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Some matrix constructions of non-symmetric
regular group divisible designs

SHYAM SAURABH

Abstract. Saurabh and Sinha (Bull. Inst. Combin. Appl. 95 (2022) and
Bull. Inst Combin. Appl. 97 (2023)) obtained solutions of Lo-type de-
signs, semi-regular group divisible and symmetric regular group divisible
designs in the range of r, k£ < 10 using certain combinatorial matrices. Here
by using matrix approaches, solutions of non-symmetric regular group di-
visible (RGD) designs listed in (Clatworthy, Tables of two-associate—class
partially balanced designs, U.S. Department of Commerce, National Bu-
reau of Standards, Washington, DC Report No. NBS-AMS-63, 1973) are
obtained except for a few. As special case we obtain a series of u-resolvable
balanced incomplete block designs and quasidouble solutions of some RGD
designs.

1 Introduction

Clatworthy [3] tabulated 110 semi-regular and 209 regular group divisible
designs along with their solutions and resolvability status under the range
of r, k < 10. Later Sinha [23] and Saurabh and Sinha [20] updated the table
of group divisible designs. Saurabh and Sinha [17, 19] obtained solutions of
Lo-type designs, semi-regular group divisible and symmetric regular group
divisible designs in the range of r,k < 10 using certain combinatorial ma-
trices.

Here solutions of the non-symmetric regular group divisible (RGD) designs
listed in Clatworthy [3] are obtained using matrix approaches except few.
As special case we obtain a series of p-resolvable balanced incomplete block
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design and quasidouble solutions of some RGD designs. Future work will be
done on the matrix solutions of the remaining non-symmetric RGD designs
listed in Clatworthy [3], Sinha [23] and Saurabh and Sinha [20]. Some
relevant definitions in the context of the paper are as follows:

Let v = mn elements be arranged in an m x n array. An RGD design is an
arrangement of the v = mn elements in b blocks each of size k such that:

1. every element occurs at most once in a block;

2. every element occurs in 7 blocks;

3. every pair of elements which are in the same row of the m x n array
occur together in \; blocks whereas every remaining pair of elements
occur together in Ao blocks and

4. r— X1 >0and rk — vy > 0.

The integers v = mn, b, r, k, \; and Ay are known as parameters of the GD
design and they satisfy the relations:

bk=vr and (n—1A +n(m—1)A =r(k-1).

Let N be the incidence matrix of a GD design then the structure of NN’
is given as (see Saurabh and Sinha [19] for GD association schemes):

() NN = (= A) (I @ L) + (A1 — A2) (I @ o) + Ao (Jom @ o) o
(ii) NN' = (T — )\2) (In & Im>+)\2 (Jn (9 Jm>+()\1 — )\2) {(Jn — In) X Im} .

If the incidence matrix N of a block design D(v, b, r, k) may be partitioned
in to submatrices as: N = (Np|Naz|---|N;) where each N;(1 < i < t) is
a v x 9 matrix such that each row sum of N; is p then the design is

p-resolvable.

A generalized Bhaskar Rao design GBRD(v, b, 7, k, A; G) over a group G is
a v X b array with entries from G U {0} such that:

1. each row has exactly r group element entries;

2. each column has exactly k group element entries;

3. for each pair of distinct rows (z1, x2, ..., zp) and (y1, Y2, .-, Us),
the multi-set {z;y; ' : i =1, 2, ..., b; z;,5 # 0} contains each
group element exactly I%J\ times.
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SOME MATRIX CONSTRUCTIONS OF NON-SYMMETRIC RGD DESIGNS

When |G| = 2, such a design is known as Bhaskar Rao design. A difference
matriz D(k, Ag; G) over a group G of order g is a GBRD(k, \g, Ag, k, Ag; G)
i. e. difference matrices are precisely GBRDs with non-zero entries. Further
for k = A\g, the difference matrix is said to be generalized Hadamard matriz,
GH(Ag; G) over G of order Ag with index A, see de Launey [5].

