
Super total local antimagic coloring of

graphs

Ravindra Pawar, Tarkeshwar Singh, and Jay Bagga

Abstract. Let G = (V,E) be a finite, simple, undirected graph without
isolated vertices. A bijective map f : V ∪ E → {1, 2, . . . , |V |+ |E|} gives a
labeling of the vertices and edges of G. With each vertex v, we associate a
weight w(v) as the sum of all labels of vertices that are neighbors of v (not
including v), together with the labels of edges incident at v. The labeling
given by f is called total local antimagic if adjacent vertices have distinct
weights. Furthermore, f is called a super vertex total local antimagic label-
ing if vertices have labels 1, 2, . . . , |V |. Similarly, f is called a super edge
total local antimagic labeling if the edges have labels 1, 2, . . . , |E|. The la-
beling f induces a proper vertex coloring of G. The super vertex (edge) total
local antimagic chromatic number of a graph G is the minimum number of
colors used over all colorings of G induced by the super vertex (edge) total
local antimagic labeling of G. In this paper, we discuss these parameters
for some families of graphs.

1 Introduction

Throughout the paper, we make the assumption that G = (V,E) is a sim-
ple, finite, undirected graph without isolated vertices. The term labeling in
the context of a graph refers to a one-to-one correspondence established be-
tween the labeling set and the elements of a graph, which could be vertices,
edges, or both. Consequently, numerous variations exist in graph labeling,
including vertex labeling, edge labeling, and super vertex (edge) labeling.
For graph theoretic terminology and notations, we refer readers to West
[14].

Hartsfield and Ringel [8] introduced the concept of antimagic labeling for
a graph G. They defined antimagic labeling as follows: A graph G is
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antimagic if there is bijection f : E → {1, 2, . . . , |E|} such that weights of
any two vertices are distinct, where the weight of a vertex v is defined
as w(v) :=

∑
uv∈E f(uv). They put forth a conjecture that states, “any

connected graph G other than K2 is antimagic.”

This conjecture has been proven true for many families of graphs, such as
trees, dense graphs, regular graphs, and cartesian products of graphs (for
more details, see [1,4,5,10,11]). However, the general case of the conjecture
remains open to this day.

Arumugam et al. [2] and Bensmail et al. [3] independently introduced a
local version of antimagic labeling of a graph G. The edge labeling

f : E → {1, 2, . . . , |E|}

of G is said to be a local antimagic labeling if w(u) ̸= w(v), whenever uv
is an edge in G. In the same paper, they conjectured that “every graph
without K2 as a component is local antimagic.” Haslegrave [9] proved this
conjecture. The concepts of antimagic and local antimagic labelings for
the graph K4 − e are illustrated in Figure 1.1a and Figure 1.1b, respec-
tively.
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(b) Local antimagic, but
not antimagic labeling.

Figure 1.1: Antimagic and local antimagic labelings of K4 − e.

Once we treat vertex weights as colors, the local antimagic labeling natu-
rally induces proper vertex coloring. The local antimagic chromatic number
of a graph G, denoted by χla(G) is the minimum number of colors used over
all colorings of G induced by local antimagic labeling of G.
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Recently researchers extended the notion of local antimagic labeling. In-
stead of labeling only edges, one can label the edges as well as vertices and
calculate the weights in various manners so that adjacent vertices receive
different weights.

Putri et al. [12] defined local vertex antimagic total coloring of a graph
G = G(V,E) as a bijective function f : V ∪ E → {1, 2, . . . , |V |+ |E|} such
that for any two adjacent vertices u and v in G, w(u) ̸= w(v), where

w(x) = f(x) +
∑
xy∈E

f(xy)

for any x ∈ V (G). A local vertex antimagic total coloring of C4 is shown
in Figure 1.2.
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Figure 1.2: A local vertex antimagic total coloring of C4.

In all of the variants of total labelings (both vertices as well as edges are
labeled) given in [6, 12, 13], the weight of a vertex is the sum of the label
of the vertex and the labels of all edges incident to it. The natural way to
extend the definition of a local antimagic graph is to label both the vertices
and edges and to calculate the weight of a given vertex by summing the
labels of its adjacent vertices and incident edges. We define this formally
as follows:

Definition 1.1. The total open neighborhood of a vertex u ∈ V , denoted by
NT (u), is the collection of all vertices (except u) adjacent to u together
with all edges incident to u.
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By definition, NT (u) = N(u) ∪ {uv : uv ∈ E}. The total closed neighbor-
hood of a vertex u, denoted by NT [u], is obtained by adding u to NT (u).

Definition 1.2. Given a graph G = (V,E). A bijective map

f : V ∪ E → {1, 2, . . . , |V |+ |E|}

is called the total local antimagic labeling if, for each edge uv ∈ E,w(u) ̸=
w(v), where w(v) is the weight of v given by w(v) =

∑
x∈NT (v) f(x). Such

a function f is called a super vertex total local antimagic labeling if

f(V ) = {1, 2, . . . , |V |},

and it is called a super edge total local antimagic labeling if

f(E) = {1, 2, . . . , |E|}.

A graph which induces super vertex (edge) total local antimagic labeling is
called a super vertex (edge) total local antimagic graph.

A super vertex (edge) total local antimagic labeling induces a proper ver-
tex coloring of G by considering the vertex weights as colors. Hence, we
define the super vertex (edge) total local antimagic chromatic number as
follows:

The super vertex total local antimagic chromatic number of a graph G, de-
noted by χsvtla(G), is the minimum number of colors used over all colorings
of G induced by super vertex total local antimagic labelings of G.

The super edge total local antimagic chromatic number of a graph G, de-
noted by χsetla(G), is the minimum number of colors used over all colorings
of G induced by super edge total local antimagic labelings of G. By defini-
tion, we have χ(G) ≤ χsvtla(G) and χ(G) ≤ χsetla(G). Since χ(G) ≥ ω(G),
ω(G) ≤ χ(G) ≤ χsvtla(G) and ω(G) ≤ χ(G) ≤ χsetla(G), where ω(G) is
the clique number of G.

We abbreviate “super vertex total local antimagic” as “svtla” and “super
edge total local antimagic” as “setla.” In this paper, we discuss the super
vertex (edge) total local antimagic chromatic number for a graph and study
it for some graph families.

Definition 1.3. A magic rectangle MR(m,n) of size m× n is a rectangular
arrangement of the first mn natural numbers, such that the sum of all
entries in each row is the same, and the sum of all entries in each column
is the same.
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Harmuth gave the following theorem [7], which gives the necessary and
sufficient conditions for the existence of a magic rectangle of a given order.

