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Abstract. The Zarankiewicz number z(m,n; a, b) is the maximum number
of edges |E| among all bipartite graphs G = (X ∪̇Y,E) satisfying |X| =
m, |Y | = n, and that no a vertices of X and b vertices of Y induce a
copy of the complete bipartite graph Ka,b as a subgraph of G. For m ≥
(a − 1)

(
n
b

)
, Čuĺık proved z(m,n; a, b) = (a − 1)

(
n
b

)
+ (b − 1)m. We extend

this result to hypergraphs of a similarly imbalanced variety. Our key will
be a construction employing Baranyai’s theorem on hyperclique matching
decompositions.

1 Introduction

Fix a, b,m, n ∈ N. The Zarankiewicz number z(m,n; a, b) is the maximum
number of edges |E| among all bipartite graphs G = (X ∪̇Y,E) satisfying
|X| = m, |Y | = n, and that no a vertices of X and b vertices of Y induce
a copy of the complete bipartite graph Ka,b as a subgraph of G. Its de-
termination or estimation is the 1951 problem of Zarankiewicz [15], which
remains open today. Kővári, Sós and Turán [10] proved the seminal bound

z(m,n; a, b) < (a− 1)1/b(n− b+ 1)m1−(1/b) + (b− 1)m (1)

(see also Füredi [8] and Nikiforov [12]). The best diagonal bounds for fixed
but general a ≥ 2 are

Ω
(
m2− 2

a+1

) [7]

≤ z(m,m; a, a)
(1)

≤ O
(
m2− 1

a

)
,
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although for a ∈ {2, 3} the lower bound admits substantial improvement
(see below), and for a ≥ 5 it admits polylogarithmic improvement (see
Bohman and Keevash [3]). Cases admitting asymptotics or formulas are
extremely rare. Kővári, Sós and Turán [10] proved

z(n, n; 2, 2) =
(
1± o(1)

)
n3/2 and z

(
p2 + p, p2; 2, 2

)
= p3 + p2

for primes p. Reiman proved that for q any power of a prime,

z
(
q2 + q + 1, q2 + q + 1; 2, 2

)
=

(
q2 + q + 1)(q + 1).

Brown and Füredi [4, 8]; Mörs [11] and Alon, Mellinger, Mubayi and Ver-
straëte [1] respectively showed

z(m,m, 3, 3) =
(
1± o(1)

)
m5/3,

z(m,m, 2, b+ 1) =
(
b1/2 ± o(1)

)
n3/2

(
for b fixed

)
and

z(m,n; 2, b) =
(
1± o(1)

)
mn1/2

(
for b fixed and m =

(
1± o(1)

)
nb/2

)
.

An early, elementary, and exact result of Čuĺık considers a rather severe
imbalance between m and n.

Theorem 1.1 (Čuĺık [6]). When m ≥ (a− 1)
(
n
b

)
, the formula

z(m,n; a, b) = (a− 1)
(
n
b

)
+ (b− 1)m

holds.

Exact but fairly technical extensions of Theorem 1.1 for suitable m = Θ(nb)
were given by Guy [9], Roman [14], and more recently by Chen, Horsley
and Mammoliti [5].

We extend Theorem 1.1 to hypergraphs of a similarly imbalanced variety.
We first outline our considerations coarsely. The conventional Zarankiewicz
number z(m,n; a, b) is the maximum number of edges |E| among all bipar-
tite graphs G = (X ∪̇Y,E) satisfying |X| = m, |Y | = n, and that no a ver-
tices from X and b vertices from Y induce a copy of the complete bipartite
graph Ka,b as a subgraph of G. The parameter of this paper considers
k-partite k-graphs H having a fixed vertex partition V (H) = V1 ∪̇ · · · ∪̇Vk

into classes of prescribed sizes. (Here, the edges of H are k-tuples meeting
each class Vi, over 1 ≤ i ≤ k, precisely once.) Our parameter seeks the
maximum number of edges that H can have when no ai vertices of Vi, over