Further replacing the group entries by 1 and leaving the others 0 in a
GBRD(v, b, 1, k, \; G), we obtain the incidence matrix of a BIBD(v, b, r, k, \).
Since for a BIBD(v, b, r, k, A) it is well known that bk = vr and r(k — 1) =
A(v—1), a GBRD(v,b,r, k, \; G) is denoted by GBRD(v, k, \; G).

Notations: I, is the identity matrix of order n, J,x; is the v X b matrix
all of whose entries are 1 and J,«, = J,, A’ is the transpose of matrix A,
A ® B is the Kronecker product of two matrices A and B, 0,,x, iS a zero
matrix of order m x n and e, is an n X 1 column matrix with all entries
1. A (0,1)-matrix: @ = CIRC (01 0...0) is a permutation circulant matrix
of order n such that a™ = I,,. For details on circulant matrices, see Davis
[4]. SRX and RX numbers are from Clatworthy [3]. The design number
RX(a/b/c...) occurs between RX and R(X +1), see Freeman [10] and Dey
[8]. Also m#X denotes m-multiple of the design number X.

EA(p™) = Cp x Cp x --- x Cp, (n times) denotes the elementary abelian
group of order p™ and C, = EA(p) is a cyclic group of order p where p is
a prime. S,, Apand D,, are permutation, alternating and dihedral groups
respectively. For the definition and construction methods of balanced in-
complete block design (BIBD) or a 2-(v, k, \) design, see Dey [9].

2 Earlier constructions

Replacing the elements of a group G of order g by the corresponding
g X g permutation matrices and 0 entry by the g x ¢ null matrix in a
GBRD(v, b, 7, k, A\; G) we obtain:

Theorem 2.1 (Gibbons and Mathon [11]).
The existence of a GBRD(v, b, r, k, \; G) over a group G implies the existence
of a GD design with parameters:

A
v =wg, b*=bg, r*=r, kK*=k A =0, a=—, m=v, n=g.
g

131



SAURABH

Further replacing the elements of a group G(= D,,/S,/A.) by the corre-
sponding n X n permutation matrices and 0 entry by n x n null matrix in
GBRD(v, b, 7, k, \; G) we obtain:

Theorem 2.2 (Saurabh and Sinha [18]).
The existence of a GBRD(v,b, 7, k, \; D,, /Sy /Ay) implies the existence of a
GD design with parameters:

v =nv, b*=nb, r*=r, k" =k, \y =0, )\2:%,771:’0777,23.

Theorem 2.3 (Saurabh, Sinha and Singh [16]).
There exists a GD design with parameters:

v =ws, b*=stv, r*=tlk+s—-1), k" =k+s—1,
AM=(-2)t, o=\, m=v,n=8m>2, s>2, t=1I,
where v, k, \ are the parameters of an a-resolvable BIBD with
t{k+s—1)(k+s—2)—(s—1)(s—2)]
s(v—1)

A:

Theorem 2.4 (Saurabh and Prasad [15]).

The existence of a BIBD with parameters: o', r', k', V', N implies the
existence of a RGD with parameters: v = 3v', r = b +71', k = v + ¥/,
b=30, \i=XN+V, =1, m=3,n=n0.

3 The constructions

Theorem 3.1. There exists a resolvable RGD design with parameters:

’U:q2, b:q<qt+8)a T:qt+57 k:qa A1:57 )‘2:ta m=n-=4gq, (1)

where q 1S a prime or prime power.

Proof. Let G be an elementary abelian group of order ¢. It is well known
that a GH(g; G) always exists (see de Launey [7]). Further let M be a matrix
obtained by deleting the first column of a normalized GH(¢; G) and let M;
be a (0, 1)-block matrix obtained by replacing the group entries of M by
the corresponding ¢ X ¢ permutation matrices.

Let N7 be a block matrix obtained by taking ¢ copies of M;. Consider the
following block matrices:
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(i) Ny =t copies of the block matrix e, ® I, of order ¢* x q arranged
column-wise and

(i) N3 = s copies of the block matrix e, ® I'; of order ¢* x ¢ arranged
column-wise where I';(1 <4 < q) is a ¢ x ¢ matrix whose i*" column
contains only 1’s and 0 elsewhere.