Theorem 1.4 (Harmuth [7]). The magic rectangle MR(a, b) exists if and
only if a, b > 1, ab > 4, and a ≡ b (mod 2).

If G admits an svtla labeling f , then the sum
∑

x∈V w(x) counts the label
of each vertex v exactly deg(v) times, where deg(v) is the number of edges
in G incident to v. In addition, the label of an edge e = uv is counted only
in w(u) and w(v), exactly twice. Thus, we have the following observations:

Observation 1.5. If G admits an svtla labeling f , then∑
x∈V

w(x) =
∑
v∈V

deg(v)f(v) + 2
∑
e∈E

f(e).

Similar observations were made for the setla graph.

Observation 1.6. If G admits a setla labeling f , then∑
x∈V

w(x) =
∑
v∈V

deg(v)f(v) + 2
∑
e∈E

f(e).

In Section 2, we study the svtla labeling of some graphs, and in Section 3,
we study the setla labeling of some graphs.

2 Super vertex total local antimagic labeling

Proposition 2.1. For any svtla graph G with a vertex v having the largest
number ℓ of pendent vertices, χsvtla(G) ≥ ℓ+ 1.

Proof. Let G be a graph on n vertices and v1, v2, . . . , vℓ be the pendent
vertices adjacent to v. Let f be any svtla labeling of G. Subsequently,
the weights of the pendent vertices w(vi) = f(v) + f(vvi) are all distinct
and w(v) ̸= w(vi) for each i, 1 ≤ i ≤ ℓ. Hence, f induces a proper vertex
coloring of G that need at least ℓ+1 colors. This proves the proposition.

The following corollary is evident from Proposition 2.1.
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Corollary 2.2. For the star K1,n, χsvtla(K1,n) = n+ 1.

Proof. By Proposition 2.1, χsvtla(K1,n) ≥ n + 1. We define super vertex
total local antimgaic labeling of K1,n as f(c) = n + 1 and f(vi) = i and
f(cvi) = n+ 1 + i for each i, 1 ≤ i ≤ n as shown in Figure 2.1. Therefore,
χsvtla(K1,n) ≤ n+ 1. This proves that χsvtla(K1,n) = n+ 1.

n

1
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n+ 1

2n+ 1

n+ 2

n+ 3n+ 4

n+ 5

3n + 2

2n + 3

2n + 42n + 5

2n + 6

Figure 2.1: svtla labeling of a star.

Corollary 2.3. If in a tree T the largest number of pendent vertices equals
ℓ at a vertex, then χsvtla(T ) ≥ ℓ+ 1.

1 3 2 1 4 2 5 3
5 4 6 13 7

Figure 2.2: svtla labelings of P2 and P3.

Theorem 2.4. For the path Pn with n ≥ 3, 3 ≤ χsvtla(Pn) ≤ 5.

Proof. It is easy to see that χsvtla(P2) = 2 and χsvtla(P3) = 3 (see Fig-
ure 2.2). Let n ≥ 4 and Pn be the path on n vertices with the vertex set
{v1, v2, . . . , vn} and ei = vivi+1 be the edges. First, we will prove the lower
bound. Let f be a svtla labeling of Pn. Then

w(v1) = f(e1) + f(v2)

and

w(v3) = f(v2) + f(v4) + f(e2) + f(e3).
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If w(v1) = w(v3) then we get f(e1) = f(e2) + f(e3) + f(v4). This is
impossible, because f(e1) ≤ 2n − 1 and f(e2) + f(e3) + f(v4) ≥ 2n + 4.
Hence w(v1) ̸= w(v3). Also, w(v1) ̸= w(v2) and w(v2) ̸= w(v3) since
v1v2, v2v3 ∈ E(Pn) and f is a svtla labeling. Hence, for n ≥ 4,

χsvtla(Pn) ≥ 3. (1)

Now, for the upper bound, we have the following two cases:

Case 1: When n ≡ 3 (mod 4), then we define a super vertex total labeling
f by

f(vi) =


i− 1 if i ≡ 0 (mod 4)

i if i ≡ 1 or 2 (mod 4)

i+ 1 if i ≡ 3 (mod 4) and i ̸= n

n if i = n

and

f(ei) = 2n− i.

Therefore,

w(v1) = f(v2) + f(e1) = 2 + (2n− 1) = 2n+ 1,

w(vn−1) = f(vn−2) + f(vn) + f(en−2) + f(en−1)

= (n− 2) + n+ (2n− n+ 2) + (2n− n+ 1) = 4n+ 1,

and

w(vn) = f(vn−1) + f(en−1) = (n− 1) + (2n− n+ 1) = 2n.

Now for each i, 2 ≤ i ≤ n− 1,

w(vi) = f(vi−1) + f(vi+1) + f(ei−1) + f(ei)

= f(vi−1) + f(vi+1) + (2n− (i− 1)) + (2n− i)

= f(vi−1) + f(vi+1) + 4n− 2i+ 1

= 4n− 2i+ 1 +


i+ (i+ 1) if i ≡ 0 (mod 4)

(i− 2) + (i+ 1) if i ≡ 1 (mod 4)

(i− 1) + (i+ 2) if i ≡ 2 (mod 4)

(i− 1) + i if i ≡ 3 (mod 4)

=

{
4n if i is odd

4n+ 2 if i is even.

Therefore, the weights of adjacent vertices are distinct; that is, f is
the svtla labeling of Pn, which induces a proper 5-coloring of Pn.
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Case 2: When n ̸≡ 3 (mod 4), then we define a super vertex total labeling
f by

f(vi) =


i− 1 if i ≡ 0 (mod 4)

i if i ≡ 1 or 2 (mod 4)

i+ 1 if i ≡ 3 (mod 4)

f(ei) = 2n− i.

Therefore, w(v1) = f(v2) + f(e1) = 2 + (2n− 1) = 2n+ 1,

w(vn) = f(vn−1) + f(en−1)

=


n+ (2n− (n− 1)) if n ≡ 0 (mod 4)

(n− 2) + (2n− (n− 1)) if n ≡ 1 (mod 4)

(n− 1) + (2n− (n− 1)) if n ≡ 2 or 3 (mod 4)

=


2n+ 1 if n ≡ 0 (mod 4)

2n− 1 if n ≡ 1 (mod 4)

2n if n ≡ 2 or 3 (mod 4),

and for each i, 2 ≤ i ≤ n− 1,

w(vi) = f(vi−1) + f(vi+1) + f(ei−1) + f(ei)

= f(vi−1) + f(vi+1) + (2n− (i− 1)) + (2n− i))

= (4n− 2i+ 1) + f(vi−1) + f(vi+1)

= (4n− 2i+ 1) +


i+ (i+ 1) if i ≡ 0 (mod 4)

(i− 2) + (i+ 1) if i ≡ 1 (mod 4)

(i− 1) + (i+ 2) if i ≡ 2 (mod 4)

(i− 1) + i if i ≡ 3 (mod 4)

=

{
4n if i is odd

4n+ 2 if i is even.

