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regular group divisible designs
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Abstract. Saurabh and Sinha (Bull. Inst. Combin. Appl. 95 (2022) and
Bull. Inst Combin. Appl. 97 (2023)) obtained solutions of L2-type de-
signs, semi-regular group divisible and symmetric regular group divisible
designs in the range of r, k ≤ 10 using certain combinatorial matrices. Here
by using matrix approaches, solutions of non-symmetric regular group di-
visible (RGD) designs listed in (Clatworthy, Tables of two–associate–class
partially balanced designs, U.S. Department of Commerce, National Bu-
reau of Standards, Washington, DC Report No. NBS-AMS-63, 1973) are
obtained except for a few. As special case we obtain a series of µ-resolvable
balanced incomplete block designs and quasidouble solutions of some RGD
designs.

1 Introduction

Clatworthy [3] tabulated 110 semi-regular and 209 regular group divisible
designs along with their solutions and resolvability status under the range
of r, k ≤ 10. Later Sinha [23] and Saurabh and Sinha [20] updated the table
of group divisible designs. Saurabh and Sinha [17, 19] obtained solutions of
L2-type designs, semi-regular group divisible and symmetric regular group
divisible designs in the range of r, k ≤ 10 using certain combinatorial ma-
trices.

Here solutions of the non-symmetric regular group divisible (RGD) designs
listed in Clatworthy [3] are obtained using matrix approaches except few.
As special case we obtain a series of µ-resolvable balanced incomplete block
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design and quasidouble solutions of some RGD designs. Future work will be
done on the matrix solutions of the remaining non-symmetric RGD designs
listed in Clatworthy [3], Sinha [23] and Saurabh and Sinha [20]. Some
relevant definitions in the context of the paper are as follows:

Let v = mn elements be arranged in an m× n array. An RGD design is an
arrangement of the v = mn elements in b blocks each of size k such that:

1. every element occurs at most once in a block;
2. every element occurs in r blocks;
3. every pair of elements which are in the same row of the m× n array

occur together in λ1 blocks whereas every remaining pair of elements
occur together in λ2 blocks and

4. r − λ1 > 0 and rk − vλ2 > 0.

The integers v = mn, b, r, k, λ1 and λ2 are known as parameters of the GD
design and they satisfy the relations:

bk = vr and (n− 1)λ1 + n(m− 1)λ2 = r(k − 1).

Let N be the incidence matrix of a GD design then the structure of NN ′

is given as (see Saurabh and Sinha [19] for GD association schemes):

(i) NN ′ = (r − λ1) (Im ⊗ In) + (λ1 − λ2) (Im ⊗ Jn) + λ2(Jm ⊗ Jn) or

(ii) NN ′ = (r − λ2) (In ⊗ Im)+λ2 (Jn ⊗ Jm)+(λ1 − λ2) {(Jn − In)⊗ Im} .

If the incidence matrix N of a block design D(v, b, r, k) may be partitioned
in to submatrices as: N = (N1|N2|· · ·|Nt) where each Ni(1 ≤ i ≤ t) is
a v × vµ

k matrix such that each row sum of Ni is µ then the design is
µ-resolvable.

A generalized Bhaskar Rao design GBRD(v, b, r, k, λ;G) over a group G is
a v × b array with entries from G ∪ {0} such that:

1. each row has exactly r group element entries;
2. each column has exactly k group element entries;
3. for each pair of distinct rows (x1, x2, . . . , xb) and (y1, y2, . . . , yb),

the multi-set {xiy
−1
i : i = 1, 2, . . . , b; xi, yi ̸= 0} contains each

group element exactly λ
|G| times.
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When |G| = 2, such a design is known as Bhaskar Rao design. A difference
matrix D(k, λg;G) over a group G of order g is a GBRD(k, λg, λg, k, λg;G)
i. e. difference matrices are precisely GBRDs with non-zero entries. Further
for k = λg, the difference matrix is said to be generalized Hadamard matrix,
GH(λg;G) over G of order λg with index λ, see de Launey [5].

Further replacing the group entries by 1 and leaving the others 0 in a
GBRD(v, b, r, k, λ;G), we obtain the incidence matrix of a BIBD(v, b, r, k, λ).
Since for a BIBD(v, b, r, k, λ) it is well known that bk = vr and r(k − 1) =
λ(v − 1), a GBRD(v, b, r, k, λ;G) is denoted by GBRD(v, k, λ;G).