Further let N = [Ny|N3|Ns]. Then
NN’ = qt(1; @ Ig) + (s = 1)1 ® Jg) + t(Jg @ Jy).

Hence N represents a RGD design with parameters (1). Since each row sum
of the block matrices e, ® I, e ® I'y and g X ¢ permutation matrices are
one, the design is resolvable. O

Example 3.2. Consider a generalized Hadamard matrix GH(4; EA(4)) over
the elementary abelian group EA(4) = Cy x Cy = {1,a,b,c}, where a? =
2=c2=1,ab=ba =c, ac =ca =b, and bc = cb = a. Then for s = 2,
t = 1 we obtain a resolvable RGD R118 design with parameters: v = 16,
r=6,k=4,b=24, \y =2, Ay =1, m = n = 4 and incidence matrix N
given by:

Fl Fl I4 I4 I4 14
o |2 T2 L he(-D, (J-I)y,&L  (J-I),®(J-I),
s Ts L (J-1),(J-1), L&(J-I), (J-1),® I

0y Ty Lk (J-D,eL  (J-1),®(-I), L®(J-I),
Theorem 3.3. The existence of a BIBD with parameters:
b P E =20
implies the existence of RGD designs with parameters for s,t > 1:
(a) v=2", b=2sb + t(v’)z, r=sr + v’t/f, 2)
k=2, M =8\ o=t, m=2, n=v

(b) v=2", b=2st/ + V' (t+s(V'-1)), r=s("+ AV -1)) +t, (3)
k=2 =t do=8\, m=2", n=2.
Proof. Let M be the incidence matrix of the BIBD with parameters:

oV kR =2,
Consider the following block matrices:
1. Ny = s copies of block matrix I, ® M arranged columnwise;
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2. Ny =t copies of block matrix e; ® I, arranged columnwise and

I, I, I, - I,
3. N3 = t copies of block matrix: L = ((; ;2 ;3 oz”f}*)’
where o = CIRC(0 1 0...0) is a permutation circulant matrix of order

v’

Let N = [N1|N2|N3]. Then it may be verified that
NN =(s(r' =N +0't) (L@ L) +t((Jo— I2) @ Jy) + sA (T2 @ Jpr) .
Hence N represents a RGD design with parameters (2).

Further let N1, Ny and L be same as above and N3 = s\ copies of L. Let
N = [N1|N2|Ns]. Then it is easy to verify that

NN = (s(r' + M = 2X) + 1) (I @ Ly) + s\ (J2 @ Jp)
+(t—sN{(o— L)l }.
Hence N represents a RGD design with parameters (3.7). O
Example 3.4. Consider a BIBD with parameters:
V=4, =61 =3,k =2,A=1.
Then for s = 2,¢t = 1, we obtain a RGD design R32 with parameters:
v=8r=10k=2,0=40,\1 =2, s =1m=2,n=4

whose incidence matrix IV is given as:

2 3

N:(M Osxe| M Oyxe|ls
a o «

04><6 M 04><6 M I4

where M represents a BIBD with parameters:

Iy Iy I4>

V=40 =6,r"=3k=2)1=1
and « = CcIrRc(0 1 0 0) is a permutation circulant matrix of order four.

Theorem 3.5. There exists a (p — 1)-resolvable RGD design with parame-
ters:

b=p*(s+1tp), M =s(p—2), a=t(p—2), m=n=p,

where p is a prime.
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Proof. Consider the following block matrices:

(i) N1 = s copies of block matrix I, ® (J — I), arranged columnwise;
(ii) Na =t copies of block matrix (J — I), ® I,, arranged columnwise and

(iii) N3 =t copies of block circulant matrix
(My|Ma|---|Mp—1) =
(CIRC(OP aa?- -~ap_1)‘cmc(0p a?(a?)” -~-(a2)p_1)‘- .
om0, a7 (@) (@r 1))

arranged columnwise where o = CIRc(0 1 0 0...0) is a permutation circu-
lant matrix of order p.