1 ≤ i ≤ k, induce a copy of the complete k-partite k-graph K
(k)
a1,...,ak (hav-

ing
∏k

i=1 ai many k-tuple edges) as a subhypergraph of H. Čuĺık’s result
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determines the conventional Zarankiewicz number exactly in the case that
V1 is significantly larger than V2. Our paper achieves an analogous result
when each Vi, over 1 ≤ i ≤ k − 1, is significantly larger than Vi+1. To
make these considerations precise, we prepare some notation. Henceforth,
fix k ∈ N, a set V = V1 ∪̇ · · · ∪̇Vk and partition thereof, an ordering

V k = (V1, . . . , Vk), and ak = (a1, . . . , ak) ∈ N× · · · × N = Nk.

Let
(
V k

k

)
be the set of all κ ∈

(
V
k

)
satisfying |κ ∩ Vi| = 1 for all i ∈ [k] =

{1, . . . , k}. Any subset H = H(k) ⊆
(
V k

k

)
is a k-partite k-graph with

partition V k. We say H is ak-avoidant when every (A1, . . . , Ak) ∈
(
V1

a1

)
×

· · ·×
(
Vk

ak

)
admits (α1, . . . , αk) ∈ A1 × · · ·×Ak satisfying {α1, . . . , αk} ̸∈ H.

Define

Z(V k,ak) =
{
H ⊆

(
V k

k

)
: H is ak-avoidant

}

and

z(V k,ak) = max
{
|H| : H ∈ Z(V k,ak)

}
.

Note that z
(
(V1, V2), (a1, a2)

)
is the conventional Zarankiewicz number

z
(
|V1|, |V2|; a1, a2

)
. Note also that z

(
(V1), (a1)

)
= a1 − 1 holds trivially.

We prove the following hypergraph version of Theorem 1.1.

Theorem 1.2. Every integer k ≥ 2 satisfies

z(V k,ak) ≤ z(V k−1,ak−1)
(|Vk|

ak

)
+ (ak − 1)|V1| · · · |Vk−1|. (2)

Equality holds when all 1 ≤ i ≤ k − 1 satisfy

|Vi| ≥ ai
(|Vi+1|

ai+1

)
+ a2i (3)

and also when k = 2 and more simply |V1| ≥ (a1 − 1)
(|V2|

a2

)
. In these cases,

z(V k,ak) =

k∑

i=1

(
(ai − 1)

( i−1∏

h=1

|Vh|
) k∏

j=i+1

(|Vj |
aj

))
. (4)

In particular, we construct Z(k) ∈ Z(V k,ak) where |Z(k)| is the upper
bound of (2). Moreover, when additionally |Vk| ≥ ak + a2k and 1 ≤ r ≤
⌊|Vk|/ak⌋ − ak is an integer, we construct an r-sequence

Zk =
(
Z1(k), . . . , Zr(k)

)
∈ Z(V k,ak)× · · · × Z(V k,ak) (5)

of pairwise edge-disjoint entries satisfying that |Z1(k)| = · · · = |Zr(k)| is
the upper bound of (2).
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We say a few words on our proofs of (2)–(5). Section 2 gives a standard
double-counting argument for (2). Iterative equality in (2) immediately
gives (4). The challenge in proving Theorem 1.2 lies in the equality un-
der (3) and, crucially, its relationship with the r-sequence of (5). In partic-
ular, we recursively construct Z(k) ∈ Z(V k,ak) where |Z(k)| is the upper
bound of (2). To construct Z(k), we require access to a very long sequence

Zk−1 =
(
Z1(k−1), . . . , Zs(k−1)

)
∈ Z(V k−1,ak−1)×· · ·×Z(V k−1,ak−1)

of optimal and pairwise edge-disjoint entries. This sequence is itself built
recursively. Thus, to maintain our induction on k ≥ 2 for Theorem 1.2, we
must in fact construct the r-sequence of (5). We complete these details in
Section 4. We then prove (3) in Section 5 as a relaxation of Section 4.