Notations: In is the identity matrix of order n, Jv×b is the v × b matrix
all of whose entries are 1 and Jv×v = Jv, A

′ is the transpose of matrix A,
A ⊗ B is the Kronecker product of two matrices A and B, 0m×n is a zero
matrix of order m × n and en is an n × 1 column matrix with all entries
1. A (0, 1)-matrix: α = circ (0 1 0 . . . 0) is a permutation circulant matrix
of order n such that αn = In. For details on circulant matrices, see Davis
[4]. SRX and RX numbers are from Clatworthy [3]. The design number
RX(a/b/c . . .) occurs between RX and R(X+1), see Freeman [10] and Dey
[8]. Also m#X denotes m-multiple of the design number X.

EA (pn) ≈ Cp × Cp × · · · × Cp (n times) denotes the elementary abelian
group of order pn and Cp = EA(p) is a cyclic group of order p where p is
a prime. Sn, Anand Dn are permutation, alternating and dihedral groups
respectively. For the definition and construction methods of balanced in-
complete block design (BIBD) or a 2-(v, k, λ) design, see Dey [9].

2 Earlier constructions

Replacing the elements of a group G of order g by the corresponding
g × g permutation matrices and 0 entry by the g × g null matrix in a
GBRD(v, b, r, k, λ;G) we obtain:

Theorem 2.1 (Gibbons and Mathon [11]).
The existence of a GBRD(v, b, r, k, λ;G) over a group G implies the existence
of a GD design with parameters:

v∗ = vg, b∗ = bg, r∗ = r, k∗ = k, λ1 = 0, λ2 =
λ

g
, m = v, n = g.
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Further replacing the elements of a group G(= Dn/Sn/An) by the corre-
sponding n× n permutation matrices and 0 entry by n× n null matrix in
GBRD(v, b, r, k, λ;G) we obtain:

Theorem 2.2 (Saurabh and Sinha [18]).
The existence of a GBRD(v, b, r, k, λ;Dn/Sn/An) implies the existence of a
GD design with parameters:

v∗ = nv, b∗ = nb, r∗ = r, k∗ = k, λ1 = 0, λ2 = λ
n , m = v, n ≥ 3.

Theorem 2.3 (Saurabh, Sinha and Singh [16]).
There exists a GD design with parameters:

v∗ = vs, b∗ = stv, r∗ = t(k + s− 1), k∗ = k + s− 1,
λ1 = (s− 2)t, λ2 = λ, m = v, n = s,m ≥ 2, s ≥ 2, t = r

α ,

where v, k, λ are the parameters of an α-resolvable BIBD with

λ =
t[(k + s− 1)(k + s− 2)− (s− 1)(s− 2)]

s(v − 1)
.

Theorem 2.4 (Saurabh and Prasad [15]).
The existence of a BIBD with parameters: v′, r′, k′, b′, λ′ implies the
existence of a RGD with parameters: v = 3v′, r = b′ + r′, k = v′ + k′,
b = 3b′, λ1 = λ′ + b′, λ2 = r′, m = 3, n = v.

3 The constructions

Theorem 3.1. There exists a resolvable RGD design with parameters:

v = q2, b = q(qt+ s), r = qt+ s, k = q, λ1 = s, λ2 = t, m = n = q, (1)

where q is a prime or prime power.

Proof. Let G be an elementary abelian group of order q. It is well known
that a GH(q;G) always exists (see de Launey [7]). Further letM be a matrix
obtained by deleting the first column of a normalized GH(q;G) and let M1

be a (0, 1)-block matrix obtained by replacing the group entries of M by
the corresponding q × q permutation matrices.

Let N1 be a block matrix obtained by taking t copies of M1. Consider the
following block matrices:
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(i) N2 = t copies of the block matrix eq ⊗ Iq of order q2 × q arranged
column-wise and

(ii) N3 = s copies of the block matrix eq ⊗ Γq of order q2 × q arranged
column-wise where Γi(1 ≤ i ≤ q) is a q × q matrix whose i th column
contains only 1’s and 0 elsewhere.

Further let N = [N1|N2|N3]. Then

NN ′ = qt(Iq ⊗ Iq) + (s− t)(Iq ⊗ Jq) + t(Jq ⊗ Jq).

Hence N represents a RGD design with parameters (1). Since each row sum
of the block matrices eq ⊗ Iq, eq ⊗ Γq and q × q permutation matrices are
one, the design is resolvable.