Consider the following two sub-cases:

Subcase (i): When n ≡ 0 (mod 4), w(v1) = w(vn) = 2n + 1, and
for each i, 2 ≤ i ≤ n − 1, w(vi) = 4n or 4n + 2. Hence,
χsvtla(Pn) ≤ 3. Also, by Equation (1), χsvtla(Pn) ≥ 3. There-
fore, χsvtla(Pn) = 3.

Subcase (ii): When n ≡ 1 or 2 (mod 4), w(v1) = 2n + 1, w(vn) =
2n − 1 and for each i, 2 ≤ i ≤ n − 1, w(vi) = 4n or 4n + 2.
Therefore χsvtla(Pn) ≤ 4.
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Hence, χsvtla(Pn) = 3, when n ≡ 0 (mod 4) and

χsvtla(Pn) ≤

{
4 if n ≡ 1 or 2 (mod 4)

5 if n ≡ 3 (mod 4).

This completes the proof.

As illustrated in Figure 2.3,

χsvtla(P5) = χsvtla(P6) = χsvtla(P9) = χsvtla(P10) = 3.

Hence, for n ≡ 1 or 2 (mod 4), we have examples where χsvtla value of Pn

is 3. We pose the following problem.

Problem 2.5. Show that:

χsvtla(Pn) = 3 for n ≡ 1 or 2 (mod 4)

and

χsvtla(Pn) = 4 for n ≥ 7 and n ≡ 3 (mod 4).

1 4 2 5 37 9 8 6

11 19 26 19 11
1 4 2 3 6 510 11 7 9 8

14 24 25 24 25 14

(a) svtla labeling of P5. (b) svtla labeling of P6.

1 2 3 4 8 9 5 6 716 17 15 11 14 10 13 12

18 37 38 37 38 37 38 37 18

(c) svtla labeling of P9.

1 2 3 6 4 9 5 10 8 718 17 19 13 16 14 11 15 12

20 39 44 39 44 39 44 39 44 20

(d) svtla labeling of P10.

Figure 2.3: svtla labelings of some paths.

Theorem 2.6. For cycle Cn with n ≥ 3, χsvtla(Cn) ≤ 4.

Proof. Let Cn be a cycle on n ≥ 3 with vertex set {v1, v2, . . . , vn} and
ei = vivi+1 be edges, where the subscripts are taken modulo n.

Now we have the following two cases:
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Case 1: When n ≡ 3 (mod 4), then we define a super vertex total labeling
f by

f(vi) =


i− 1 if i ≡ 0 (mod 4)

i if i ≡ 1 or 2 (mod 4)

i+ 1 if i ≡ 3 (mod 4) and i ̸= n

n if i = n

f(ei) = 2n− i+ 1.

Therefore,

w(v1) = f(v2) + f(vn) + f(e1) + f(en)

= 2 + n+ 2n+ (n+ 1)

= 4n+ 3

and

w(vn) = f(v1) + f(vn−1) + f(en−1) + f(en)

= 1 + (n− 1) + (n+ 2) + (n+ 1)

= 3n+ 3.

Now for each i, 2 ≤ i ≤ n− 1,

w(vi) = f(vi−1) + f(vi+1) + f(ei−1) + f(ei)

= (4n− 2i+ 3) + f(vi−1) + f(vi+1)

=


(4n− 2i+ 3) + i+ (i+ 1) if i ≡ 0 (mod 4)

(4n− 2i+ 3) + (i− 2) + (i+ 1) if i ≡ 1 (mod 4)

(4n− 2i+ 3) + (i− 1) + (i+ 2) if i ≡ 2 (mod 4)

(4n− 2i+ 3) + (i− 1) + i if i ≡ 3 (mod 4)

=

{
4n+ 4 if i is even

4n+ 2 if i is odd.

It is easy to see that f is a svtla labeling of Cn and that it induces a
4 proper vertex coloring of Cn.

Case 2: When n ̸≡ 3 (mod 4), then we define a super vertex total labeling
f by

f(vi) =


i− 1 if i ≡ 0 (mod 4)

i if i ≡ 1 or 2 (mod 4)

i+ 1 if i ≡ 3 (mod 4)
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and

f(ei)

{
2n− i if i ̸= n

2n if i = n.

Therefore,

w(v1) = f(v2) + f(vn) + f(e1) + f(en)

= 2 + f(vn) + (2n− 1) + 2n

= 4n+ 1 + f(vn)

=

{
4n+ 1 + (n− 1) if n ≡ 0 (mod 4)

4n+ 1 + n if n ≡ 1 or 2 (mod 4)

=

{
5n if n ≡ 0 (mod 4)

5n+ 1 if n ≡ 1 or 2 (mod 4)

and

w(vn) = f(v1) + f(vn−1) + f(en−1) + f(en)

= 1 + f(vn−1) + (n+ 1) + 2n

= (3n+ 2) + f(vn−1)

=


(3n+ 2) + n if n ≡ 0 (mod 4)

(3n+ 2) + (n− 2) if n ≡ 1 (mod 4)

(3n+ 2) + (n− 1) if n ≡ 2 (mod 4)

=


4n+ 2 if n ≡ 0 (mod 4)

4n if n ≡ 1 (mod 4)

4n+ 1 if n ≡ 2 (mod 4).

Now for each i, 2 ≤ i ≤ n− 1,

w(vi) = f(vi−1) + f(vi+1) + f(ei−1) + f(ei)

= f(vi−1) + f(vi+1) + (2n− i+ 1) + (2n− i)

= (4n− 2i+ 1) + f(vi−1) + f(vi+1)

=


(4n− 2i+ 1) + i+ (i+ 1) if i ≡ 0 (mod 4)

(4n− 2i+ 1) + (i− 2) + (i+ 1) if i ≡ 1 (mod 4)

(4n− 2i+ 1) + (i− 1) + (i+ 2) if i ≡ 2 (mod 4)

(4n− 2i+ 1) + (i− 1) + i if i ≡ 3 (mod 4)

=

{
4n+ 2 if i is even

4n if i is odd.
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This proves that f is a svtla labeling. Now, we have the following
subcases:

Subcase (i): When n ≡ 0 (mod 4), w(v1) = 5n,w(vn) = 4n+2 and for
each i, 2 ≤ i ≤ n−1, w(vi) = 4n or 4n+2. Hence, χsvtla(Cn) ≤
3.