The main novelty of the paper lies entirely in ensuring edge-disjointness
in (5). Here, we use a subtle application of Baranyai’s theorem [2] on hy-
perclique matching decompositions (see Section 3 and Lemmas 4.1 and 4.2.

2 Proof of Theorem 1.2: the upper bound
in (2)

Fix H ∈ Z(V k,ak) and let V(k − 1) = V1 × · · · × Vk−1.

For vk−1 = (v1, . . . , vk−1) ∈ V(k − 1), define

NH(vk−1) =
{
vk ∈ Vk : {v1, . . . , vk−1, vk} ∈ H

}

and

degH(vk−1) =
∣∣NH(vk−1)

∣∣.

For vk ∈ Vk, define

NH(vk) =
{
{v1, . . . , vk−1} : {v1, . . . , vk−1, vk} ∈ H

}
.

Clearly, vk ∈ NH

(
(v1, . . . , vk−1)

)
precisely when {v1, . . . , vk−1} ∈ NH(vk).

Double-counting gives

|H| =
∑

vk−1∈V(k−1)

degH(vk−1) =
∑

vk∈Vkf

degH(vk). (6)
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Consider the set S of (vk−1, Ak) ∈ V(k − 1)×
(
Vk

ak

)
with Ak ⊆ NH(vk−1).

Double-counting gives

|S| =
∑

vk−1∈V(k−1)

(
degH(vk−1)

ak

)

=
∑

Ak∈(Vk
ak
)

∣∣∣
⋂

αk∈Ak

NH(αk)
∣∣∣ ≤ z(V k−1,ak−1)

(|Vk|
ak

)
(7)

because each such
⋂

αk∈Ak
NH(αk) ⊆

(
V k−1

k−1

)
is ak−1-avoidant. Define

V−(k−1), V0(k−1), and V+(k−1) to be the sets of all vk−1 ∈ V(k−1) for
which degH(vk−1)− ak is, respectively, negative, zero and positive. Then

z
(
V k−1,ak−1

)(|Vk|
ak

) (7)

≥
∑

⋆∈{−,0,+}

∑
vk−1∈V⋆(k−1)

(
degH(vk−1)

ak

)

≥
∣∣V0(k − 1)

∣∣+
∑

vk−1∈V+(k−1)
degH(vk−1)

(6)
= |H| − (ak − 1)

∣∣V0(k − 1)
∣∣−

∑
vk−1∈V−(k−1)

degH(vk−1)

≥ |H| − (ak − 1)
(∣∣V0(k − 1)

∣∣+
∣∣V−(k − 1)

∣∣
)

≥ |H| − (ak − 1)
∣∣V(k − 1)

∣∣.

Thus,

|H| ≤ (ak − 1)
∣∣V(k − 1)

∣∣+ z
(
V k−1,ak−1

)(|Vk|
ak

)
,

where ∣∣V(k − 1)
∣∣ = |V1| · · · |Vk−1|.

3 Permutations, matchings, and Baranyai’s
theorem

Fix d ∈ N and a finite set X. Let
(
X
d

)
! denote the symmetric group on

(
X
d

)
.

We say Π ⊆
(
X
d

)
! is respectful when π(D) ̸= π′(D′) for all distinct π, π′ ∈ Π

and for all D,D′ ∈
(
X
d

)
with nonempty intersection. We wish to show that

there exist respectful families Π ⊆
(
X
d

)
! of at least a certain size.

Fact 3.1. There exists a respectful family Π ⊆
(
X
d

)
! satisfying |Π| ≥⌈

|X|/d
⌉
− d.
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Fact 3.1 will be a fairly easy corollary of Baranyai’s theorem [2] on decom-
positions of

(
X
d

)
into perfect matchings. For this, recall that a matching

D ⊂
(
X
d

)
is pairwise disjoint and is perfect when X =

⋃
D∈D D. A family D

of matchings D ⊂
(
X
d

)
decomposes

(
X
d

)
when

(
X
d

)
=

⋃
D∈D D is a partition.