Let N = [N1|N2|N3] . Then
NN’ = (s+tp(p—1)) (Ip @ Ip)+(p=2)(s—1t) (I, @ Jp) +t(p—2) (J, @ Jp) .

Hence N represents a RGD design with parameters (4). Further since each
row sum of the block matrices I, ® (J —1I),, (J—1),®1I, and M;(1 <i <
p—1)is (p— 1), the design is (p — 1)-resolvable. O
For s =t =1 in Theorem 3.5, we obtain:

Corollary 3.6. There exists a (p — 1)-resolvable BIBD with parameters:
v=p* r=p°—1, k=p—1, b=p*(p+1), A\=p—2.
Example 3.7. For p = 3, we obtain a 2-resolvable BIBD with parameters:
v=9r=8 k=2 b=236 \A=1

whose incidence matrix IV is given below:

N = [N1|N2|Ns]
(J — I)3 03 03 03 I3 13 03 [0 042 03 042 «
= 03 (J - I)3 03 .[3 03 Ig a2 03 o « 03 a2
03 03 (J - I)3 .[3 Ig 03 « O[2 03 a2 « 03

Theorem 3.8. There exists a RGD design with parameters:
v=3n, b=3n% r=2n, k=2 A\ =0, da=1, m=3, n. (5
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Proof. Let o« = CIRC(0 1 0...0...0) be a permutation circulant matrix of
order n. Consider the following block matrices:

(i) My a o o a™ v |
I, I, I, I, I,
I, I, I, I, I,
(ii) No= (0, 0, O, 0, 0,] and
a o ol a1t I,
a o o a1 I,
(lll) N3 = In In In In I’rl
0, 0, 0, 0, On

Further let N = (N1|N3|N3). Then we have

(i) Since each column sum of N is 2, the block size is k = 2;

Nl/ QnIn Jn Jn
(i) NN = (M|NaoNa) [ N | = [ 7 201,
Ny’ Jn Jn  2nl,

=2n(I3I,)+{(J—-1)s® J,}.

Hence N represents a GD design with parameters (5). O

Example 3.9. Using Theorem 3.8 we obtain a solution of a RGD design
R34: v=9, r=6, k=2 b=27, Ay =0, A2 =1, m = n = 3 whose
incidence matrix is:

03 03 03 Ig .[3 .[3 « a2 .[3

N = (N1|N2|N3) = o a2 [3 03 03 03 13 [3 13 s where o =
13 13 I3 « Oéz I3 03 03 03

CIRC(0 1 0).

Theorem 3.10. There exists a p-resolvable RGD design with parameters:

v=p?+p, r=p* k=p, b=pi(p+1), (©)
>\1:07 >\2:p717 m:p+1a n=p,

where p > 3 is a prime.
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Proof. Let a = CIRC(0 1 0 0...0) be a permutation circulant matrix of
order p. Consider the following block matrices:

(i) N1 = (M| Mz --|M),—1)

= (CIRC(OP I,aa?: -~ap_1)‘CIRC(Op I, a2(a2)2

.. (042):071)’. ..
om0, 1, a7t (@771 (ar 1)
be a block circulant matrix arranged columnwise;

(ii) N2 be a block matrix (J — I)p+1 ® I, arranged columnwise.

Let N = (Ny|Nz). Then NN’ =p? (Ip11 @ I,) + (p— 1) {(J = I)p41 ® Jp}.
Hence N represents a RGD design with parameters (6). Since each row
sum of the block matrices M;(1 < i < p — 1) and Ny is p, the design is
p-resolvable. O

Example 3.11. Let a = CIRC(0 1 0) be a permutation circulant matrix.
Consider the following block matrix:

N = (N1|N2|N3)

03 Ig « Oéz 03 Ig a2 (67 03 I3 Ig .[3
Ol2 03 Ig a |« 03 .[3 0[2 .[3 03 Id .[3

o « a2 03 Ig a2 « 03 13 13 I3 03 I3 ’
I3 « O¢2 03 13 a2 (% 03 [3 I3 13 03

which represents a 3-resolvable RGD design R75 with parameters:
v=12,r=9, k=3,0=36, A1 =0, Ao =2, m=4, n=3.
Theorem 3.12. There exists a RGD design with parameters:

U:qz_qa b:q(Qq_l)a T:2q_]—a k:q_la

)\lzq_27 )‘2:17m:q_17nZQ7 (7)

where q is a prime or prime power.
Proof. Let Ny = I,_1®(J — I)q be a square matrix of order ¢> —¢ and G be

an elementary abelian group. Further let Ny be a (¢? —q) x ¢> matrix that is
produced by substituting group elements from the respective permutation
matrices and a null matrix for the zero entry in a GH (¢; G) with one row
removed.

Let N = (N1|N3). Then
NN =2q(I4-1®1g) + (¢ = 3) (Ig—1 ® Jg) + Jg—1 @ Jg.
Hence N represents a RGD design with parameters (7). O
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Example 3.13. For ¢ =4, N is the incidence matrix of a RGD design R72
with parameters:

v=12, r=7, k=3, b=28, \1 =2, Ao =1, m=3, n=4.

(J-I), 04 04 |14 Iy Iy Iy
N = 04 (J=I)y, 04 |14 Le(J-I), (J-1)y®I2 (J-1)y®(J—1I),|.
04 00 (J=D), | Is (J-D)oy®(J-1)y LR(J-I)y (J—I),®I2

4 Quasidouble solutions

Trivially, by taking m copies of a given D(v,r, k,b) design, we obtain a
D(v, mr, k,bm) design which is called the m-multiple of the design. A
D(v, mr, k,bm) design is called a quasi-multiple if it is not a m-multiple
of any D(v,r, k,b) design. We use the abbreviation quasidouble instead of
2-multiple or quasi 2-multiple, respectively. The interested reader can find
many constructions for small quasimultiple affine and projective planes in
Buratti [2] and Jungnickel [12, 13]. An interesting quasidouble of the affine
plane of order four has been recently discovered by Pavone [14].

Quasidouble solutions of some RGD designs are given below. For these
designs an m-multiple solution is reported in Clatworthy [3]. The notation
GBRD(v, k, A; G) used below may be found in deLauney [6].

(1) R2Z2:v=6,r=8 k=2, b=24, \1 =0, =2, m=3, n=2.
Solution: Replace 0—02,1—1s, —1—=(J —I), in a GBRD(3,2,4; Z).
(2) RB5:v=8,r=6, k=3, b=16, A1 =0, Ao =2, m=4, n=2.
Solution: Replace 0—03,1—=1>, —1—(J — I), in a GBRD(4, 3,4; Z5).
(3) RIB:v=14, r=8, k=4, b=28 \ =0, Ao =2, m=7, n=2.
Solution: Replace 0—03,1—=1, —1—(J — I), in a GBRD(7,4,4; Z5).
(4) R16:v =15 r=8 k=4, b=30, A\ =0, Ay =2, m =5, n=3.

Solution: Replace 0—03,1—13, a—CIRC(0 1 0 ), a®—
(circ(0 0 1) in a GBRD(5,4,6;C3) where Cs3 = {1, a, a?} is a cyclic
group of order 3.

(5) R136 :v =8, r =10, k=5, b=16, \y =4, Ao =6, m=4, n = 2.

Solution: Jgx16 — IN where N is the incidence matrix of R55.
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(6) R14T:v =12, r =10, k=5, b=24, \y =0, Ao =4, m =6, n = 2.
Solution: Replace 0—03,1—=1, —1—(J — I), in a GBRD(6, 5, 8; Z3).

(7) RI54:v =24, r=10, k=5, b=48 A\ =0, Ao =2, m =6, n =4.