Subcase (ii): When n ≡ 1 (mod 4), w(v1) = 5n + 1, w(vn) = 4n
and for each i, 2 ≤ i ≤ n − 1, w(vi) = 4n or 4n + 2. Hence,
χsvtla(Cn) ≤ 3. Also, 3 = χ(Cn) ≤ χsvtla(Cn) ≤ 3. This proves
χsvtla(Cn) = 3.

Subcase (iii): When n ≡ 2 (mod 4), w(v1) = 5n + 1, w(vn) = 4n + 1
and for each i, 2 ≤ i ≤ n − 1, w(vi) = 4n or 4n + 2. Hence,
χsvtla(Cn) ≤ 4.

This completes the proof.

A svtla labeling of a cycle C5 is shown in Figure 2.4.
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Figure 2.4: svtla labeling of C5.

Theorem 2.7. For the complete graph Kn, n ≥ 2, χsvtla(Kn) = n.

Proof. For p ≥ 2, we construct the graph Kp by adding one vertex to Kp−1

and joining it to the all vertices of Kp by an edge, that is Kp = Kp−1+K1.
We will prove that χsvtla(Kp) = p by induction on p. By Theorem 2.4, we
know that χsvtla(K2) = 2 and by Theorem 2.6, χsvtla(K3) = 3. Therefore,
the result is true for p = 2 and p = 3.

We assume that p ≥ 4 and the result is true for a given p = n that is
χsvtla(Kn) = n with svtla labeling f . We will prove the result for p = n+1
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that is χsvtla(Kn+1) = n + 1. Without loss of generality, we may assume
that v1, v2, . . . , vn are the vertices of Kn such that wf (v1) < wf (v2) < · · · <
wf (vn). Let e1, e2, . . . , em be the edges of Kn, where m = n(n−1)

2 . Let
V (K1) = v0. We define a super vertex total labeling g of Kn+1 = Kn +K1

by

g(x) =


1 if x = v0

f(vi) + 1 if x = vi, 1 ≤ i ≤ n

f(ei) + 1 if x = ei, 1 ≤ i ≤ n

m+ n+ 1 + i if x = v0vi, 1 ≤ i ≤ n.

Therefore,

wg(v0) =
∑

v∈V (G)

f(v) +

n∑
i=1

f(v0vi)

= (2 + 3 + · · ·+ (n+ 1)) +

n∑
i=1

(m+ n+ 1 + i)

=
n3 + 4n2 + 7n

2

and for 1 ≤ i ≤ n,

wg(vi) =
∑

y∈NTKn (vi)

f(y) +m+ n+ 1 + i

= wf (vi) + 2(n− 1) + (m+ n+ 2 + i).

From the expression for wg(vi), it is clear that

wg(v1) < wg(v2) < · · · < wg(vn).

Now we show that wg(v0) > w(vi) for each i, 1 ≤ i ≤ n. We consider the

vertex vi. If we assign largest labels from the set {1, 2, . . . , n(n+1)
2 } to the

elements in NT (vi), then we obtain

wg(vi) ≤
(

n2+n
2 − (2n− 3)

)
+

(
n2+n

2 − (2n− 2)
)
+ · · ·+ n2+n

2

= n3 − 2n2 + 4n− 3.

Now for n ≥ 3, wg(v0) =
n3+4n2+7n

2 > n3 − 2n2 + 4n − 3 ≥ wg(vi) where
1 ≤ i ≤ n. Hence, all vertex weights in Kn +K1 are distinct. This proves
the theorem.

Now, we calculate the super vertex total local antimagic chromatic number
of a complete bipartite graph Km,n.
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Theorem 2.8. χsvtla(Km,n) = 2 if and only if m,n > 1,mn > 4 and m ≡
n (mod 2).

Proof. Suppose m,n > 1,mn > 4 and m ≡ n (mod 2). Then by Theo-

rem 1.4, there exists a magic rectangle MR(m,n) with row sum n(mn+1)
2 ,

column sum m(mn+1)
2 . Let {x1, x2, . . . , xm} and {y1, y2, . . . , yn} be the bi-

partition of the vertex set of Km,n with m ≤ n. Adding (m+n) to the each
entry ofMR(m,n) we obtain a new rectangle sayR = [ri,j ]m×n in which row

sum is ρ = n(m+n)+ n(mn+1)
2 and column sum is σ = m(m+n)+m(mn+1)

2 .
Define the super vertex total labeling f by

f(a) =


i if a = xi

m+ i if a = yi

ri,j if a = xiyj .

Then for any i, 1 ≤ i ≤ m and for any j, 1 ≤ j ≤ n,

w(xi) =

n∑
j=1

f(yj) + ρ

=

(
mn+

n(n+ 1)

2

)
+

(
mn+ n2 +

mn2 + n

2

)
=

(2 +m)n2 + (2 + 4m)n

2

and

w(yj) =

m∑
i=1

f(xi) + σ

=
m(m+ 1)

2
+

(
m2 +mn+

m2n+m

2

)
=

(n+ 3)m2 + (2n+ 2)m

2
.

It is easy to observe that weights of vertices in independent sets are the
same and w(xi) < w(yj) for any values of i, j. Therefore, f is a svtla
labeling, which induces 2 colors. Hence, χsvtla(Km,n) ≤ 2. We know,
2 = χ(Km,n) ≤ χsvtla(Km,n). Therefore, χsvtla(Km,n) = 2.

Conversely, suppose that χsvtla(Km,n) = 2 with svtla labeling f . We must
have w(xi) ̸= w(yj) for any i, 1 ≤ i ≤ m and for any j, 1 ≤ j ≤ n and the
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weights of vertices in the independent sets must be same. We can form a
magic rectangle MR(m,n) with (i, j)-th entry as f(xiyj)− (m+n) so that
the row sum is equal to w(yj) − n(m + n), where w(yj) is same for each
j, 1 ≤ j ≤ n, and the column sum is equal to w(xi) − m(m + n), where
w(xi) is same for each i, 1 ≤ i ≤ m. Hence, by Theorem 1.4, m and n
satisfy the required conditions. This completes the proof.

Proposition 2.9. For any n ≥ 1,

χsvtla(K2,n) =

{
2 if n ≥ 4 and n is even

3 if n is odd or n = 2.

