
2-tone coloring of planar graphs

Allan Bickle

Abstract. A 2-tone coloring of a graph assigns two distinct colors to each
vertex with the restriction that adjacent vertices have no common colors,
and vertices at distance two have at most one common color. The 2-tone
chromatic number of a graph is the minimum number of colors in any 2-tone
coloring. We determine a lower bound for the 2-tone chromatic number
of planar graphs that is exact for almost all orders. We also determine
an exact formula for the 2-tone chromatic number of a particular class of
planar graphs whose 2-tone chromatic number had previously only been
approximated.

1 Introduction

The problem of vertex coloring of planar graphs motivated the development
of graph theory. (See [3] for basic terminology and notation.) There are
many generalizations of vertex coloring, including some that assign more
than one color to a vertex and others that restrict what colors may appear
on vertices at different distances in a graph. We study a variation of vertex
coloring that combines these generalizations.

Definition 1.1 (Fonger et al. [15]). Let G be a graph, k, t ∈ N, [k] =

{1, 2, . . . , k}, and let
(
[k]
t

)
denote the set of t-element subsets of [k]. A

function f : V (G) →
(
[k]
t

)
is called a proper t-tone k-coloring (or sometimes

just a t-tone coloring) of G if |f(u) ∩ f(v)| < d(u, v) for all distinct ver-
tices u and v of G. A graph is t-tone k-colorable if it has a proper t-tone
k-coloring. The t-tone chromatic number of G, denoted by τt(G), is the
smallest positive integer k for which G has a proper t-tone k-coloring.

Note that for t = 1, τ1(G) = χ(G), the usual chromatic number of a graph
G. This paper is solely concerned with the 2-tone chromatic number.
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The 2-tone chromatic number has been determined for complete multipar-
tite graphs, trees [15], cycles, theta graphs [7], Mobius ladders, wheels,
fans, products of complete graphs, some products of cycles [2], Sierpinski
triangle graphs, Hanoi graphs [4], most cactus graphs [6], powers of paths,
squares of cycles and trees, and maximal outerplanar graphs [5]. Gen-
eral upper bounds were found in [2,11–14], and lower bounds were studied
in [17].

Bal et al. considered [1] the 2-tone chromatic number of the random graph.
Several authors [2, 10, 16] have studied 2-tone coloring for graph products.
For general t, t-tone coloring has been studied for cycles [12,18], grids [12],
and some hypercubes [19].

We shall often call f(v) the label associated with the vertex v of the coloring
f , and the elements of f(v) will be called colors. Thus, in a 2-tone coloring,
each vertex has a label of 2 distinct colors. Adjacent vertices have no
common colors, and vertices distance two apart have at most one common
color. When the context is clear, the label {a, b} will be denoted ab. Vertices
distance two apart are called second-neighbors. A color class is the set of
all vertices with the same color in some coloring of the graph.

Some basic results are immediate. If H is a subgraph of G then τ2(H) ≤
τ2(G). We have 2n ≤ α(G) · τ2(G) since each color class is an independent

set, so τ2(G) ≥ 2·n(G)
α(G) . We have τ2(Kn) = 2n, and for the cycle Cn,

from [7],

τ2(Cn) =

{
6, if n = 3, 4, 7,

5, otherwise.

If τ2(G) = k, we call a 2-tone k-coloring of G a minimum coloring . Two
colorings of a graph are distinct if they cannot be made the same by a
permutation of the colors and an automorphism of the graph. A 2-tone
k-coloring is unique if there are no two distinct k-colorings. The minimum
colorings of Cn are unique for n ∈ {3, 4, 5, 6, 8, 9}, again from [7].

2 Classes of maximal planar graphs

In this section, we determine formulas for the 2-tone number of three basic
classes of maximal planar graphs.

Definition 2.1. A pair k-coloring of a graph G is a 2-tone k-coloring in
which every label is distinct. A graph is pair k-colorable if it has a pair
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k-coloring. The pair chromatic number of G, pc(G), is the smallest k for
which G has a pair k-coloring.

Some results on the pair chromatic number are immediate. We have

pc(G) ≥ τ2(G),

and if diam(G) ≤ 2, then this is an equality. This implies that for a join
G+H,

τ2(G+H) = pc(G+H) = pc(G) + pc(H).