Theorem 3.2 (Baranyai [2]).
(
X
d

)
admits a decomposition into perfect

matchings if and only if d divides |X|.

The following approximate version of Theorem 3.2 is a corollary thereof.

Corollary 3.3.
(
X
d

)
admits a decomposition into matchings each of size at

least
⌈
|X|/d

⌉
− d.

For completeness, we derive Corollary 3.3 from Theorem 3.2. We then use
Corollary 3.3 to prove Fact 3.1.

Proof of Corollary 3.3

The result follows from Theorem 3.2 if d divides |X|, so assume otherwise.
Let |X| = dq + r for an integer 1 ≤ r < d. Let W be a (d− r)-set disjoint
from X and let Y = W ∪̇X. Fix a decomposition D of

(
Y
d

)
into perfect

matchings. From each D ∈ D, remove all D ∈ D meeting W to form a
(sub)matching D∗ ⊂ D and a family D∗ =

{
D∗ : D ∈ D

}
. Every matching

D∗ ∈ D∗ resides entirely in X and has size
∣∣D∗∣∣ ≥ |D| − |W | =

(
|Y |/d

)
− (d− r) ≥

⌈
|X|/d

⌉
− d.

Now, D∗ decomposes
(
X
d

)
. Indeed, fix D ∈

(
X
d

)
. Since

(
X
d

)
⊂

(
Y
d

)
, some

D ∈ D holds D. But D ⊆ X so D ∈ D∗ ∈ D∗. Moreover, disjoint
D1,D2 ∈ D yield disjoint submatchings D∗

1 ,D∗
2 ∈ D∗. 2

Proof of Fact 3.1

Set m =
⌈
|X|/d

⌉
− d. We define a respectful Π =

{
πi : 0 ≤ i ≤ m− 1

}
⊂(

X
d

)
!. Let D be the decomposition of

(
X
d

)
guaranteed by Corollary 3.3. We

define each πi ∈ Π piecewise on each D = {Dj : j ∈ Z|D|} ∈ D in a cyclic
way (treating i as an element of Z|D|):

πi(Dj) = Di+j ∈ D. (8)
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Then πi(Dj) = πi′(Dj) holds only when i = i′ because |D| ≥ m by The-

orem 3.3. Moreover, πi is defined on each D ∈
(
X
d

)
because some D ∈ D

holds D. To prove Fact 3.1, fix πa, πb ∈ Π, D ∈ D ∈ D, and D′ ∈ D′ ∈ D,
and write D = Dj and D′ = D′

j′ for some j ∈ Z|D| and j′ ∈ Z|D′|.

Bijectivity. Let a = b = i and πi(Dj) = πi(D
′
j′). Then D = D′ from (8)

because πi(Dj) ∈ D and πi(D
′
j′) ∈ D′ aligned in the pairwise disjoint

D. Also from (8) is

Di+j = πi(Dj) = πi(Dj′) = Di+j′

so j ≡ j′ (mod |D|) and Dj = D′
j′ .

Respectfulness. Let a ̸= b and Dj ∩D′
j′ ̸= ∅. First, let Dj = D′

j′ , whence
D = D′. Then πa(Dj) = Da+j and πb(Dj) = Db+j are distinct from
a ̸= b and a + j ̸≡ b + j (mod |D|). Next, let Dj ̸= D′

j′ . From
their meeting follow D ̸= D′ (as matchings), D ∩ D′ = ∅ (in D), and
πa(Dj) ̸= πb(D

′
j′)

(
in D and D′). 2

4 Proof of Theorem 1.2: the sequence in (5)

Throughout this proof, we assume that k ≥ 2 and that the following
strengthening of (3) holds:

|Vi| ≥ ai
(|Vi+1|

ai+1

)
+ a2i and |Vk| ≥ ak + a2k (9)

for all 1 ≤ i ≤ k − 1. For the purposes of (5), fix an integer

1
(9)