Example 3.2. Consider a generalized Hadamard matrix GH(4;EA(4)) over
the elementary abelian group EA(4) = C2 × C2 = {1, a, b, c}, where a2 =
b2 = c2 = 1, ab = ba = c, ac = ca = b, and bc = cb = a. Then for s = 2,
t = 1 we obtain a resolvable RGD R118 design with parameters: v = 16,
r = 6, k = 4, b = 24, λ1 = 2, λ2 = 1, m = n = 4 and incidence matrix N
given by:

N =




Γ1 Γ1 I4 I4 I4 I4
Γ2 Γ2 I4 I2 ⊗ (J−I)2 (J−I)2 ⊗ I2 (J−I)2 ⊗ (J−I)2
Γ3 Γ3 I4 (J−I)2 ⊗ (J−I)2 I2 ⊗ (J−I)2 (J−I)2 ⊗ I2
Γ4 Γ4 I4 (J−I)2 ⊗ I2 (J−I)2 ⊗ (J−I)2 I2 ⊗ (J−I)2


 .

Theorem 3.3. The existence of a BIBD with parameters:

v′, b′, r′, k′ = 2, λ

implies the existence of RGD designs with parameters for s, t ≥ 1:

(a)
v = 2v′, b = 2sb′ + t(v′)2, r = sr′ + v′t,
k = 2, λ1 = sλ, λ2 = t, m = 2, n = v′

(2)

(b)
v = 2v′, b = 2sb′ + v′(t+ s (v′−1)), r = s(r′ + λ (v′−1)) + t,
k = 2, λ1 = t, λ2 = sλ, m = v′, n = 2.

(3)

Proof. Let M be the incidence matrix of the BIBD with parameters:

v′, b′, r′, k′ = 2, λ.

Consider the following block matrices:

1. N1 = s copies of block matrix I2 ⊗M arranged columnwise;
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2. N2 = t copies of block matrix e2 ⊗ Iv′ arranged columnwise and

3. N3 = t copies of block matrix: L =

(
Iv′ Iv′ Iv′ · · · Iv′

α α2 α3 · · · αv′−1

)
,

where α = circ(0 1 0 . . . 0) is a permutation circulant matrix of order
v′.

Let N = [N1|N2|N3] . Then it may be verified that

NN ′ = (s (r′ − λ) + v′t) (I2 ⊗ Iv′) + t ((J2 − I2)⊗ Jv′) + sλ (I2 ⊗ Jv′) .

Hence N represents a RGD design with parameters (2).

Further let N1, N2 and L be same as above and N3 = sλ copies of L. Let
N = [N1|N2|N3] . Then it is easy to verify that

NN ′ = (s(r′ + λv′ − 2λ) + t) (I2 ⊗ Iv′) + sλ (J2 ⊗ Jv′)

+ (t− sλ) {(J2 − I2)⊗ Iv′} .

Hence N represents a RGD design with parameters (3.7).

Example 3.4. Consider a BIBD with parameters:

v′ = 4, b′ = 6, r′ = 3, k′ = 2, λ = 1.

Then for s = 2, t = 1, we obtain a RGD design R32 with parameters:

v = 8, r = 10, k = 2, b = 40, λ1 = 2, λ2 = 1,m = 2, n = 4

whose incidence matrix N is given as:

N =

(
M 04×6

04×6 M

∣∣∣∣
M 04×6

04×6 M

∣∣∣∣
I4
I4

∣∣∣∣
I4 I4 I4
α α2 α3

)
,

where M represents a BIBD with parameters:

v′ = 4, b′ = 6, r′ = 3, k′ = 2, λ = 1

and α = circ(0 1 0 0) is a permutation circulant matrix of order four.

Theorem 3.5. There exists a (p− 1)-resolvable RGD design with parame-
ters:

v = p2, r = (p− 1)(s+ tp), k = p− 1,
b = p2(s+ tp), λ1 = s(p− 2), λ2 = t(p− 2), m = n = p,

(4)

where p is a prime.
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Proof. Consider the following block matrices:

(i) N1 = s copies of block matrix Ip ⊗ (J − I)p arranged columnwise;

(ii) N2 = t copies of block matrix (J − I)p ⊗ Ip arranged columnwise and

(iii) N3 = t copies of block circulant matrix

(M1|M2|· · ·|Mp−1) =(
circ(0p α α2 · · ·αp−1)

∣∣∣circ(0p α2(α2)
2 · · · (α2)

p−1
)
∣∣∣· · ·

· · ·
∣∣∣circ(0p αp−1 (αp−1)

2 · · · (αp−1)
p−1

)
)

arranged columnwise where α = circ(0 1 0 0 . . . 0) is a permutation circu-
lant matrix of order p.