If H is a subgraph of G, then pc(H) ≤ pc(G). If n >
(
k
2

)
, then pc(G) > k.

Equivalently, pc(G) ≥ 1+
√
1+8n
2 .

Theorem 2.2 (Bickle [2]). We have

pc(Cn) =


5, if n = 5, 6, 8, 9,

6, if n = 3, 4, 7, 10, 11, . . . , 15,⌈
1+

√
1+8n
2

⌉
, if n ≥ 11,

pc(Pn) =

{
5, if 3 ≤ n ≤ 10,⌈
1+

√
1+8n
2

⌉
, if n ≥ 11.

As a corollary, we find formulas for the 2-tone number of two classes of
maximal planar graphs.

Corollary 2.3. We have

τ2(Cn +K2) =


8, if n = 5, 6, 8, 9,

9, if n = 3, 4, 7, 10, 11, . . . , 15,⌈
7+

√
1+8n
2

⌉
, if n ≥ 11,

τ2(Pn +K2) =

{
9, if 3 ≤ n ≤ 10,⌈
9+

√
1+8n
2

⌉
, if n ≥ 11.

Definition 2.4. The kth power Gk of a graph G adds all edges between pairs
of vertices with distance at most k. The graphs G2 and G3 are the square
and cube of G.

In [5], it was shown that for n ≥ k+ 2, we have τ2
(
P k
n

)
= 2k+ 3. Thus for

P 3
n , which is maximal planar, τ2

(
P 3
n

)
= 9 when n ≥ 5.
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3 Planar graphs with small 2-tone chromatic
number

In this section, we determine a lower bound on the 2-tone number of max-
imal planar graphs that is attained for almost all orders.

For the wheel Cd +K1, it follows [2] from Theorem 2.2 that

τ2(Cd +K1) =


7, if d = 5, 6, 8, 9,

8, if d = 3, 4, 7, 10− 15,⌈
5+

√
1+8d
2

⌉
, if d ≥ 11.

In a maximal planar graphG, the closed neighborhood of any vertex induces
a graph that contains a wheel. This provides a lower bound. Let Wmax be a
wheel inG that has maximum 2-tone number. Then τ2(G) ≥ τ2(Wmax) ≥ 7.
When the maximum degree ∆(G) is large, its center (the K1) will be a
vertex of maximum degree, but when ∆(G) ≤ 9, it could be a vertex of
degree 3, 4, or 7.

The infinite triangular grid has 2-tone number 7, see [4]. This follows
since it contains K4 − e and by the coloring below, which can be repeated
infinitely since the boundaries use the same colors. Colors 1, 2, and 3 form
a 3-coloring of this graph, and {4, 5, 6, 7} form a 4-coloring. This 2-tone
coloring is unique, as can be seen by starting with a wheel.

14 25 34 15 24 35 14

36 17 26 37 16 27 36

15 24 35 14 25 34 15

37 16 27 36 17 26 37

14 25 34 15 24 35 14

There is also a maximal toroidal graph with order 12 (bounded by the
parallelogram formed by the four vertices colored 15 above) that has 2-
tone number 7.

By the formula for τ2(Cd +K1), each vertex of any maximal planar graph
G with τ2(G) = 7 has degree in {5, 6, 8, 9}. The smallest maximal planar
graph with only these degrees is the icosahedron (IC).
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Proposition 3.1. We have τ2(IC) = 8 and the 2-tone 8-coloring is unique.

24
7815

34

56

26

13

68

37

57

4812

Proof. The independence number α(IC) = 3, so τ2(IC) ≥ 2·n(IC)
α(IC) = 2·12

3 =

8. The upper bound follows from the coloring shown above.

To show that the coloring is unique, note that every color must appear
exactly three times. Now deleting a vertex and its neighbors in IC results
in C5 +K1. Thus each color class must have all three vertices at distance
2, at the corners of an induced copy of Tr2 (see below).