≤ rk ≤
(
|Vk|/ak

)
− ak. (10)

We inductively construct a sequence

Zk =
(
Zι(k) : ι ∈ I

)
∈ Z(V k,ak)× · · · × Z(V k,ak) (11)

of |I| = rk specially indexed (explained later in context) and pairwise edge-
disjoint entries each satisfying

∣∣Zι(k)
∣∣ = z(V k−1,ak−1)

(|Vk|
ak

)
+ (ak − 1)|V1| · · · |Vk−1|. (12)

The choice of rk in (10) is suitable for an application of Fact 3.1, so we are
guaranteed a henceforth fixed and respectful family Πk ⊆

(
Vk

ak

)
! of size

|Πk| = rk
(10)

≤
(
|Vk|/ak

)
− ak ≤

⌈
|Vk|/ak

⌉
− ak. (13)
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For k ≥ 3, the choice rk−1 =
(|Vk|

ak

)
inductively satisfies (10) because

1 ≤ rk−1 =
(|Vk|

ak

) (9)

≤
(
|Vk−1|/ak−1

)
− ak−1. (14)

We proceed to our inductive construction of (11).

The base k = 2

We construct the following r2-sequence Z2 =
(
Zπ(2) : π ∈ Π2

)
(cf. (13)):

(i) fix a partition

V1 = R ∪̇
⋃̇{

ZA2
: A2 ∈

(
V2

a2

)}
,

where each A2 ∈
(
V2

a2

)
satisfies

∣∣ZA2

∣∣ = a1 − 1, which is possible by

|V1|
(9)

≥ a1
(|V2|

a2

)
+ a21 ≥ (a1 − 1)

(|V2|
a2

)
;

(ii) fix a partition

V2 = Q ∪̇
⋃̇{

Yπ : π ∈ Π2

}
,

where each π ∈ Π2 satisfies
∣∣Yπ

∣∣ = a2−1, which is possible1 for a2 ≥ 2
by

|V2|/(a2 − 1) ≥ |V2|/a2 ≥
(
|V2|/a2

)
− a2

(10)

≥ r2
(13)
= |Π2|;

(iii) for each π ∈ Π2, define the edge-disjoint union (of complete bipartite
graphs2)

Zπ(2) = K
[
R, Yπ

]
∪̇

⋃̇{
K
[
Zπ(A2), A2

]
: A2 ∈

(
V2

a2

)}
.

We will repeatedly use the observation that, for every (v1, π) ∈ V1 × Π2,
the neighborhood in Zπ(2) of v1 is

NZπ(2)(v1) =

{
Yπ when v1 ∈ R,

A2 when v1 ∈ Zπ(A2) for A2 ∈
(
V2

a2

)
.

(15)

1Trivially, Q = V2 when a2 = 1.
2Here, and for sets X and Y unrelated to any above, K[X,Y ] =

{
{x, y} : x ∈ X, y ∈ Y

}
.
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We now show that Z2 =
(
Zπ(2) : π ∈ Π2

)
satisfies the properties of (11).

For that, fix π ̸= π′ ∈ Π2.

Claim.
∣∣Zπ(2)

∣∣ = z(V 1,a1)
(|V2|

a2

)
+ (a2 − 1)|V1|, so Zπ(2) satisfies (12)

with k = 2.

Proof. By (i)–(iii),

∣∣Zπ(2)
∣∣ =

∣∣Yπ

∣∣|R|+
∑

A2∈(V2
a2
)
|A2|

∣∣Zπ(A2)

∣∣

= (a2 − 1)
(
|V1| − (a1 − 1)

(|V2|
a2

))
+ a2(a1 − 1)

(|V2|
a2

)
,

which is (a1 − 1)
(|V2|

a2

)
+ (a2 − 1)|V1|, and where z(V 1,a1) = a1 − 1 holds

trivially.