Let N = [N1|N2|N3] . Then

NN ′ = (s+ tp(p− 1)) (Ip ⊗ Ip)+(p−2)(s−t) (Ip ⊗ Jp)+t(p−2) (Jp ⊗ Jp) .

Hence N represents a RGD design with parameters (4). Further since each
row sum of the block matrices Ip ⊗ (J − I)p, (J − I)p ⊗ Ip and Mi(1 ≤ i ≤
p− 1) is (p− 1), the design is (p− 1)-resolvable.

For s = t = 1 in Theorem 3.5, we obtain:

Corollary 3.6. There exists a (p− 1)-resolvable BIBD with parameters:

v = p2, r = p2 − 1, k = p− 1, b = p2(p+ 1), λ = p− 2.

Example 3.7. For p = 3, we obtain a 2-resolvable BIBD with parameters:

v = 9, r = 8, k = 2, b = 36, λ = 1

whose incidence matrix N is given below:

N = [N1|N2|N3]

=



(J − I)3 03 03

03 (J − I)3 03
03 03 (J − I)3

∣∣∣∣∣∣

03 I3 I3
I3 03 I3
I3 I3 03

∣∣∣∣∣∣

03 α α2 03 α2 α
α2 03 α α 03 α2

α α2 03 α2 α 03


 .

Theorem 3.8. There exists a RGD design with parameters:

v = 3n, b = 3n2, r = 2n, k = 2, λ1 = 0, λ2 = 1, m = 3, n. (5)
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Proof. Let α = circ(0 1 0 . . . 0 . . . 0) be a permutation circulant matrix of
order n. Consider the following block matrices:

(i) N1 =



0n 0n 0n · · · 0n 0n
α α2 α3 · · · αn−1 In
In In In · · · In In


;

(ii) N2 =



In In In · · · In In
0n 0n 0n · · · 0n 0n
α α2 α3 · · · αn−1 In


 and

(iii) N3 =




α α2 α3 · · · αn−1 In
In In In · · · In In
0n 0n 0n · · · 0n 0n


.

Further let N = (N1|N2|N3). Then we have

(i) Since each column sum of N is 2, the block size is k = 2;

(ii) NN ′ = (N1|N2|N3)



N1

′

N2
′

N3
′


 =



2nIn Jn Jn
Jn 2nIn Jn
Jn Jn 2nIn




= 2n (I3 ⊗ In) + {(J − I)3 ⊗ Jn} .

Hence N represents a GD design with parameters (5).

Example 3.9. Using Theorem 3.8 we obtain a solution of a RGD design
R34: v = 9, r = 6, k = 2, b = 27, λ1 = 0, λ2 = 1, m = n = 3 whose
incidence matrix is:

N = (N1|N2|N3) =



03 03 03
α α2 I3
I3 I3 I3

∣∣∣∣∣∣

I3 I3 I3
03 03 03
α α2 I3

∣∣∣∣∣∣

α α2 I3
I3 I3 I3
03 03 03


, where α =

circ(0 1 0).

Theorem 3.10. There exists a p-resolvable RGD design with parameters:

v = p2 + p, r = p2, k = p, b = p2(p+ 1),
λ1 = 0, λ2 = p− 1, m = p+ 1, n = p,

(6)

where p ≥ 3 is a prime.
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Proof. Let α = circ(0 1 0 0 . . . 0) be a permutation circulant matrix of
order p. Consider the following block matrices:

(i) N1 = (M1|M2|· · ·|Mp−1)

=
(
circ(0p Ip α α2 · · ·αp−1)

∣∣∣circ(0p Ip α2(α2)
2 · · · (α2)

p−1
)
∣∣∣· · ·

· · ·
∣∣∣circ(0p Ip αp−1 (αp−1)

2 · · · (αp−1)
p−1

)
)

be a block circulant matrix arranged columnwise;

(ii) N2 be a block matrix (J − I)p+1 ⊗ Ip arranged columnwise.

Let N = (N1|N2) . Then NN ′ = p2 (Ip+1 ⊗ Ip)+ (p− 1) {(J − I)p+1 ⊗ Jp}.
Hence N represents a RGD design with parameters (6). Since each row
sum of the block matrices Mi(1 ≤ i ≤ p − 1) and N2 is p, the design is
p-resolvable.

Example 3.11. Let α = circ(0 1 0) be a permutation circulant matrix.
Consider the following block matrix:

N = (N1|N2|N3)

=




03 I3 α α2

α2 03 I3 α
α α2 03 I3
I3 α α2 03

∣∣∣∣∣∣∣∣

03 I3 α2 α
α 03 I3 α2

α2 α 03 I3
I3 α2 α 03

∣∣∣∣∣∣∣∣

03 I3 I3 I3
I3 03 I3 I3
I3 I3 03 I3
I3 I3 I3 03


 ,

which represents a 3-resolvable RGD design R75 with parameters:

v = 12, r = 9, k = 3, b = 36, λ1 = 0, λ2 = 2, m = 4, n = 3.