Thus pairs of vertices at distance 3 have no common colors. Thus every
5-cycle around a vertex must use 6 colors, 4 twice and 2 once. Start with a
unique 8-coloring (up to symmetry) of C5 +K1 in IC. The restrictions we
have established are enough to eliminate possible colors and labels on the
remaining vertices, leaving only one possible coloring up to symmetry.

Tr2

Each Tr2 defined by a color class can be specified by its middle region. In
the dual dodecahedron, the 8-coloring gives a set of vertices that turns out
to be independent. Thus each 2-tone coloring corresponds to a (maximum)
independent set of the dodecahedron.

Deleting three edges that form a triangle in IC results in a 2-tone 7-
colorable graph. Thus deleting two adjacent vertices does also, but

τ2(IC − v) = 8,
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because

τ2(IC − v) ≥ 2 · n(IC − v)

α(IC − v)
=

2 · 11
3

> 7.

To describe a class of maximal planar graphs with 2-tone number 7, we
start with a subgraph of the infinite triangular grid, but connected to itself
in one dimension. For 1 ≤ j ≤ k, k ≥ 2, and 1 ≤ i ≤ 6, let vertex (i, j) be
adjacent to (i, j+1), (i+1, j), and (i+1, j+1), where i is taken modulo 6
(but j is not taken modulo k). This graph has two regions of length 6 in
a plane drawing. Add two degree 6 vertices u and v to make this graph
maximal planar, and denote it G6k+2.

The graph G20 is shown below (the three vertices on the left and right with
the same labels must be identified), along with a 2-tone 7-coloring.

14 25 34 15 24 35 14

36 17 26 37 16 27 36

15 24 35 14 25 34 15

67

67

Proposition 3.2. For k ≥ 2, we have τ2(G6k+2) = 7. The smallest maximal
planar graph with 2-tone number 7 is G14.

Proof. Any maximal planar graph with 2-tone number 7 must have mini-
mum degree 5. The smallest such graph is the icosahedron, and τ2(IC) = 8.
There is no such graph with order 13, and one with order 14, G14 [8, 9].

Clearly τ2(G6k+2) ≥ 7 since these graphs contain K4−e. Now G6k+2−u−v
is contained in the infinite triangular grid, so it has a 2-tone 7-coloring.
Finally, we label u and v with 67 or 45, depending on parity (see the
example above).

Suppose we form a graph by adding two vertices inside the non-triangular
regions of C2

2k to produce a maximal planar graph. By the formula for
τ2
(
C2

2k

)
in [5] and the values of τ2(Cd +K1), the only k for which such a

graph could be 2-tone 7-colorable are 6, 8, and 9. It is easy to show that

2-tone coloring of planar graphs

119



8 and 9 do not work, so G14 is the only graph of this type that is 2-tone
7-colorable.

The 2-tone 7-coloring of G6k+2 is unique. This is a corollary of a more
general result that is presented next.

Lemma 3.3. If four consecutive vertices of a 5-cycle are 2-tone 5-colored,
there is a unique way to extend this 5-coloring to the remaining vertex.
The same is true for four vertices of a 6-cycle, five vertices of an 8-cycle,
and six vertices of a 9-cycle.

Proof. For each of these cycles, a 2-tone 5-coloring of them corresponds to
a 2-tone 5-coloring of the Petersen graph [7]. It is easily verified that four
consecutive vertices of a 5-cycle of the Petersen graph are only contained
in that 5-cycle, and similarly for the cycles of other lengths.

Theorem 3.4. IfG is a maximal planar graph with τ2(G) = 7 and all vertices
have degree 5 or 6, then the 2-tone 7-coloring is unique.

Proof. We begin with two adjacent vertices that either both have degree 5
or have degrees 5 and 6, and color their neighborhoods. Note that C5 and
C6 have unique pair 5-colorings. Thus there is a unique 2-tone 7-coloring
for C5 + K1, which extends uniquely to the wheel centered at the other
vertex, in either case.

12 45

67 23

34 15

−→

12 45 17

67 23

34 15 64

12 45

67 23

34 15

−→

12 45 16

67 23 57

34 15 46

Let H be the subgraph induced by the colored vertices. We continue to
color new vertices on the boundary of H. Each of these vertices has at least
3 colored neighbors since they are contained in colored wheels, and some
vertex v has at least four colored neighbors since otherwise H is a wheel.
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Since v receives two colors, there are five colors available for its neighbors.
By Lemma 3.3, there is a unique extension of the coloring to the uncolored
neighbor(s) of v. Thus each vertex of G is colored uniquely, so the 2-tone
7-coloring of G is unique.