Proof. We know that χsvtla(K2,1) = χsvtla(K2,2) = 3. Let n ≥ 3. If
n is even by Theorem 2.8, χsvtla(K2,n) = 2. Let n be odd. In this
case χsvtla(K2,n) = 2 implies the existence of MR(2, n), which is im-
possible since n is odd. Hence, χsvtla(K2,n) ≥ 3. We will show that
χsvtla(K2,n) ≤ 3. Let {x, y} and {u1, u2, . . . , un} be a bipartition of K2,n.
From Corollary 2.2, χsvtla(K2,1) = χsvtla(P3) = 3 and from Theorem 2.6,
χsvtla(K2,2) = χsvtla(C4) = 3. For n ≥ 3, define a super vertex total label-
ing of K2,n by f(x) = 1, f(y) = 2, for each i, 1 ≤ i ≤ n, f(ui) = 2 + i,
and

f(aui) =

{
n+ 2 + i if a = xui

3n+ 3− i if a = yui.

Now, we calculate the vertex weights: For each i, 1 ≤ i ≤ n, w(ui) = 4n+8,
w(x) = 2n2 + 5n,w(y) = 3n2 + 5n. We observe that w(x) < w(ui) < w(y).
Hence, f is a svtla labeling that induces 3 colors. Therefore, χsvtla(K2,n) ≤
3. Hence, χsvtla(K2,n) = 3.

From Corollary 2.3, for a tree T other than a star, we have χsvtla(T ) >
χ(T ). Whereas, χsvtla(C4n+1) = χ(C4n+1). Also for complete graphs,
some complete bipartite graphs and star graphs their χsvtla values agree
with their chromatic number. Hence, we raise the following problem:

Problem 2.10. Characterize graphs G for which χsvtla(G) = χ(G).

Let Sn,t be a graph obtained by replacing each edge of a star Sn by a path
of length t + 1 (see Figure 2.5). We calculate the svtla chromatic number
of Sn,t for t = 1, 2. Let vvi be replaced by path vvi,1, vi,2, . . . , vi,t+2.
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Figure 2.5: svtla labeling of S5,2.

Theorem 2.11. χsvtla(Sn,t) ≤ n+ t+ 1, for t = 1, 2.

Proof. We define the super vertex total labeling of Sn,t by

f(v) = nt+ n+ 1,
f(vi,j) = i+ n(j − 1), if 1 ≤ i ≤ n, 1 ≤ j ≤ t+ 1,

f(vvi,1) = 2nt+ n+ 1 + i, if 1 ≤ i ≤ n,
f(vi,j−1vi,j) = n(2t+ 3− j) + 2− i, if 1 ≤ i ≤ n, 2 ≤ j ≤ t+ 1.

The weights of the vertices induced by f are

w(x) =

n∑
i=1

f(vi,1) +

n∑
i=1

f(vi,1vi,2) =

n∑
i=1

i+

n∑
i=1

(2nt+ n+ 1 + i)

= 2n2(1 + t) + 2n

and for each i, 1 ≤ i ≤ n,

w(vi,1) = f(v) + f(vi,2) + f(vvi,1) + f(vi,1vi,2)

= (nt+ n+ 1) + (n+ i) + (2nt+ n+ 1 + i) + (2nt+ n+ 2− i)

= n(5t+ 4) + 4 + i,

w(vi,2) = f(vi,1) + f(vi,3) + f(vi,1vi,2) + f(vi,2vi,3)

= (i) + (i+ 2n) + (2nt+ n+ 2− i) + (2nt+ 2− i)

= 4nt+ 3n+ 4,

w(vi,3) = f(vi,2) + f(vi,2vi,3)

= (n+ i) + (2nt+ 2− i)

= 2nt+ n+ 2.
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Clearly, f is an svtla labeling of Sn,t, and f induces n+ t+1 distinct colors.
Hence, χsvtla(Sn,t) ≤ n+ t+ 1.

Let Bm,n be the bi-star with vertex set {x, y, xi, yj : 1 ≤ i ≤ m, 1 ≤ j ≤ n}
with centers x and y and edge set {xy} ∪ {xxi : 1 ≤ i} ∪ {yyj :≤ m, 1 ≤
j ≤ n}, where m ≤ n. We calculate the super vertex total local antimagic
chromatic number χsvtla(Bm,n).

Theorem 2.12. For the bi-star Bm,n, χsvtla(Bm,n) = n+ 2, where m ≤ n.

Proof. Let m ≤ n. By Theorem 2.1, n + 1 ≤ χsetla(Bm,n). First we show
that χsvtla(Bm,n) > n+ 1. Let f be any svtla labeling of Bm,n. We know
that the weights of all pendent vertices yi are distinct and w(y) ̸= w(yi) for
any i, 1 ≤ i ≤ n. If w(x) = w(yi) for some i then we obtain f(x)+f(xxi) =
f(x) + f(xy) +

∑n
i=1(f(yi) + f(yyi)). This implies, f(xxi) = f(xy) +∑n

i=1(f(yi)+f(yyi)) which is not possible. Therefore, χsvtla(Bm,n) ≥ n+2.
For the upper bound, we define a super vertex total labeling f of Bm,n as
follows:

f(x) = m+ n+ 2
f(y) = n+ 2

f(xy) = 2m+ 2n+ 3
f(xi) = i for 1 ≤ i ≤ m

f(xxi) = m+ n+ 2 + i for 1 ≤ i ≤ m
f(yyi) = 2m+ n+ 2 + i for 1 ≤ i ≤ n

and we label the vertices yi by {m+1,m+2, . . . ,m+n,m+n+1}−{n+2}
in any manner. The sum of these yi labels is n2+2mn+2m+n−2

2 . Now we
calculate the weights:

w(x) = f(y) + f(xy) +

m∑
i=1

(f(xi) + f(xxi))

= (n+ 2) + (2m+ 2n+ 3) +

m∑
i=1

(m+ n+ 2 + 2i)

= 2m2 +mn+ 5m+ 3n+ 5,

w(y) = f(x) + f(xy) +

n∑
i=1

f(yi) +

n∑
i=1

f(yyi)

= (m+ n+ 2) + (2m+ 2n+ 3)

+
n2 + 2mn+ 2m+ n− 2

2
+

n∑
i=1

(2m+ n+ 2 + i)

= 2n2 + 3mn+ 4m+ 6n+ 4.
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The weights of pendent vertices w(xi) = f(x) + f(xxi) = m+ n+ 4+ i for
each i, 1 ≤ i ≤ m and w(yj) = f(y) + f(yyj) = 2m + 2n + 4 + j for each
j, 1 ≤ j ≤ n. Thus, f is a required svtla labeling that induces n+2 colors.
Hence, χsvtla(Bm,n) = n+ 2.

A svtla labeling of bi-star B(4, 5) is illustrated in Figure 2.6.
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Figure 2.6: svtla labeling of bi-star B(4, 5).

Theorem 2.13. If G is an r-regular graph, then

χsvtla(G ◦K1) ≤ χsvtla(G) + 1.

