,3 ∪ 9K1,2) ≥ 3,

which means that there are three mutually orthogonal K1,6 ∪K1,3 ∪ 9K1,2-
squares Ls of order 27, s ∈ Z3, which are defined as Ls(x, y) = y−f(x)−sx,
where x, y ∈ Z27 and for all s ∈ {0, 1, 2}. It is easily verifed that for all
different 0 ≤ k, r ≤ 2 the pair (Lk, Lr) is orthogonal under the condition
of Equation (3). Now we show that the subgraph G0

f produced from the
0-entries of L0 is isomorphic to (K1,6 ∪K1,3 ∪ 9K1,2) . A similar argument
may also be made for the remaining pages in L1, L2. It is obvious that
every row includes one zero, there is exactly one column having 6 zeros, one
column having 3 zeros and nine columns having two zeros and 16 columns
having no zero.

The ensuing result expands upon the earlier discoveries within a wider
framework.

Theorem 2.8. Let n = p1p2p3 · · · pr where p1, p2, p3, . . . , pr are distinct
odd prime integers. Then N(n,Gn) ≥ k = min{p1, p2, p3, . . . , pr} where,

Gr
∼=

r⋃

m=1








∑

α1,α2,...,αm∈{1,2,...,r}
α1<α2<···<αm

[
m∏

i=1

(
pαi

−1

2

)]




K1,2m


 ∪K1,1.

Proof. Using the technique presented in Theorem 2.1, the result follows by
applying Equations (2), (3) and (4) for all different 0 ≤ s, r ≤ k − 1 and
x, y ∈ Zn. Now we show that the subgraph G0

f produced from the 0-entries
of L0 is isomorphic to Gr. A similar argument may also be made for the
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remaining pages in Ls, 0 ≤ s ≤ k − 1. It is obvious that each row includes
one zero, there are precisely





∑

α1,α2,...,αm∈{1,2,...,r}
α1<α2<···<αm

[
m∏

i=1

(
pαi

−1

2

)]




columns having (2m) 0-entry, where, 1 ≤ m ≤ r, precisely one column has
one zero and there are precisely

n−





r∑

m=1





∑

α1,α2,...,αm∈{1,2,...,r}
α1<α2<···<αm

[
m∏

i=1

(
pαi

−1

2

)]




+ 1





columns have no zero.

Theorem 2.8 may be explained by the following example, let n = p1p2p3p4
where p1, p2, p3, p4 are distinct odd prime integers. Then

N(p1p2p3p4,G4) ≥ k = min{p1, p2, p3, p4}

where,

G4
∼=

4⋃

m=1








∑

α1,α2,...,αm∈{1,2,...,r}
α1<α2<···<αm

[
m∏

i=1

(
pαi

−1

2

)]




K1,2m


 ∪K1,1.

This formula can be expanded as follows:

G ∼=
((

p1−1
2

)(
p2−1

2

)(
p3−1

2

)(
p4−1

2

))
K1,16

∪
(

(p1−1
2 )(p2−1

2 )(p3−1
2 ) + (p1−1

2 )(p2−1
2 )(p4−1

2 )

+(p1−1
2 )(p3−1

2 )(p4−1
2 ) + (p2−1

2 )(p3−1
2 )(p4−1

2 )

)
K1,8

∪
(

(p1−1
2 )(p2−1

2 ) + (p1−1
2 )(p3−1

2 ) + (p1−1
2 )(p4−1

2 )

+(p2−1
2 )(p3−1

2 ) + (p2−1
2 )(p4−1

2 ) + (p3−1
2 )(p4−1

2 )

)
K1,4

∪
(
p1−1

2 + p2−1
2 + p3−1

2 + p4−1
2

)
K1,2

∪ K1,1.
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3 Large constructions of mogs

In this section, we will generate larger mutually orthogonal arrays mogs
by combining smaller component mogs. Specifically, we employ extension
methods to introduce novel constructions for N(n,G) = k ≥ 3, where G
denotes the disjoint union of specific complete bipartite graphs. All sub-
sequent results are grounded on Proposition 1.4 which leverages the Kro-
necker product and the existence of mogs for certain classes of graphs.
These serve as ingredients for the Kronecker product, enabling the deriva-
tion of new mogs.