Conjecture 3.5. If G is a maximal planar graph with τ2(G) = 7, then the
2-tone 7-coloring is unique.

Next we consider three ways of combining two maximal planar graphs with
2-tone number 7 to produce another maximal planar graph with 2-tone
number 7. A 3-sum identifies triangles of two graphs.

Theorem 3.6. If two maximal planar graphs G and H with 2-tone number
7 are identified on a triangle, and this does not create any vertex degrees
not in {5, 6, 8, 9}, then the resulting graph G ∪H has 2-tone number 7. If
the 7-colorings of G and H are unique, so is the 7-coloring of G ∪H.

Proof. If we identify vertices a and a′ in a common triangle of two maximal
planar graphs, the degree of the new vertex is d(a) + d(a′)− 2. For this to
be in {5, 6, 8, 9}, we must have d(a) = d(a′) = 5 or {d(a), d(a′)} = {5, 6}.

Say the common triangle is uvw, with labels 12, 34, and 56, respectively.
Note that there are also triangles containing each two of these three vertices
in both G and H. Each of the other vertices in these triangles must have
color 7. For G, suppose the other labels are 17, 37, and 57. Then in H, the
corresponding labels must be 27, 47, and 67.

G

w
37

12

56

57

34

17

H

w
47

12

56

67

34

27

Assume dG(w) = 5. Then w has one more neighbor in G, which must have
label 24. If dH(w) = 5, the remaining neighbor in H must have label 13.
If dH(w) = 6, the remaining neighbors in H must have labels 14 and 23.
Thus there is no conflict among the neighbors of w.

Similarly, there can be no conflict among the neighbors of u or v. Since we
had no choice of what colors to assign to vertices of H, the partial coloring
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we produced must be part of any 7-coloring of H (up to permutation of
colors). Thus any 7-colorings of G and H can be combined without conflict.
Similarly, if the 7-colorings of G and H are unique, so is the 7-coloring of
G ∪H.

Instead of identifying triangles, we could identify copies of K4 − e in two
maximal planar graphs.

Theorem 3.7. Let G and G′ be two maximal planar graphs with δ(G) =
δ(G′) = 5 and τ2(G) = τ2(G

′) = 7 each containing 4-cycle v1v2v3v4v1 and
edge v1v3, 5 ≤ dG(vi) = dG′(vi) ≤ 6 for i ∈ {1, 3} and 10 ≤ dG(vi) +
dG′(vi) ≤ 11 for i ∈ {2, 4}. Form H by identifying all pairs of vi for all i
and deleting v1v3. Then τ2(H) = 7.

Proof. If dG(v1) = dG′(v1) = 5, then dH(v1) = 6, and if dG(v1) = dG′(v1) =
6, then dH(v1) = 8. If dG(v2) = dG′(v2) = 5, then dH(v2) = 8, and if
dG(v2) = 5 < dG′(v2) = 6, then dH(v2) = 9. Thus no single wheel of H
forbids a 7-coloring.

We assume a 7-coloring of G and try to extend it to G′. Note that there is
a vertex u in G′ other than v3 that neighbors v1 and v2. There are 4 colors
used on v1 and v2, and two labels used on their neighbors in G. Thus there
is only one possible label for u. Similarly, there are neighbors of v2 and v3,
v3 and v4, and v4 and v1 in G′ for which there is only one possible label.
Whether dG(v1) = 5 or dG(v1) = 6, the neighbors of v1 in G′ can be labeled
without conflict. The same is true for v3.

37 56 17

12 34

46 57 26

47 56 27

12 34

36 57 16

37 56 17

12 34 25

46 57 16

47 56 27

12 34 15

36 57 26

37 56 17

45 12 34 25

36 57 16

47 56 27

35 12 34 15

46 57 26
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Now the coloring may be extended uniquely to the remaining neighbors of
v2 and v4 as in the previous proofs (see the above figures above, where in
each of three cases G is on the left, G′ is on the right, and the four central
vertices are identified). Since we had no choice of what colors to assign
to vertices of G′, the partial coloring we produced must be part of any
7-coloring of H (up to permutation of colors). Thus any 7-colorings of G
and G′ can be combined without conflict.