Proof. Let G be an r-regular graph with V (G) = {v1, v2, . . . , vn} and m
edges. Let f be a svtla labeling of G. Without loss of generality, we may
assume that f(vi) = i, for 1 ≤ i ≤ n. Let {x1, x2, . . . , xn} be newly added
vertices to obtain H = G ◦K1 such that there is an edge ei = vixi for each
i, 1 ≤ i ≤ n. Define a super vertex total labeling g of G ◦K1 by

g(vi) = f(vi) = i for 1 ≤ i ≤ n
g(xi) = n+ i for 1 ≤ i ≤ n
g(ei) = 2n+m− i+ 1 for 1 ≤ i ≤ m
g(e) = 2n+ f(e) for e ∈ E(G).
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Now we calculate the weight of each vertex inG◦K1 induced by super vertex
total labeling g. For each i, 1 ≤ i ≤ n, wg(xi) = g(vi)+g(ei) = 2n+m+1.
Now for any vertex vi ∈ V (G),

wg(vi) =
∑

x∈NTH(vi)

g(x)

= g(xi) + g(ei) +
∑

x∈NTG(vi)

g(x)

= (3n+m+ 1) +
∑

x∈NTG(vi)

g(x)

= (3n+m+ 1) +
∑

u∈NG(vi)

g(u) +
∑

uvi∈E(G)

g(uvi)

= (3n+m+ 1) +
∑

u∈NG(vi)

f(u) +
∑

uvi∈E(G)

(2n+ f(uvi))

= (3n+m+ 1) + 2nr +
∑

u∈NG(vi)

f(u) +
∑

uvi∈E(G)

f(uvi)

= (3n+m+ 1) + 2nr + wf (vi),

which is independent of i. Hence, g is a svtla labeling of G ◦ K1 and
χsvtla(G ◦K1) ≤ χsvtla(G) + 1.

Also, in addition to regular graphs, some non-regular graphs follow the
inequality obtained in Theorem 2.13. For example: χsvtla(K4 − e) = 3
and χsvtla((K4 − e) ◦K1) = 4 ≤ χsvtla(K4 − e) + 1 (see Figure 2.7). The
following questions arise naturally.

Problem 2.14. Characterize the graphs G for which

χsvtla(G ◦K1) = χsvtla(G) + 1.

Problem 2.15. Let G and H be super vertex total local antimagic graphs.
Determine the χsvtla(G ◦H) in terms of χsvtla(G) and χsvtla(H).

Remark 2.16. The outcomes presented in Section 3 demonstrate notable
parallels to the findings expounded upon in Section 2. While these paral-
lels exist, they are nuanced by slight differences in the bounds, leading to
intriguing and distinct results. This distinctive outcome variation under-
scores the importance of maintaining a separate treatment for Section 3.
This approach acknowledges the subtleties and their significance in com-
prehensively understanding the χsetla values.
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Figure 2.7: svtla labelings of (K4 − e) ◦K1 and K4 − e.

3 Super edge total local antimagic labeling

We follow the same notations and definitions for the various families of
graphs as defined in Section 2.

Proposition 3.1. For any graph G with a vertex v having the largest number
ℓ of pendent vertices, χsetla(G) ≥ ℓ+ 1.

Proof. Let G be a graph on n vertices and v1, v2, . . . , vℓ be pendent vertices
at v. Let f be a setla labeling. Then the ℓ weights w(vi) = f(v) + f(vvi)
are all distinct and w(v) > w(vi) where 1 ≤ i ≤ ℓ. Hence, f induces a
proper vertex coloring of G that needs at least ℓ+1 colors. This proves the
theorem.

The proof of the following two corollaries is evident from Proposition 3.1.

Corollary 3.2. For the star K1,n, χsetla(K1,n) = n+ 1.

A setla labeling of star K1,n is illustrated in Figure 3.1.
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Figure 3.1: setla labeling of a star.

Corollary 3.3. If a tree T with the largest number of pendent vertices equals
ℓ at a vertex, then χsetla(T ) ≥ ℓ+ 1.

2 1 3
4 3

3 1 4 2 5
5 11 6

9 1 8 2 7 4 6 3 5
10 19 20 19 9

Figure 3.2: setla labeling of P2, P3 and P5.

Theorem 3.4. For the path Pn, 3 ≤ χsetla(Pn) ≤ 5.

Proof. It is easy to see that χsetla(P2) = 2 and χsetla(P3) = 3 (see Fig-
ure 3.2). Let Pn be a path with vertex set {v1, v2, . . . , vn} and ei = vivi+1

be edges, where 1 ≤ i ≤ n − 1, where n ≥ 4. First, we establish the lower
bound. Let f be a setla labeling of Pn. Then, w(v1) = f(v2) + f(e1) and
w(v3) = f(v2) + f(v4) + f(e2) + f(e3). If w(v1) = w(v3) then we obtain
f(e1) = f(v4)+ f(e2)+ f(e3). Which is impossible since f(e1) ≤ n− 1 and
f(v4) + f(e2) + f(e3) ≥ n. Therefore, w(v1) ̸= w(v3). Also w(v1) ̸= w(v2)
and w(v2) ̸= w(v3) since f is a setla labeling and v1v2, v2v3 ∈ E(Pn). This
proves that

χsetla(Pn) ≥ 3. (2)

To prove the upper bound, we consider the following two cases:
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Case 1: When n ≡ 0 (mod 4), define a super edge total labeling f by

f(ei) =



i− 1 if i ≡ 0 (mod 4)

i if i ≡ 1 or 2 (mod 4) and i ̸= n− 2

i+ 1 if i ≡ 3 (mod 4) and i ̸= n− 1

n− 1 if i = n− 2

n− 2 if i = n− 1

and f(vi) = 2n− i. Therefore,

w(v1) = f(v2) + f(e1) = 1 + (2n− 2) = 2n− 1

w(vn) = f(vn−1) + f(en−1) = (n+ 1) + (n− 2) = 2n− 1

w(vn−1) = f(vn−2) + f(vn) + f(en−2) + f(en−1)

= (n+ 2) + n+ (n− 1) + (n− 2) = 4n− 1

w(vn−2) = f(vn−3) + f(vn−1) + f(en−3) + f(en−2)

= (n+ 3) + (n+ 1) + (n− 3) + (n− 1) = 4n.

Now for each i, 2 ≤ i ≤ n− 3,

w(vi) = f(vi−1) + f(vi+1) + f(ei−1) + f(ei)

= 2n− (i− 1) + 2n− (i+ 1) + f(ei−1) + f(ei)

= 4n− 2i+ f(ei−1) + f(ei)

= 4n− 2i+


i+ (i− 1) if i ≡ 0 (mod 4)

(i− 2) + i if i ≡ 1 (mod 4)

(i− 1) + i if i ≡ 2 (mod 4)

(i− 1) + (i+ 1) if i ≡ 3 (mod 4) and i ̸= n

=


4n− 1 if i is even

4n− 2 if i ≡ 1 (mod 4)

4n if i ≡ 3 (mod 4).