Theorem 3.1. Let p, q be odd prime numbers. Then

N(pq,G) ≥ k = min{p, q},
where,

G ∼=
((p− 1

2

)(q − 1

2

)
K1,4 ∪

(p+ q − 2

2

)
K1,2 ∪K1,1

)
.

Proof. Utilizing Theorem 2.1 we can construct p-mutually orthogonal for
Kp,p by (p−1

2 )K1,2 ∪ K1,1-squares denoted by Ns, s ∈ Zp and q-mutually

orthogonal for Kq,q by ( q−1
2 )K1,2∪K1,1-squares Ms, s ∈ Zq. If min{p, q} =

k, then by applying Proposition 1.4 take the Kronecker product for squares
Ns,Ms. Now, we can construct k mutually orthogonal Gf -squares and we
have Ls(r, t) = p(y−f(x)−sx)+(b−f(a)−sa), x, y ∈ Zq, a, b ∈ Zp, r, t ∈ Zpq

and 0 ≤ s ≤ k − 1, such that r ≡ a (mod p), t ≡ b (mod p), and simply
need to show that they are mutually orthogonal. Since Ns, s ∈ Zp and
Ms, s ∈ Zq are mutually orthogonal of order p and q respectively then. It
is easily verifed that for all different 0 ≤ k, r ≤ k − 1 the pair (Ls, Lr) is
orthogonal under the condition for all α, β ∈ Zpq

(
Ls(α, β), Lr(α, β)

)

=
(
p(y−f(x)−sx)+(b−f(a)−sa), p(y−f(x)−rx)+(b−f(a)−ra)

)
.

Hence the squares Ls, 0 ≤ s ≤ k − 1 are mutually orthogonal. It re-
mains to prove the isomorphism of Gi

f+sx, 0 ≤ s ≤ k − 1, i ∈ Zpq to the

subgraph (p−1
2 )( q−1

2 )K1,4 ∪ (p+q−2
2 )K1,2 ∪ K1,1 of Kpq,pq. Now, we show

that G0
f formed from the 0-entries in L0 induce a copy of (p−1

2 )( q−1
2 )K1,4∪

(p+q−2
2 )K1,2∪K1,1. It is clear that every row contains one, there are exactly

(p−1
2 )( q−1

2 ) columns have four 0-entry, there are exactly (p+q−2
2 ) columns

that have two zeros, one column has one zero and ( 3pq−p−q−1
2 ) columns

have no zero. Additionally, we can simply apply a similar argument to the
remaining pages in Ls, s ∈ Zk.

On some extensions of mutually orthogonal graph squares

85



Example 3.2. To demonstrate Theorem 3.1, if we take p = 3 and q = 5,
then N(15, 2K1,4 ∪ 3K1,2 ∪K1,1) ≥ 3 = min{3, 5}. From Theorem 2.1 we
have 3-mutually orthogonal (K1,2∪K1,1)-squares ofK3,3 denoted byMs, s ∈
Z3 and 5-mutually orthogonal (2K1,2 ∪ K1,1)-squares of K5,5 denoted by
Ns, s ∈ Z5. So, by using Proposition 1.4, we get 3-mutually orthogonal
(Gi

f+sx)-squares, i ∈ Z15 denoted by Ls, s ∈ Z3, where Gi
f+sx

∼= (K1,2 ∪
K1,1)[(2K1,2 ∪K1,1)] ∼= (2K1,4 ∪ 3K1,2 ∪K1,1), is the graph corresponding
to the entry i in the square Ls, s ∈ Z3.