Soultion: Consider the following GBRD(6,5,8;Cy) as given in Gib-
bons and Mathon [11]:

11 1 1 1 1 1 1 1 1 0 0
1 o o2 &2 &> 1 a o> 0 0 1 1
A— 1 &> a o a2 a 0 0 1 a® o? «a
11 e @ @ 001 &2 a a a «
1 1 0 0 & a®> &> a o a oa® «a
0 O 1 a o a 1 o> &> & & «a
where Cy = {1,a,a? a3} is a cyclic group of order 4. Replace

0—04, 1—14, a—CIRC(0 10 0),a®?—CIRC(0 0 1 0), a®—cIrc(000 1) in
A to obtain a quasidouble solution of R154.

5 Tables of designs

This section contains Tables 5.1 and 5.2 of non-symmetric RGD designs
listed in Clatworthy [3] constructed using the present theorems. The com-
plement of designs and the designs obtained by duplication are not included
in the Tables.

Table 5.1: Non-symmetric RGD designs

No. RX:(v,r, k,b, A1, A2, m,n) Source

1 RIl:(4,4,2,8,2,1,2,2) Th. 3.1; GH(2; Ca); s = 2,t = 1

2 RI19: (6,6,2,18,2,1,3,2) Th. 3.3(b); s = 1,¢ = 2; 2-(3,2,1) design
3 R20: (6,7,2,21,2,1,2,3) Th. 3.3(a); s =2,t =1

4 R2IL:(6,7,2,21,3,1,3,2) Th. 3.3(b); s =1,t =3

5 R22:(6,8,2,24,4,1,3,2) Th. 3.3(b); s =1,t =4

6 R24:(6,8,2,24,1,2,2,3) Th. 3.3(a); s =1,t =2

7 R25:(6,9,2,27,3,1,2,3) Th. 3.3(a); s = 3, =
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Table 5.1: Non-symmetric RGD designs

No. RX:(v,r, k,b, A1, A2, m,n) Source

8 R26:(6,9,2,27,5,1,3,2) Th. 3.3(b); s =1,t =5

9 R27:(6,9,2,27,1,2,3,2) Th. 3.3(b); s =2,t =1

10 R28: (6,10,2,30,6,1,3,2) Th. 3.3(b); s = 1,t = 6

11 R29: (8,6,2,24,0,1,4,2) Th.6(b); s = 1,t = 0; 2-(4,2,1) design
12 R30: (8,8,2,32,2,1,4,2) Th. 3.3(b); s = 1,t = 2

13 R3L: (8,9,2,36,3,1,4,2) Th. 3.3(b); s = 1,¢ = 3

14 R32: (8,10,2,40,2,1,2,4) Th.6(a); s =2,t =1

15 R33: (8,10,2,40,4,1,4,2) Th. 3.3(b); s = 1,6 = 4

16 R34: (9,6,2,27,0,1,3,3) Th. 3.8

17 R35: (9,10,2,45,2,1,3,3) Th. 3.5

18 R36: (10,8,2,40,0,1,5,2) Th. 3.3(b); s = 1,t =0

19 R38: (12,8,2,48,0,1,3,4) Th. 3.8

20 R39: (12,9,2,54,0,1,4,3) Th. 2.1; GBRD(4, 2, 3; Cs)

21 R40: (12,10,2,60,0,1,6,2)  Th. 3.3(b); s = 1,¢ = 0; 2-(6,2,1) design
22 R4l: (15,10,2,75,0,1,3,5)  Th. 3.8

23 R46: (6,7,3,14,2,3,3,2) R42+SR19

24 R48: (6,8,3,16,4,3,3,2) 24R42+ SRI18

25 R51: (6,9,3,18,2,4,3,2) R42+SR20

26 R59: (9,5,3,15,2,1,3,3) Th. 3.1; GH(3;C3); s = 2,t = 1
27 R70: (12,5,3,20,0,1,6,2) Th. 2.1; GBRD(6, 3, 2; C3)

28 R72: (12,7,3,28,2,1,3,4) Th. 3.12

29 R75: (12,9,3,36,0,2,4,3) Th. 3.10

30 R76: (12,10,3,40,4,1,3,4)  Th. 3.12; N = (24N |Ny)

31 R79: (14,6,3,28,0,1,7,2) Th. 2.1; GBRD(7, 3,2; C3)

32 RS6: (16,6,3,32,0,1,4,4) Th. 2.1; GBRD(4, 3, 4; EA(4))
33 R88:(18,8,3,48,0,1,9,2) Th. 2.1; GBRD(9, 3,2; C>)

34 R90: (20,9,3,60,0,1,10,2)  Th. 2.1; GBRD(10,3,2; C3)

35 R9L: (21,9,3,63,0,1,7,3)  Th. 2.1; GBRD(7,3,3;C5)
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Table 5.1: Non-symmetric RGD designs