Claim. Zπ(2) ∈ Z(V 2,a2).

Proof. Fix (A1, A2) ∈
(
V1

a1

)
×

(
V2

a2

)
and α1 ∈ A1 \ Zπ(A2) ̸= ∅. We seek

α2 ∈ A2 \ NZπ(2)(α1)
(
cf. (15)

)
. For α1 ∈ R, pick α2 ∈ A2 \ Yπ ̸= ∅. For

α1 ∈ Zπ(A′
2)

with A′
2 ∈

(
V2

a2

)
\ {A2}, pick α2 ∈ A2 \A′

2 ̸= ∅.
Lemma 4.1. Zπ(2) and Zπ′(2) are edge-disjoint.

Proof. Fix v1 ∈ V1. We show NZπ(2)(v1) ∩NZπ′ (2)(v1) = ∅
(
cf. (15)

)
. For

v1 ∈ R, these sets are Yπ and Yπ′ and are disjoint by π ̸= π′. For v1 ∈
Zπ(A2) = Zπ′(A′

2)
with A2, A

′
2 ∈

(
V2

a2

)
, the equality π(A2) = π′(A′

2) holds in

a respectful family Π2 ⊆
(
V2

a2

)
! with π ̸= π′, so the a2-sets A2 = NZπ(2)(v1)

and A′
2 = NZπ′ (2)(v1) must be disjoint.

The inductive step k ≥ 3

This step is a formal generalization of the base step. First, we invoke

induction on Z(V k−1,ak−1) with rk−1 =
(|Vk|

ak

)
from (14) to construct an

rk−1-sequence

Zk−1 =
(
ZAk (k−1) : Ak ∈

(
Vk
ak

))
∈ Z(V k−1,ak−1)×· · ·×Z(V k−1,ak−1) (16)

of pairwise edge-disjoint entries each satisfying

∣∣ZAk
(k − 1)

∣∣ = z(V k−1,ak−1). (17)

This appeal to induction uses the tacit feature from (9) that |Vk−1| ≥
ak−1

(|Vk|
ak

)
+ a2k−1 ≥ ak−1 + a2k−1. Next, we complete (11) by constructing

the following rk-sequence Zk =
(
Zπ(k) : π ∈ Πk

)
(cf. (13)):
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(i) fix the edge-partition
(
of the complete (k − 1)-partite (k − 1)-graph

)

K(k−1)[V1, . . . , Vk−1] = R(k − 1) ∪̇
⋃̇{

ZAk
(k − 1) : Ak ∈

(
Vk

ak

)}
,

which is possible by (16);

(ii) fix a partition

Vk = Qk ∪̇
⋃̇{

Yπ : π ∈ Πk

}
,

where each π ∈ Πk satisfies |Yπ| = ak−1, which is possible3 for ak ≥ 2
by

|Vk|/(ak − 1) ≥ |Vk|/ak ≥
(
|Vk|/ak

)
− ak

(10)

≥ rk
(13)
=

∣∣Πk

∣∣;

(iii) for each π ∈ Πk, we will define the following edge-disjoint unions

Zπ(k) = K(k)[R(k− 1), Yπ

]
∪̇

⋃̇{
K(k)[Zπ(Ak)(k− 1), Ak

]
: Ak ∈

(
Vk
ak

)}

to consist of all {v1, . . . , vk−1, vk} satisfying either

(
{v1, . . . , vk−1}, vk

)
∈ R(k − 1)× Yπ

or (
{v1, . . . , vk−1}, vk

)
∈ Zπ(Ak)(k − 1)×Ak

for some Ak ∈
(
Vk

ak

)
.

We will repeatedly use that, for every (v1, . . . , vk−1, π) ∈ V1×· · ·×Vk−1×Πk,
the neighborhood in Zπ(k) of (v1, . . . , vk−1) is

NZπ(k)

(
(v1, . . . , vk−1)

)

=

{
Yπ when {v1, . . . , vk−1} ∈ R(k − 1),

Ak when {v1, . . . , vk−1} ∈ Zπ(Ak)(k − 1) for Ak ∈
(
Vk
ak

)
.