M0 =




2 0 1
2 0 1
0 1 2


 , M1 =




2 0 1
1 2 0
1 2 0


 , M2 =




2 0 1
0 1 2
2 0 1


 ,

N0 =




4 0 1 2 3
1 2 3 4 0
1 2 3 4 0
4 0 1 2 3
0 1 2 3 4



, N1 =




4 0 1 2 3
0 1 2 3 4
4 0 1 2 3
1 2 3 4 0
1 2 3 4 0



,

N2 =




4 0 1 2 3
4 0 1 2 3
2 3 4 0 1
3 4 0 1 2
2 3 4 0 1



, N3 =




4 0 1 2 3
3 4 0 1 2
0 1 2 3 4
0 1 2 3 4
3 4 0 1 2



,

N4 =




4 0 1 2 3
2 3 4 0 1
3 4 0 1 2
2 3 4 0 1
4 0 1 2 3



,

L0 =




14 10 11 12 13 4 0 1 2 3 9 5 6 7 8
11 12 13 14 10 1 2 3 4 0 6 7 8 9 10
11 12 13 14 10 1 2 3 4 0 6 7 8 9 10
14 10 11 12 13 4 0 1 2 3 9 5 6 7 8
10 11 12 13 14 0 1 2 3 4 5 6 7 8 9
14 10 11 12 13 4 0 1 2 3 9 5 6 7 8
11 12 13 14 10 1 2 3 4 0 6 7 8 9 10
11 12 13 14 10 1 2 3 4 0 6 7 8 9 10
14 10 11 12 13 4 0 1 2 3 9 5 6 7 8
10 11 12 13 14 0 1 2 3 4 5 6 7 8 9
4 0 1 2 3 9 5 6 7 8 14 10 11 12 13
1 2 3 4 0 6 7 8 9 10 11 12 13 14 10
1 2 3 4 0 6 7 8 9 10 11 12 13 14 10
4 0 1 2 3 9 5 6 7 8 14 10 11 12 13
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14




,
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L1 =




14 10 11 12 13 4 0 1 2 3 9 5 6 7 8
10 11 12 13 14 0 1 2 3 4 5 6 7 8 9
14 10 11 12 13 4 0 1 2 3 9 5 6 7 8
11 12 13 14 10 1 2 3 4 0 6 7 8 9 5
11 12 13 14 10 1 2 3 4 0 6 7 8 9 5
9 5 6 7 8 14 10 11 12 13 4 0 1 2 3
5 6 7 8 9 10 11 12 13 14 0 1 2 3 4
9 5 6 7 8 14 10 11 12 13 4 0 1 2 3
6 7 8 9 5 11 12 13 14 10 1 2 3 4 0
6 7 8 9 5 11 12 13 14 10 1 2 3 4 0
9 5 6 7 8 14 10 11 12 13 4 0 1 2 3
5 6 7 8 9 10 11 12 13 14 0 1 2 3 4
9 5 6 7 8 14 10 11 12 13 4 0 1 2 3
6 7 8 9 5 11 12 13 14 10 1 2 3 4 0
6 7 8 9 5 11 12 13 14 10 1 2 3 4 0




,

L2 =




14 10 11 12 13 4 0 1 2 3 9 5 6 7 8
14 10 11 12 13 4 0 1 2 3 9 5 6 7 8
12 13 14 10 11 2 3 4 0 1 7 8 9 5 6
13 14 10 11 12 3 4 0 1 2 8 9 5 6 7
12 13 14 10 11 2 3 4 0 1 7 8 9 5 6
4 0 1 2 3 9 5 6 7 8 14 10 11 12 13
4 0 1 2 3 9 5 6 7 8 14 10 11 12 13
2 3 4 0 1 7 8 9 5 6 12 13 14 10 11
3 4 0 1 2 8 9 5 6 7 13 14 10 11 12
2 3 4 0 1 7 8 9 5 6 12 13 14 10 11
14 10 11 12 13 4 0 1 2 3 9 5 6 7 8
14 10 11 12 13 4 0 1 2 3 9 5 6 7 8
12 13 14 10 11 2 3 4 0 1 7 8 9 5 6
13 14 10 11 12 3 4 0 1 2 8 9 5 6 7
12 13 14 10 11 2 3 4 0 1 7 8 9 5 6




.