Observe that f is a setla labeling and induces 4 colors.

Case 2: When n ̸≡ 0 (mod 4), define a super edge total labeling f by

f(ei) =


i− 1 if i ≡ 0 (mod 4)

i if i ≡ 1 or 2 (mod 4)

i+ 1 if i ≡ 3 (mod 4)

and f(vi) = 2n− i.
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Therefore,

w(v1) = f(v2) + f(e1) = (2n− 2) + 1 = 2n− 1,

w(vn) = f(vn−1) + f(en−1)

= n+ 1 +

{
n− 2 if n ≡ 1 (mod 4)

n− 1 if n ≡ 2 or 3 (mod 4)

=

{
2n− 1 if n ≡ 1 (mod 4)

2n if n ≡ 2 or 3 (mod 4)

and for 2 ≤ i ≤ n− 1,

w(vi) = f(vi−1) + f(vi+1) + f(ei−1) + f(ei)

= [2n− (i− 1)] + [2n− (i+ 1)] + f(ei−1) + f(ei)

= (4n− 2i) + f(ei−1) + f(ei)

= (4n− 2i) +


i+ (i− 1) if i ≡ 0 (mod 4)

(i− 2) + i if i ≡ 1 (mod 4)

(i− 1) + i if i ≡ 2 (mod 4)

(i− 1) + (i+ 1) if i ≡ 3 (mod 4)

=


4n− 1 if i is even

4n− 2 if i ≡ 1 (mod 4)

4n if i ≡ 3 (mod 4).

Subcase (i): When n ≡ 1 (mod 4), w(v1) = w(vn) = 2n − 1 and for
each i, 2 ≤ i ≤ n− 1, w(vi) is 4n− 1 or 4n− 2 or 4n. Therefore,
χsetla(Pn) ≤ 4.

Subcase (ii): When n ≡ 2 or 3 (mod 4), w(v1) = 2n− 1, w(vn) = 2n,
and for each i, 2 ≤ i ≤ n − 1, w(vi) is 4n − 1 or 4n − 2 or 4n.
Therefore, χsetla(Pn) ≤ 5.

Hence, 3 ≤ χsetla(Pn) ≤ 5.
This completes the proof.

Proposition 3.5. For the cycle C4, χsetla(C4) = 3.

Proof. Consider a setla cycle C4 : v1v2v3v4 with setla labeling f . Since, f
is setla, we have w(v1) ̸= w(v2) and w(v2) ̸= w(v3). We will show that
χsetla(C4) = 3. On the contrary, suppose χsetla(C4) = 2. We must have,
w(v1) = w(v3) =⇒ f(e1) + f(e4) = f(e2) + f(e3) and w(v2) = w(v4) =⇒
f(e1) + f(e2) = f(e3) + f(e4). From the above two equalities, we have
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f(e2) = f(e4), which is a contradiction. Hence, χsetla(C4) ≥ 3. Also, from
the setla labeling of C4 as shown in Figure 3.3, χsetla(C4) ≤ 3. Therefore,
χsetla(C4) = 3.
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Figure 3.3: setla labelings of C3, C4 and C5.

Theorem 3.6. For the cycle Cn, n ≥ 3, 3 ≤ χsetla(Cn) ≤ 5.

Proof. It is easily observed that χsetla(C3) = 3. And by Proposition 3.5,
χsetla(C4) = 3. Now consider the cycle Cn with vertex set {v1, v2, . . . , vn}
and ei = vivi+1 be edges for n ≥ 5, where subscripts are taken modulo n.
We consider the following two cases:

Case 1: When n ≡ 3 (mod 4), define a super edge total labeling f by

f(ei) =


i− 1 if i ≡ 0 (mod 4)

i if i ≡ 1 or 2 (mod 4)

i+ 1 if i ≡ 3 (mod 4) and i ̸= n

n if i = n

f(vi) =


2n− i+ 1 if i ̸= 1, 2

2n− 1 if i = 1

2n if i = 2.

Therefore,

w(v1) = f(v2) + f(vn) + f(e1) + f(en)

= 2n+ (n+ 1) + 1 + n

= 4n+ 2,

w(v2) = f(v1) + f(v3) + f(e1) + f(e2)

= (2n− 1) + (2n− 2) + 1 + 2

= 4n,

w(v3) = f(v2) + f(v4) + f(e2) + f(e3)
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= 2n+ (2n− 3) + 2 + 4

= 4n+ 3,

w(vn) = f(v1) + f(vn−1) + f(en−1) + f(en)

= (2n− 1) + (n+ 2) + (n− 1) + n

= 5n.

Now for each i, 4 ≤ i ≤ n− 1,

w(vi) = f(vi−1) + f(vi+1) + f(ei−1) + f(ei)

= [2n− (i− 1) + 1] + [2n− (i+ 1) + 1] + f(ei−1) + f(ei)

= 4n+ 2− 2i+ f(ei−1) + f(ei)

= 4n+ 2− 2i+


i+ (i− 1) if i ≡ 0 (mod 4)

(i− 2) + i if i ≡ 1 (mod 4)

(i− 1) + i if i ≡ 2 (mod 4)

(i− 1) + (i+ 1) if i ≡ 3 (mod 4)

w(vi) =


4n+ 1 if i is even

4n if i ≡ 1 (mod 4)

4n+ 2 if i ≡ 3 (mod 4).

This proves that f is a setla labeling and induces 5 colors. Hence,
χsetla(Cn) ≤ 5.

Case 2: When n ̸≡ 3 (mod 4), define a super edge total labeling f by

f(ei) =


i− 1 if i ≡ 0 (mod 4)

i if i ≡ 1 or 2 (mod 4)

i+ 1 if i ≡ 3 (mod 4)

and

f(vi) =


2n− i+ 1 if i ̸= 1, 2

2n− 1 if i = 1

2n if i = 2.