Our third way of combining two maximal planar graphs is to identify the
neighborhoods of two vertices with the same degree. First, we need a
lemma.

Lemma 3.8. Let G be a maximal planar graph with τ2(G) = 7. If v is a
vertex whose neighbors all have degree 5 or 6, then v has an even number
of second-neighbors.

Proof. For any 2-tone 7-coloring of G, there is a set S of 2 colors used on
v, and a set T of exactly 5 colors used on its neighbors. We start with the
unique coloring of v and its neighbors, and color the second-neighbors of v.

Let u be a second-neighbor of v that shares exactly two neighbors x and y
with v. Now there are 4 colors on x and y that cannot appear on u, so 3
colors can. This allows 3 possible labels, one of which is used on v. Thus
u must use one color from S and one color from T , and there is only once
choice for the latter.

Second-neighbors that share exactly two neighbors with v either neighbor
each other, or are one apart on the cycle C formed by all second-neighbors
of v. Now any second-neighbor z with only one common neighbor with v
has four distinct colors used on its neighbors. Thus z has only two possible
labels, so it must use one color from S and one color from T . Thus the
colors from S alternate around C, so its length is even.

This lemma can be used to quickly show that some maximal planar graphs
(e.g., IC) with degrees in {5, 6, 8, 9} are not 7-colorable.

Theorem 3.9. Let G and G′ be two maximal planar graphs with τ2(G) =
τ2(G

′) = 7 containing vertices u and v with d = d(u) = d(v) so that u
has neighbors u1, . . . , ud and v has neighbors v1, . . . , vd (in cyclic order)
and 5 ≤ d(ui) = d(vi) ≤ 6 for all i. Form H by deleting u and v, and
identifying ui and vi for all i. Then τ2(H) = 7.
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Proof. If dG(ui) = dG′(vi) = 5, then dH(vi) = 6, and if dG(ui) = dG′(vi) =
6, then dH(vi) = 8. Thus no single wheel of H forbids a 7-coloring.

Suppose the second-neighbors of u in G are denoted xi and these vertices
form cycle C in order. We assume a 7-coloring of G and show that it
extends to a 7-coloring of H. Say u had label 12. By Lemma 3.8, colors 1
and 2 must alternate on C. Let the second-neighbors of v in G′ be denoted
yi and these vertices form cycle C ′ in order. Label each yi by swapping 1
for 2 in the label of xi. This causes no distance 1 conflicts. Now xi and
yi have distinct labels. Also, xi and yi+1 have distinct labels since xi+1

and yi+1 have a common color. The same argument works for xi and yi+2.
Thus there are no distance 2 conflicts.

The same coloring can be obtained by extending cycles of wheels centered
at vi. When dG(ui) = 5, we have 4 colored vertices in H, so by Lemma 3.3,
we can extend the coloring uniquely to a 6-cycle. When dG(ui) = 6, we
have 5 colored vertices in H, so we can extend the coloring uniquely to an
8-cycle. Since we had no choice of what colors to assign to vertices of G′,
the partial coloring we produced must be part of any 7-coloring of G′ (up to
permutation of colors). Thus any 7-colorings of G and G′ can be combined
without conflict.

Let T (n) be the minimum value of τ2(G) over all maximal planar graphs of
order n. The previous results allow us to determine T (n) for most values
of n.

Lemma 3.10. If there is a 2-tone 7-colorable maximal planar graph of order
n, then there are 2-tone 8-colorable maximal planar graphs of orders n+1,
n+ 2, and n+ 3.

Proof. Let G be a 2-tone 7-colorable maximal planar graph of order n with
vertices a, b, c, d, e colored 12, 34, 56, 57, and 37, respectively, and regions
abc, abd, and ace. Add vertices u, v, and w adjacent to the vertices of
each respective triangle. Then color u with 78, v with 68, and w with 48.
This produces a 2-tone 8-colorable maximal planar graph of order n + 3.
Examples of order n+ 1 and n+ 2 are produced by deleting one or two of
{u, v, w}.