The following corollary is constructed p-mutually orthogonal of Kp2,p2 by
using subgraphs distinct from those derived Theorem 2.4.

Corollary 3.3. Let p be an odd prime number. Then

N
(
p2, (p−1

2 )2K1,4 ∪ (p− 1)K1,2 ∪K1,1

)
≥ p.

Proof. As direct application to Theorem 3.1 if we take p = q. Then we have

N
(
p2, (p−1

2 )2K1,4 ∪ (p− 1)K1,2 ∪K1,1

)
≥ p.
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Now, we offer the following result, which generalizes Theorem 2.1.

Proposition 3.4. Let pα be an odd number with integer power α ≥ 1 of a
prime number p > 2 and Gα be a subgraph of Kpα,pα . Then N(pα, Gα) ≥ p,
where

Gα
∼=

α⋃

r=0

(
p− 1

2

)α−r (
α

r

)
K1,2α−r .

Proof. The proof utilizes mathematical induction over the integer power α
and Proposition 1.4. Ultimately, we construct p mutually orthogonal Gα-
squares and we have Ls(r, t) = p(y−f(x)−sx)+(b−f(a)−sa), x, y ∈ Zpα−1 ,
a, b ∈ Zp, r, t ∈ Zpα and 0 ≤ s ≤ p − 1 such that r ≡ a (mod p), t ≡ b
(mod p). It is still necessary to prove isomorphism of p mutually orthogonal
Gα-squares. Now we show that the page, formed from the 0-entries in L0

induce a copy of Gα. Also, we can easily apply a similar argument to the
other pages in Ls, s ∈ Zp. It is obvious that each row includes one zero,

there are exactly
(
p−1
2

)α−m (α
m

)
columns have 2α−m zeros, 0 ≤ m ≤ α, and(

pα −
α∑

m=0

(
p−1
2

)α−m (α
m

))
columns have no zero.

In the next theorem we consider the more general mogs with respect to
the previous result Theorem 3.1 by a similar way, we have:

Theorem 3.5. Let p, q, r be odd prime numbers. Then N(pqr,G3) ≥ k =
min{p, q, r}, where

G3
∼= (p−1

2 )( q−1
2 )( r−1

2 )K1,8

∪
(
(p−1

2 )( q−1
2 ) + (p−1

2 )( r−1
2 ) + ( q−1

2 )( r−1
2 )
)
K1,4

∪ (p+q+r−3
2 )K1,2 ∪K1,1.

Proof. Let p, q, r be odd prime integers and let f(x) = x2 +2x+1 then by
using Theorem 2.2 we can construct k1-mutually orthogonal for Kpq,pq by(
(p−1

2 )( q−1
2 )K1,4 ∪ (p+q−2

2 )K1,2 ∪K1,1

)
-squares, where k1 = min{p, q} and

r-mutually orthogonal Kr,r of ( r−1
2 )K1,2 ∪K1,1-squares. If min{k1, r} = k,

then by using Proposition 1.4 we can construct k mutually orthogonal G3-
squares and we have

G3
∼=
(
(p−1

2 )( q−1
2 )K1,4 ∪ (p+q−2

2 )K1,2 ∪K1,1

)
[( r−1

2 )K1,2 ∪K1,1)]

∼= (p−1
2 )( q−1

2 )( r−1
2 )K1,8 ∪ ((p−1

2 )( q−1
2 ) + (p−1

2 )( r−1
2 )

+ ( q−1
2 )( r−1

2 ))K1,4 ∪ (p+q+r−3
2 )K1,2 ∪K1,1.