No. RX:(v,r, k,b, A1, A2, m,n) Source

36 R92: (24,9,3,72,0,1,4,6)  Th. 2.1; GBRD(4, 3, 6; D3)/GBRD(4, 3, 6; Cs)
37 RO3: (24,10,3,80,0,1,6,4)  Th. 2.1; GBRD(6, 3, 4; EA(4))

38 R106: (10,8,4,20,0,3,5,2)  Th. 2.3

39 RI18: (16,6,4,24,2,1,4,4)  Th. 3.1; GH(4; EA(4)); s = 2,¢t = 1

40 R124: (20,9,4,45,3,1,4,5)  Th. 3.12

41 R125: (24,7,4,42,0,1,8,3)  Th. 2.1; GBRD(S, 4, 3; ()

42 R128: (26,8,4,52,0,1,13,2) Th. 2.3

43 R129: (27,8,4,54,0,1,9,3)  Th. 2.1; GBRD(9, 4, 3; Cs)

44 R13la: (30,8,4,60,0,1,5,6) Saurabh and Sinha [21]

45 R132a: (36,10,4,90,0,1,6,6) Saurabh and Sinha [21]

46 R150: (15,10,5,30,2,3,5,3) Th. 2.3

47 RI152a: (22,10,5,44,0,2,11,2) Th. 2.1; GBRD(11,5,2; C2) Freeman [10]
48 RI55: (25,7,5,35,2,1,5,5)  Th. 3.1; GH(5;C5); s = 2,t = 1

49 RI160: (39,10,5,78,2,1,13,3) Th. 2.3

50 RI67: (12,9,6,18,7,3,3,4)  Th. 2.4

51 RI184: (49,9,7,63,2,1,7,7)  Th.3.1; GH(7;Cy); s =2,t = 1

52 RI85: (49,10,7,70,3,1,7,7) Th. 3.1; GH(7;C7); s = 3,t = 1

53 R192: (64,10,8,80,2,1,8,8) Th. 3.1; GH(8; EA(8)); s = 2,¢ = 1

The generalized Bhaskar Rao designs and generalized Hadamard matrices
used in Table 5.1 may be found in de Launey [6] and de Launey [7]. The
RGD designs R2, R3, ..., R17 may be obtained using GH(2; C>); R60, R61,
..., R68 may be obtained using GH(3; C5); R119,. .., R123 may be obtained
using GH(4; EA(4)) and R156, R157, R158 may be obtained GH(5; C5) for
different values of s and ¢ in Theorem 3.1. RGD designs may also be ob-
tained from BIBDs as follows:

Let ‘m’ groups of a GD design be treated as blocks. Then annexing ‘c’ copies
of these ‘m’ groups to ‘b’ blocks of a BIBD with parameters:

v=mk, b, r, k, A

we obtain:
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Proposition 5.1. The existence of a BIBD with parameters:
v=mk,b,r kA
implies the existence of a RGD design with parameters:

vV =mk, ¥ =b+cm, ' =r4+c, K=k, \i=A4+c, o=\, m, n=k.

Further let resolution class of a resolvable BIBD with parameters:
v=mk, b, r, k, A
be repeated ‘c’ times. Then removing these repeated classes, we obtain:
Proposition 5.2. The existence of a BIBD with parameters:
v=mk, b, r, k, A
having a resolution class repeated ‘c’ times implies the existence of a RGD

design with parameters: v = mk, b =b—cm, ' =r—c, k' =k, \y = A—c,

=\ m=k,n=k.