Theorem 3.12. There exists a RGD design with parameters:

v = q2 − q, b = q(2q − 1), r = 2q − 1, k = q − 1,
λ1 = q − 2, λ2 = 1, m = q − 1, n = q,

(7)

where q is a prime or prime power.

Proof. Let N1 = Iq−1⊗(J − I)q be a square matrix of order q2−q and G be

an elementary abelian group. Further let N2 be a (q2−q)×q2 matrix that is
produced by substituting group elements from the respective permutation
matrices and a null matrix for the zero entry in a GH (q;G) with one row
removed.

Let N = (N1|N2). Then

NN ′ = 2q (Iq−1 ⊗ Iq) + (q − 3) (Iq−1 ⊗ Jq) + Jq−1 ⊗ Jq.

Hence N represents a RGD design with parameters (7).
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Example 3.13. For q = 4, N is the incidence matrix of a RGD design R72
with parameters:

v = 12, r = 7, k = 3, b = 28, λ1 = 2, λ2 = 1, m = 3, n = 4.

N =



(J−I)4 04 04

04 (J−I)4 04
04 04 (J−I)4

∣∣∣∣∣∣

I4 I4 I4 I4
I4 I2⊗(J−I)2 (J−I)2⊗I2 (J−I)2⊗(J−I)2
I4 (J−I)2⊗(J−I)2 I2⊗(J−I)2 (J−I)2⊗I2


 .

4 Quasidouble solutions

Trivially, by taking m copies of a given D(v, r, k, b) design, we obtain a
D(v,mr, k, bm) design which is called the m-multiple of the design. A
D(v,mr, k, bm) design is called a quasi-multiple if it is not a m-multiple
of any D(v, r, k, b) design. We use the abbreviation quasidouble instead of
2-multiple or quasi 2-multiple, respectively. The interested reader can find
many constructions for small quasimultiple affine and projective planes in
Buratti [2] and Jungnickel [12, 13]. An interesting quasidouble of the affine
plane of order four has been recently discovered by Pavone [14].

Quasidouble solutions of some RGD designs are given below. For these
designs an m-multiple solution is reported in Clatworthy [3]. The notation
GBRD(v, k, λ;G) used below may be found in deLauney [6].

(1) R23 : v = 6, r = 8, k = 2, b = 24, λ1 = 0, λ2 = 2, m = 3, n = 2.

Solution: Replace 0→02, 1→I2,−1→(J − I)2 in a GBRD(3, 2, 4;Z2).

(2) R55 : v = 8, r = 6, k = 3, b = 16, λ1 = 0, λ2 = 2, m = 4, n = 2.

Solution: Replace 0→02, 1→I2,−1→(J − I)2 in a GBRD(4, 3, 4;Z2).

(3) R113 : v = 14, r = 8, k = 4, b = 28, λ1 = 0, λ2 = 2, m = 7, n = 2.

Solution: Replace 0→02, 1→I2,−1→(J − I)2 in a GBRD(7, 4, 4;Z2).

(4) R116 : v = 15, r = 8, k = 4, b = 30, λ1 = 0, λ2 = 2, m = 5, n = 3.

Solution: Replace 0→03, 1→I3, α→circ(0 1 0 ), α2→
(circ(0 0 1 ) in a GBRD(5, 4, 6;C3) where C3 = {1, α, α2} is a cyclic
group of order 3.

(5) R136 : v = 8, r = 10, k = 5, b = 16, λ1 = 4, λ2 = 6, m = 4, n = 2.

Solution: J8×16 −N where N is the incidence matrix of R55.
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(6) R147 : v = 12, r = 10, k = 5, b = 24, λ1 = 0, λ2 = 4, m = 6, n = 2.

Solution: Replace 0→02, 1→I2,−1→(J − I)2 in a GBRD(6, 5, 8;Z2).

(7) R154 : v = 24, r = 10, k = 5, b = 48, λ1 = 0, λ2 = 2, m = 6, n = 4.