Ls(α, β) = r(Ls(x, y)) + (b − f(a) − sa), x, y ∈ Zpq, a, b ∈ Zr, α, β ∈ Zpqr

and 0 ≤ s < k − 1, such that α ≡ a (mod r), β ≡ b (mod r). Now
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we show that the page, formed from the 0-entries in L0, is isomorphic to
G3. A similar argument may also be made for the remaining pages in Ls,
0 ≤ s < k−1. It is clear that every row contains one zero, there are exactly

(
p− 1

2

)(
q − 1

2

)(
r − 1

2

)

columns that have eight zeros, there are exactly

(
p− 1

2

)(
q − 1

2

)
+

(
p− 1

2

)(
r − 1

2

)
+

(
q − 1

2

)(
r − 1

2

)

columns that have four zeros, there are exactly

(
p+ q + r − 3

2

)

columns that have two zeros, one column that has one zero and

(
7pqr − pq − pr − qr + 3p+ 3q + 3r − 1

2

)

columns that have no zero.

As a direct construction of this theorem we consider the following example.

Example 3.6. To illustrate Theorem 3.5. If p = 3, q = 5, r = 7 then
N(3.5.7, G) ≥ 3, where, G ∼= 6K1,8∪11K1,4∪6K1,2∪K1,1. Let f(x) = x2+
2x+1 be the starter function of the subgraph 6K1,8∪11K1,4∪6K1,2∪K1,1

of K105,105 . Applying Definition 1.2 and Equation (2) with n = 105, we
have Ls(x, y) = y− f(x)− sx for all s ∈ {0, 1, 2}. So there exist 3-mogs of
K105,105 by G ∼= 6K1,8 ∪ 11K1,4 ∪ 6K1,2 ∪K1,1 with respect to Z105.

The subsequent corollary establishes p-mutually orthogonal arrays forKp3,p3

by using subgraphs distinct from those derived in Theorem 2.7.

Corollary 3.7. Let p be an odd prime number. Then

N
(
p3, (p−1

2 )3K1,8 ∪ 3(p−1
2 )2K1,4 ∪ 3(p−1

2 )K1,2 ∪K1,1

)
≥ p.

Proof. A direct application to Theorem 3.5 occurs when p = q = r.

The upcoming result extends the Theorems 3.1, 3.5 to cases where n has
an odd prime factorization.
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Theorem 3.8. Let n be an odd ordered prime factorizations number such
that n = p1 · · · p2 · · · p3 · · · pr. Then N(n,Gn) ≥ k = min{p1, p2, p3, . . . , pr}
where,

Gr
∼=

r⋃

s=1








∑

α1,α2,...,αm∈{1,2,...,r}
α1<α2<···<αm

[
m∏

i=1

(
pαi

−1

2

)]




K1,2m


 ∪K1,1.

Proof. The proof can be derived by applying Proposition 1.4 and Theo-
rem 3.1 repeatedly for r-times.

4 Conclusion

This study focuses on the construction of mutually orthogonal graph squares
for complete bipartite graphs by disjoint unions of certain complete bipar-
tite graphs. Our approach involves utilizing the starter functions to derive
our results. Through this study, we have obtained novel mogs results,
detailed in the accompanying Table 4.1.

Table 4.1: Summary of the results.

n G N(p,G)

p ( p−1
2

)K1,2 ∪K1,1 = p

pq, p ̸= q ( p−1
2

)( q−1
2

)K1,4 ∪ ( p+q−2
2

)K1,2 ∪K1,1 ≥ k = min{p, q}
p2 ( p−1

2
)2K1,4 ∪ (p− 1)K1,2 ∪K1,1 ≥ p

p2 K1,p ∪ p ( p−1
2

)K1,2 ≥ p

p3 ( p−1
2

)K1,2p ∪K1,p ∪ ( p−1
2

) p2K1,2) ≥ p

pα Gα
∼=

α∪
r=0

(
p−1
2

)α−r (α
r

)
K1,2α−r ≥ p

pqr G3, p ̸= q ̸= r ≥ k = min{p, q, r}
p1p2 · · · pr Gr, p1 ̸= p2 ̸= · · · ̸= pr ≥ k = min{p1, . . . , pr}
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