Table 5.2 lists RGD designs obtained from BIBDs using above propositions:

Table 5.2: BIBDs and Corresponding RGD designs

Using Proposition 5.1
No. BIBD(v, 7, k,b, A) ¢ Derived RGD design:
(v, 7, k, b, A1, A2, m,n)
R37: (10,10,2,50,2,1,5,2)
R43:

1 BIBD(10,9,2,45,1)
2 BIBD(6,5,3,10,2)

1
1 (6,6,3,12,3,2,2,3)
2 R45: (6,7,3,14,4,2,2,3)
3 RAT: (6,8,3,16,5,2,2,3)
4 R49: (6,9,3,18,6,2,2,3)
5 R53: (6,10,3,20,7,2,2,3)
3 BIBD(15,7,3,35,1) 1 R82: (
(

15,8,3,40,2,1,5,3)

2 R84: (15,9,3,45,3,1,5,3)
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Table 5.2: BIBDs and Corresponding RGD designs

3 RS5: (15,10,3,50,4,1,5,3)
4 BIBD(8,7,4,14,3) 1 RO8: (8,8,4,16,4,3,2, 4)

2 R100: (8,9,4,18,5,3,2,4)

3 RI102: (8,10,4,20,6,3,2,4)
5 BIBD(28,9,4,63,1) 1 RI3L: (28,10,4,70,2,1,7,4)
6 BIBD(10,9,5,18,4) 1 R141: (10,10,5,20,5,4,2,5)
7 BIBD(28,9,7,36,2) 1 RISL: (28,10,7,40,3,2,4,7)

Using Proposition 5.2 (¢ = 1)

8 BIBD(6,5,2,15,1) R18: (6,4,2,12,0,1,3,2)
9 BIBD(8,7,2,28,1) R29: (8,6,2,24,0,1,4,2)
10 BIBD(12,11,2,66,1) R40: (12,10,2,60,0,1,6,2)
11 BIBD(6, 10, 3,20, 4) R52: (6,9,3,18,3,4,2,3)
12 BIBD(12,11,3,44,2) R78: (12,10,3,40,1,2,4,3)
13 BIBD(15,7,3,35,1) R81: (15,6,3,30,0,1,5,3)
14 BIBD(12,11,4,33,3) RI11: (12,10,4,30,2,3,3,4)
15 BIBD(28,9,4,63,1) R130: (28,8,4,56,0,1,7,4)

6 Concluding remarks

In this paper solutions of the non-symmetric regular group divisible (RGD)
designs listed in Clatworthy [3] are obtained using matrix approaches except
few. As special case we obtain a series of p-resolvable balanced incomplete
block design and quasidouble solutions of some RGD designs. Most of the
solutions are obtained by inserting permutation circulant matrices in cer-
tain combinatorial matrices. The matrix solutions of the remaining non-
symmetric RGD designs listed in Clatworthy [3], Sinha [23] and Saurabh
and Sinha [20] will be taken up as a future work.

Quasidouble solutions are important from coding theoretic point of view.
Clatworthy [3] reported a unique solution for R23 which is the duplicate
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of R18. Here a quasidouble solution is obtained for R23 and hence the
uniqueness claim is violated.

Let the incidence matrix N of a block design D(v,r, k,b) has a decom-
position [N;j;]i<i<v,1<j<p Where N;; are submatrices of suitable sizes. The
decomposition is row-wise tactical if each row sum of N;; is r;;, column-wise
tactical if each column sum of N;; is k;; and tactical if it is both row-wise
as well as column-wise tactical. Further the decomposition is uniform if
rij = a, ki = B, for all 4,j. If each N;; is an n X n matrix, D(v,r, k,b)
is called square tactical decomposable design, STD (n). See Singh and
Saurabh [22].

Tactical decomposable designs are of interest because of their connections
with automorphisms of designs, see Bekar, Mitchel and Piper [1] and Singh
and Saurabh [22]. In this paper we have obtained some series of tactical
and square tactical decomposable RGD designs.
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