Theorem 3.11. We have

T (n) =


7, if n = 14, 18, 20, 21, 24, 25, 26,≥ 28,

8, if n = 4, 7, . . . , 13, 15, 16, 17,

9, if n = 5, 6.
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Proof. By Proposition 3.2, a maximal planar graph G has τ2(G) ≥ 8
for n ≤ 13. Some maximal planar graphs with 2-tone number 8 are
K4, Ck + K2 for k ∈ {5, 6, 8, 9}, and IC, which proves the theorem for
n ∈ {4, 7, 8, 10, 11, 12}. By Corollary 2.3, τ2

(
K3+K2

)
= 9 = τ2

(
C4+K2

)
=

τ2(P4 +K2), which covers all possibilities for n ∈ {5, 6}. It is easy to add
a single degree 3 vertex inside a region of C6 + K2 and IC so that the
resulting graphs are 2-tone 8-colorable, which covers n ∈ {9, 13}.

Small maximal planar graphs with minimum degree 5 are cataloged at the
Combinatorial Object Server [9]. The unique maximal planar graph with
minimum degree 5 and order 15 has α = 4, so τ2 ≥ 2·n

α = 2·15
4 > 7.

There are three maximal planar graphs with minimum degree 5 and order
16, one of which has a vertex of degree 7. For the others, one has four
independent degree 6 vertices, and the other has two pairs of adjacent
degree 6 vertices. Both have α = 4, so τ2 ≥ 2·n

α = 2·16
4 = 8.

There are four maximal planar graphs with minimum degree 5 and order
17, one of which has a vertex of degree 7. Each of the other three has α = 5,
and at least one vertex that is not contained in an independent set of size
5. Thus a 7-coloring uses at most 2 · 4 + 5 · 5 = 33 colors (with repetition),
a contradiction. By Lemma 3.10, there are 2-tone 8-colorable graphs of
orders 15, 16, and 17.

By Proposition 3.2, there are 2-tone 7-colorable graphs of orders 6k + 2,
k ≥ 2. The second smallest 2-tone 7-colorable maximal planar graph G18

has order 18 (identify the left and right sides of the figure below). It has
six degree 6 vertices that induce a cycle.

56 34 12 56

17 67 47

23 46 25 14 35 16 23

57 37 27 57

12 56 34 12

For larger values of n, we use Theorems 3.6, 3.7, and 3.9 to produce larger
2-tone 7-colorable maximal planar graphs.

Using Theorem 3.6 on G6k+2 and G14 produces a 2-tone 7-colorable graph
with order 6k + 13 for k ≥ 2.
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Using Theorem 3.6 on G6k+2 and G18 produces a 2-tone 7-colorable graph
with order 6k + 17 for k ≥ 2.

Using Theorem 3.7 on G6k+2 and G14 (using copies of K4 − e with three
degree 5 vertices and one degree 6 vertex) produces a 2-tone 7-colorable
graph with order 6k + 12 for k ≥ 2.

Using Theorem 3.7 on G6k+2 and G18 (using copies of K4 − e with three
degree 5 vertices and one degree 6 vertex) produces a 2-tone 7-colorable
graph with order 6k + 16 for k ≥ 2.

Using Theorem 3.9 on G6k+2 and G20 with two degree 5 vertices produces
a 2-tone 7-colorable graph with order 6k + 15 for k ≥ 3. (Note that this
theorem does not work on G14 and G20.)

Using Theorem 3.9 on G14 and G14 with two degree 5 vertices produces a
2-tone 7-colorable graph with order 21. These cases cover all the remaining
values of n.

The value of T (n) is either 7 or 8 for n ∈ {19, 22, 23, 27}.

4 Planar graphs with large 2-tone chromatic
number

All the examples we have seen so far have 2-tone number close to τ2(Wmax).
Cranston and LaFayette [12] found an example where this is not the case.
For each t ≥ 1, we form Ht from K3 by replacing each edge vw ∈ E(K3)
with a copy of K2,t, identifying the degree t vertices with v and w.