Soultion: Consider the following GBRD(6, 5, 8;C4) as given in Gib-
bons and Mathon [11]:

A =




1 1 1 1 1 1 1 1 1 1 0 0
1 α α2 α3 α3 1 α α2 0 0 1 1
1 α2 α α3 α2 α 0 0 1 α3 α2 α2

1 α3 α3 α2 0 0 1 α2 α α α α2

1 1 0 0 α3 α2 α2 α α3 α α2 α
0 0 1 α α3 α 1 α2 α2 α3 α3 α




where C4 = {1, α, α2, α3} is a cyclic group of order 4. Replace
0→04, 1→I4, α→circ(0 1 0 0), α2→circ(0 0 1 0), α3→circ(0 0 0 1) in
A to obtain a quasidouble solution of R154.

5 Tables of designs

This section contains Tables 5.1 and 5.2 of non-symmetric RGD designs
listed in Clatworthy [3] constructed using the present theorems. The com-
plement of designs and the designs obtained by duplication are not included
in the Tables.

Table 5.1: Non-symmetric RGD designs

No. RX:(v, r, k, b, λ1, λ2,m, n) Source

1 R1: (4, 4, 2, 8, 2, 1, 2, 2) Th. 3.1; GH(2;C2); s = 2, t = 1

2 R19: (6, 6, 2, 18, 2, 1, 3, 2) Th. 3.3(b); s = 1, t = 2; 2-(3,2,1) design

3 R20: (6, 7, 2, 21, 2, 1, 2, 3) Th. 3.3(a); s = 2, t = 1

4 R21: (6, 7, 2, 21, 3, 1, 3, 2) Th. 3.3(b); s = 1, t = 3

5 R22: (6, 8, 2, 24, 4, 1, 3, 2) Th. 3.3(b); s = 1, t = 4

6 R24: (6, 8, 2, 24, 1, 2, 2, 3) Th. 3.3(a); s = 1, t = 2

7 R25: (6, 9, 2, 27, 3, 1, 2, 3) Th. 3.3(a); s = 3, t = 1
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Table 5.1: Non-symmetric RGD designs