(18)

We now show that Zk =
(
Zπ(k) : π ∈ Πk

)
satisfies the properties of (11).

For that, fix π ̸= π′ ∈ Πk.

Claim.
∣∣Zπ(k)

∣∣ = z
(
V k−1,ak−1

)(|Vk|
ak

)
+ (ak − 1)|V1| · · · |Vk|, so Zπ(k)

satisfies (12).

3Trivially, Qk = Vk when ak = 1.
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Proof. By (i)–(iii),

∣∣Zπ(k)
∣∣ = |Yπ|

∣∣R(k−1)
∣∣+

∑
Ak∈(Vk

ak
)
|Ak|

∣∣Zπ(Ak)(k−1)
∣∣

(17)
= (ak−1)

(
|V1| · · · |Vk−1|−

(|Vk|
ak

)
z
(
V k−1,ak−1

))
+akz

(
V k−1,ak−1

)(|Vk|
ak

)

which is (12).

Claim. Zπ(k) ∈ Z(V k,ak).

Proof. Fix (A1, . . . , Ak) ∈
(
V1

a1

)
× · · · ×

(
Vk

ak

)
. Some α = (α1, . . . , αk−1) ∈

A1 × · · · ×Ak−1 satisfies

{α1, . . . , αk−1} ̸∈ Zπ(Ak)(k − 1)

as the latter avoids ak−1 (cf. (16)). We seek αk ∈ Ak \NZπ(k)(α)
(
cf. (18)

)
.

For {α1, . . . , αk−1} ∈ R(k − 1), pick αk ∈ Ak \ Yπ. For {α1, . . . , αk−1} ∈
Zπ(A′

k)
(k − 1) with A′

k ∈
(
Vk

ak

)
\ {Ak}, pick αk ∈ Ak \A′

k.

Lemma 4.2. Zπ(k) and Zπ′(k) are edge-disjoint.

Proof. Fix v = (v1, . . . , vk−1) ∈ V1 × · · · × Vk−1. We show NZπ(k)(v) ∩
NZπ′ (k)(v) = ∅

(
cf. (18)

)
. For {v1, . . . , vk−1} ∈ R(k − 1), these sets are Yπ

and Yπ′ and are disjoint by π ̸= π′. For {v1, . . . , vk−1} ∈ Zπ(Ak)(k − 1) =

Zπ′(A′
k)
(k − 1) with Ak, A

′
k ∈

(
Vk

ak

)
, the equality π(Ak) = π′(A′

k) holds in a

respectful family Πk ⊆
(
Vk

ak

)
! with π ̸= π′, so the ak-sets Ak = NZπ(k)(v)

and A′
k = NZπ′ (k)(v) must be disjoint.

5 Proof of Theorem 1.2: equality under (3)

Recall the hypothesis (3): |Vi| ≥ ai
(|Vi+1|

ai+1

)
+ a2i for all 1 ≤ i ≤ k − 1.

Under (3), we show that there exists Z(k) ∈ Z(V k,ak) where |Z(k)| is the
upper bound of (2). The proof here is the case rk = 1 in Section 4. However,
for that we may simply take Πk = {ιk}, where ιk ∈

(
Vk

ak

)
! is the identity

mapping. Here, Πk is respectful by default so no appeal to Baranyai’s
theorem is needed. As such, (10) and (13) are unnecessary so we may
remove the condition |Vk| ≥ ak + a2k from Section 4. Note, moreover, that

when k = 2 in Section 4, the statement (i) needs only |V1| ≥ (a1 − 1)
(|V2|

a2

)

rather than the stronger |V1| ≥ a1
(|V2|

a2

)
+ a21 of (3). In other words, this

relaxation recovers Čuĺık’s result (Theorem 1.1).
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