Cranston and LaFayette [12] showed that⌈√
3∆(Ht) + 0.25 + 0.5

⌉
≤ τ2(Ht) ≤

⌈√
3∆(Ht) + 30.25 + 0.5

⌉
.
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These bounds are close, but not exactly the same. Since they did not find
an exact formula for τ2(Ht) of these graphs, we strengthen their approach
to do so.

Theorem 4.1. For each t ≥ 1, we form Ht from K3 by replacing each edge
vw ∈ E(K3) with a copy of K2,t, identifying the high degree vertices with
v and w. For all t we have

τ2(Ht) =


⌈√

3∆(Ht) + 6.25 + 1.5
⌉
, if ∆ ≤ 34,⌈√

3∆(Ht) + 24.25 + .5
⌉
, if ∆ ≥ 13.

Proof. Let x, y, and z denote the vertices of the original K3 (they have
degrees at least 4 except when t = 1). There must be either 3, 4, 5, or 6
colors used on these three vertices. We consider all possible cases (up to
permutation of colors) for the labels of x, y, and z.

Suppose the labels on x, y, and z are 12, 13, and 23. Now 1, 2, and
3 cannot be used on any other vertices. Note that all degree 2 vertices
are distance 2 from each other, and so need distinct labels. There are
3
2∆(Ht) = 3t such vertices, so we need k + 3 colors, where

(
k
2

)
≥ 3t. Thus

we use
⌈
3.5 +

√
3∆ + 0.25

⌉
colors.

Suppose the labels on x, y, and z are 12, 13, and 14. Now 1 cannot be
used on any other vertex, but 2, 3, and 4 can each be used on a third of the
vertices. Labels 23, 24, and 34 cannot be used. Thus we need k+ 1 colors,
where

(
k
2

)
− 3 ≥ 3t. Thus we use

⌈
1.5 +

√
3∆ + 6.25

⌉
colors.

Suppose the labels on x, y, and z are 12, 13, and 24. Now 1 and 2 cannot
be used on any other vertex, but 3 and 4 can each be used on a third of
the vertices. Label 34 cannot be used. Thus we need k + 2 colors, where(
k
2

)
− 1 ≥ 3t. Thus we use

⌈
2.5 +

√
3∆ + 2.25

⌉
colors.

Suppose the labels on x, y, and z are 12, 13, and 45. Now 1 cannot be used
on any other vertex, but 2, 3, 4, and 5 can each be used on a third of the
vertices. Labels 23, 24, 25, 34, and 35 cannot be used, while 45 can be used
again. Thus we need k+1 colors, where

(
k
2

)
− 5 ≥ 3t. Thus we use at least⌈

1.5 +
√
3∆ + 10.25

⌉
colors.

Suppose the labels on x, y, and z are 12, 34, and 56. Now these 6 colors
can each be used on a third of the vertices. Labels 12, 34, and 56 can be
used on degree 2 vertices, but the other 12 labels from [6] cannot. Thus
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we need k colors, where
(
k
2

)
− 12 ≥ 3t. Thus we use

⌈
0.5 +

√
3∆ + 24.25

⌉
colors.

We compare the number of colors from these five cases. We find that⌈
1.5 +

√
3∆ + 6.25

⌉
is smallest when ∆ ≤ 34 and

⌈
0.5 +

√
3∆ + 24.25

⌉
is

smallest when ∆ ≥ 13. Note that in both of these cases, it is easy to ensure
that a coloring with the minimum number of colors actually exists.

Thus these graphs have τ2(G) ≈
√
3∆. This can be completed to a maximal

planar graph with the same ∆ when t ≥ 3. The following upper bound
based on maximum degree is known.

Theorem 4.2 (Cranston and LaFayette [12]). Let G be a planar graph with
maximum degree ∆ = ∆(G) ≥ 3. Then τ2(G) ≤

⌊√
4∆ + 50.25+31.1

⌋
and

τ2(G) ≤ max
{
41,

⌊√
4∆ + 50.25 + 11.5

⌋}
.

Cranston and LaFayette [12] also conjecture that there is some C so that
τ2(G) ≤

√
3∆ + C for any planar graph.
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