No. RX:(v, r, k, b, λ1, λ2,m, n) Source

8 R26: (6, 9, 2, 27, 5, 1, 3, 2) Th. 3.3(b); s = 1, t = 5

9 R27: (6, 9, 2, 27, 1, 2, 3, 2) Th. 3.3(b); s = 2, t = 1

10 R28: (6, 10, 2, 30, 6, 1, 3, 2) Th. 3.3(b); s = 1, t = 6

11 R29: (8, 6, 2, 24, 0, 1, 4, 2) Th.6(b); s = 1, t = 0; 2-(4,2,1) design

12 R30: (8, 8, 2, 32, 2, 1, 4, 2) Th. 3.3(b); s = 1, t = 2

13 R31: (8, 9, 2, 36, 3, 1, 4, 2) Th. 3.3(b); s = 1, t = 3

14 R32: (8, 10, 2, 40, 2, 1, 2, 4) Th.6(a); s = 2, t = 1

15 R33: (8, 10, 2, 40, 4, 1, 4, 2) Th. 3.3(b); s = 1, t = 4

16 R34: (9, 6, 2, 27, 0, 1, 3, 3) Th. 3.8

17 R35: (9, 10, 2, 45, 2, 1, 3, 3) Th. 3.5

18 R36: (10, 8, 2, 40, 0, 1, 5, 2) Th. 3.3(b); s = 1, t = 0

19 R38: (12, 8, 2, 48, 0, 1, 3, 4) Th. 3.8

20 R39: (12, 9, 2, 54, 0, 1, 4, 3) Th. 2.1; GBRD(4, 2, 3;C3)

21 R40: (12, 10, 2, 60, 0, 1, 6, 2) Th. 3.3(b); s = 1, t = 0; 2-(6,2,1) design

22 R41: (15, 10, 2, 75, 0, 1, 3, 5) Th. 3.8

23 R46: (6, 7, 3, 14, 2, 3, 3, 2) R42+SR19

24 R48: (6, 8, 3, 16, 4, 3, 3, 2) 2#R42+ SR18

25 R51: (6, 9, 3, 18, 2, 4, 3, 2) R42+SR20

26 R59: (9, 5, 3, 15, 2, 1, 3, 3) Th. 3.1; GH(3;C3); s = 2, t = 1

27 R70: (12, 5, 3, 20, 0, 1, 6, 2) Th. 2.1; GBRD(6, 3, 2;C2)

28 R72: (12, 7, 3, 28, 2, 1, 3, 4) Th. 3.12

29 R75: (12, 9, 3, 36, 0, 2, 4, 3) Th. 3.10

30 R76: (12, 10, 3, 40, 4, 1, 3, 4) Th. 3.12; N = (2#N1|N2)

31 R79: (14, 6, 3, 28, 0, 1, 7, 2) Th. 2.1; GBRD(7, 3, 2;C2)

32 R86: (16, 6, 3, 32, 0, 1, 4, 4) Th. 2.1; GBRD(4, 3, 4;EA(4))

33 R88: (18, 8, 3, 48, 0, 1, 9, 2) Th. 2.1; GBRD(9, 3, 2;C2)

34 R90: (20, 9, 3, 60, 0, 1, 10, 2) Th. 2.1; GBRD(10, 3, 2;C2)

35 R91: (21, 9, 3, 63, 0, 1, 7, 3) Th. 2.1; GBRD(7, 3, 3;C3)
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Table 5.1: Non-symmetric RGD designs

No. RX:(v, r, k, b, λ1, λ2,m, n) Source

36 R92: (24, 9, 3, 72, 0, 1, 4, 6) Th. 2.1; GBRD(4, 3, 6;D3)/GBRD(4, 3, 6;C6)

37 R93: (24, 10, 3, 80, 0, 1, 6, 4) Th. 2.1; GBRD(6, 3, 4;EA(4))

38 R106: (10, 8, 4, 20, 0, 3, 5, 2) Th. 2.3

39 R118: (16, 6, 4, 24, 2, 1, 4, 4) Th. 3.1; GH(4;EA(4)); s = 2, t = 1

40 R124: (20, 9, 4, 45, 3, 1, 4, 5) Th. 3.12

41 R125: (24, 7, 4, 42, 0, 1, 8, 3) Th. 2.1; GBRD(8, 4, 3;C3)

42 R128: (26, 8, 4, 52, 0, 1, 13, 2) Th. 2.3

43 R129: (27, 8, 4, 54, 0, 1, 9, 3) Th. 2.1; GBRD(9, 4, 3;C3)

44 R131a: (30, 8, 4, 60, 0, 1, 5, 6) Saurabh and Sinha [21]

45 R132a: (36, 10, 4, 90, 0, 1, 6, 6) Saurabh and Sinha [21]

46 R150: (15, 10, 5, 30, 2, 3, 5, 3) Th. 2.3

47 R152a: (22, 10, 5, 44, 0, 2, 11, 2) Th. 2.1; GBRD(11, 5, 2;C2) Freeman [10]

48 R155: (25, 7, 5, 35, 2, 1, 5, 5) Th. 3.1; GH(5;C5); s = 2, t = 1

49 R160: (39, 10, 5, 78, 2, 1, 13, 3) Th. 2.3

50 R167: (12, 9, 6, 18, 7, 3, 3, 4) Th. 2.4

51 R184: (49, 9, 7, 63, 2, 1, 7, 7) Th. 3.1; GH(7;C7); s = 2, t = 1

52 R185: (49, 10, 7, 70, 3, 1, 7, 7) Th. 3.1; GH(7;C7); s = 3, t = 1

53 R192: (64, 10, 8, 80, 2, 1, 8, 8) Th. 3.1; GH(8;EA(8)); s = 2, t = 1

The generalized Bhaskar Rao designs and generalized Hadamard matrices
used in Table 5.1 may be found in de Launey [6] and de Launey [7]. The
RGD designs R2, R3, . . . , R17 may be obtained using GH(2;C2); R60, R61,
. . . , R68 may be obtained using GH(3;C3); R119,. . . , R123 may be obtained
using GH(4;EA(4)) and R156, R157, R158 may be obtained GH(5;C5) for
different values of s and t in Theorem 3.1. RGD designs may also be ob-
tained from BIBDs as follows:

Let ‘m’ groups of a GD design be treated as blocks. Then annexing ‘c’ copies
of these ‘m’ groups to ‘b’ blocks of a BIBD with parameters:

v = mk, b, r, k, λ;

we obtain:
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Proposition 5.1. The existence of a BIBD with parameters:

v = mk, b, r, k, λ

implies the existence of a RGD design with parameters:

v′ = mk, b′ = b+ cm, r′ = r + c, k′ = k, λ1 = λ+ c, λ2 = λ, m, n = k.

Further let resolution class of a resolvable BIBD with parameters:

v = mk, b, r, k, λ

be repeated ‘c’ times. Then removing these repeated classes, we obtain:

Proposition 5.2. The existence of a BIBD with parameters:

v = mk, b, r, k, λ

having a resolution class repeated ‘c’ times implies the existence of a RGD
design with parameters: v′ = mk, b′ = b−cm, r′ = r−c, k′ = k, λ1 = λ−c,
λ2 = λ, m = k, n = k.

Table 5.2 lists RGD designs obtained from BIBDs using above propositions:

Table 5.2: BIBDs and Corresponding RGD designs

Using Proposition 5.1

No. BIBD(v, r, k, b, λ) c Derived RGD design:

(v, r, k, b, λ1, λ2,m, n)

1 BIBD(10, 9, 2, 45, 1) 1 R37: (10, 10, 2, 50, 2, 1, 5, 2)

2 BIBD(6, 5, 3, 10, 2) 1 R43: (6, 6, 3, 12, 3, 2, 2, 3)

2 R45: (6, 7, 3, 14, 4, 2, 2, 3)

3 R47: (6, 8, 3, 16, 5, 2, 2, 3)

4 R49: (6, 9, 3, 18, 6, 2, 2, 3)

5 R53: (6, 10, 3, 20, 7, 2, 2, 3)

3 BIBD(15, 7, 3, 35, 1) 1 R82: (15, 8, 3, 40, 2, 1, 5, 3)

2 R84: (15, 9, 3, 45, 3, 1, 5, 3)
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Table 5.2: BIBDs and Corresponding RGD designs

3 R85: (15, 10, 3, 50, 4, 1, 5, 3)

4 BIBD(8, 7, 4, 14, 3) 1 R98: (8, 8, 4, 16, 4, 3, 2, 4)

2 R100: (8, 9, 4, 18, 5, 3, 2, 4)

3 R102: (8, 10, 4, 20, 6, 3, 2, 4)

5 BIBD(28, 9, 4, 63, 1) 1 R131: (28, 10, 4, 70, 2, 1, 7, 4)

6 BIBD(10, 9, 5, 18, 4) 1 R141: (10, 10, 5, 20, 5, 4, 2, 5)

7 BIBD(28, 9, 7, 36, 2) 1 R181: (28, 10, 7, 40, 3, 2, 4, 7)

Using Proposition 5.2 (c = 1)

8 BIBD(6, 5, 2, 15, 1) R18: (6, 4, 2, 12, 0, 1, 3, 2)

9 BIBD(8, 7, 2, 28, 1) R29: (8, 6, 2, 24, 0, 1, 4, 2)

10 BIBD(12, 11, 2, 66, 1) R40: (12, 10, 2, 60, 0, 1, 6, 2)

11 BIBD(6, 10, 3, 20, 4) R52: (6, 9, 3, 18, 3, 4, 2, 3)

12 BIBD(12, 11, 3, 44, 2) R78: (12, 10, 3, 40, 1, 2, 4, 3)

13 BIBD(15, 7, 3, 35, 1) R81: (15, 6, 3, 30, 0, 1, 5, 3)

14 BIBD(12, 11, 4, 33, 3) R111: (12, 10, 4, 30, 2, 3, 3, 4)

15 BIBD(28, 9, 4, 63, 1) R130: (28, 8, 4, 56, 0, 1, 7, 4)

6 Concluding remarks

In this paper solutions of the non-symmetric regular group divisible (RGD)
designs listed in Clatworthy [3] are obtained using matrix approaches except
few. As special case we obtain a series of µ-resolvable balanced incomplete
block design and quasidouble solutions of some RGD designs. Most of the
solutions are obtained by inserting permutation circulant matrices in cer-
tain combinatorial matrices. The matrix solutions of the remaining non-
symmetric RGD designs listed in Clatworthy [3], Sinha [23] and Saurabh
and Sinha [20] will be taken up as a future work.

Quasidouble solutions are important from coding theoretic point of view.
Clatworthy [3] reported a unique solution for R23 which is the duplicate
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of R18. Here a quasidouble solution is obtained for R23 and hence the
uniqueness claim is violated.

Let the incidence matrix N of a block design D(v, r, k, b) has a decom-
position [Nij ]1≤i≤v,1≤j≤b where Nij are submatrices of suitable sizes. The
decomposition is row-wise tactical if each row sum of Nij is rij , column-wise
tactical if each column sum of Nij is kij and tactical if it is both row-wise
as well as column-wise tactical. Further the decomposition is uniform if
rij = α, kij = β, for all i, j. If each Nij is an n × n matrix, D(v, r, k, b)
is called square tactical decomposable design, STD (n). See Singh and
Saurabh [22].

Tactical decomposable designs are of interest because of their connections
with automorphisms of designs, see Bekar, Mitchel and Piper [1] and Singh
and Saurabh [22]. In this paper we have obtained some series of tactical
and square tactical decomposable RGD designs.
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