Therefore,

w(v1) = f(v2) + f(vn) + f(e1) + f(en)

= 2n+ (n+ 1) + 1 +

{
n if n ≡ 1 or 2 (mod 4) and n ̸= 1

n− 1 if n ≡ 0 (mod 4)

=

{
4n+ 2 if n ≡ 1 or 2 (mod 4)

4n+ 1 if n ≡ 0 (mod 4),
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w(v2) = f(v1) + f(v3) + f(e1) + f(e2)

= (2n− 1) + (2n− 2) + 1 + 2 = 4n,

w(v3) = f(v2) + f(v4) + f(e2) + f(e3)

= 2n+ (2n− 3) + 2 + 4 = 4n+ 3,

w(vn) = f(v1) + f(vn−1) + f(en−1) + f(en)

= (2n− 1) + (n+ 2) + f(en−1) + f(en)

= (3n+ 1) +


2n− 1 if n ≡ 0 (mod 4)

2n− 2 if n ≡ 1 (mod 4)

2n− 1 if n ≡ 2 (mod 4)

=

{
5n if n ≡ 0 or 2 (mod 4)

5n− 1 if n ≡ 1 (mod 4).

Now for each i, 2 ≤ i ≤ n− 1,

w(vi) = (4n− 2i+ 2) +


2i− 1 if i ≡ 0 (mod 4)

2i− 2 if i ≡ 1 (mod 4)

2i− 1 if i ≡ 2 (mod 4)

2i if i ≡ 3 (mod 4)

=


4n if i ≡ 1 (mod 4)

4n+ 1 if i ≡ 0 or 2 (mod 4)

4n+ 2 if i ≡ 3 (mod 4).

It is easy to verify that the weights of vertices are 4n, 4n+1 or 4n+2,
4n + 3, 5n − 1 or 5n. Therefore, f is a setla labeling that induces
4 colors. Hence, χsetla(Cn) ≤ 4.

This completes the proof.

Now we calculate the setla labeling for a complete bipartite graph Km,n.
When m = n = 2, then K2,2

∼= C4 and by Proposition 3.5, χsetla(C4) = 3
and for m = 2 and n ≥ 3 we have the following result.

Theorem 3.7. χsetla(Km,n) = 2 if and only if m,n > 1, mn > 4 and
m ≡ n (mod 2).

Proof. Suppose m,n > 1,mn > 4 and m ≡ n (mod 2). Then by The-
orem 1.4, there exists a magic rectangle MR(m,n) = [ri,j ]m×n with row

sum ρ = n(mn+1)
2 , column sum σ = m(mn+1)

2 . Let {x1, x2, . . . , xm} and
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{y1, y2, . . . , yn} be a bipartition of the vertex set of Km,n with m ≤ n.
Define the super edge total labeling f by

f(a) =


mn+ i if a = xi

mn+m+ i if a = yi

ri,j if a = xiyj .

Then for any 1 ≤ i ≤ m and for any 1 ≤ j ≤ n,

w(xi) =

n∑
j=1

f(yj) + ρ

= n(mn+m) +
n(n+ 1)

2
+

n(mn+ 1)

2

= (3m+ 1)n2 + (2m+ 2)n,

w(yj) =

n∑
i=1

f(xi) + σ

= m(mn) +
m(m+ 1)

2
+

m(mn+ 1)

2

= (3n+ 1)m2 + 2m.

It is easy to verify that w(xi) > w(yj) for any i, 1 ≤ i ≤ m and for any
j, 1 ≤ j ≤ n. Therefore, f is a setla labeling and induces 2 colors. Hence,
χsetla(Km,n) ≤ 2. We know, χ(Km,n) = 2. Therefore, χsetla(Km,n) ≥
χ(Km,n) = 2.

Conversely, suppose that χsetla(Km,n) = 2 with setla labeling f . We must
have w(xi) ̸= w(yj) for any i, 1 ≤ i ≤ m and for any j, 1 ≤ j ≤ n, and
weights of vertices in independent sets must be same. We can form a magic
rectangle MR(m,n) with (i, j)-th entry as f(xiyj) so that row sum is equal
to w(yj) and the column sum is equal to w(xi) for any i and j. Then again,
by Theorem 1.4, m and n satisfy the required conditions. This completes
the proof.

Proposition 3.8. For any n ≥ 1,

χsetla(K2,n) =

{
2 if n ≥ 4 and m is even

3 if n is odd or n = 2.
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Proof. We know that χsetla(K2,1) = χsetla(K2,2) = 3. Let n ≥ 3. If
n is even by Theorem 3.7, χsetla(K2,n) = 2. Let n be odd. Again by
Theorem 3.7, χsetla(K2,n) ≥ 3. We will show that χsetla(K2,n) ≤ 3. Let
{x, y} and {u1, u2, . . . , un} be a bipartition of K2,n, where n ≥ 3. Define a
super edge total labeling of K2,n by f(x) = 3n+1, f(y) = 3n+2, for each
i, 1 ≤ i ≤ n, f(ui) = 2n+ i, and

f(aui) =

{
i if a = x

2n+ 1− i if a = y.

Now, we calculate the weights. For each i, 1 ≤ i ≤ n, w(ui) = 8n + 4,
w(x) = 3n2+n, w(y) = 4n2+n. It is easy verify that w(ui) < w(x) < w(y)
for all i, 1 ≤ i ≤ n. Hence, f is a setla labeling and induces 3 colors.
Therefore, χsetla(K2,n) ≤ 3. Hence, χsetla(K2,n) = 3.

Then we have the following question:

Problem 3.9. Determine the super vertex (edge) total local antimagic chro-
matic number for the complete bipartite graphKm,n, wherem ̸≡ n (mod 2).

Theorem 3.10. For a bi-star χsetla(Bm,n) = n+ 2, where m ≤ n.

Proof. Suppose m ≤ n. By Theorem 3.1, n + 1 ≤ χsetla(Bm,n). First
we show that χsetla(Bm,n) > n + 1. Let f be any setla labeling of Bm,n.
We know that weights of all pendent vertices yi are distinct and w(y) ̸=
w(yi) for any i, 1 ≤ i ≤ n. If w(x) = w(yi) for any i, then we ob-
tain f(x) + f(xxi) = f(x) + f(xy) +

∑n
i=1(f(yi) + f(yyi)). This implies,

f(xxi) = f(xy) +
∑n

i=1(f(yi) + f(yyi)), which is not possible. Therefore,
χsetla(Bm,n) ≥ n + 2. This proves the lower bound. For an upper bound,
we define a super edge total labeling f of Bm,n as follows:

f(x) = 2m+ 2n+ 3,
f(y) = m+ 2n+ 3,

f(xy) = m+ n+ 1,
f(xi) = m+ n+ 1 + i, if 1 ≤ i ≤ m

f(xxi) = i, if 1 ≤ i ≤ m
f(yyi) = m+ i, if 1 ≤ i ≤ n

and we label the vertices yi by {2m+n+2, 2m+n+3, . . . , 2m+2n+2}−
{m+ 2n+ 3} in any manner. The sum of these yi labels is

3n2 + 4mn+ 2m+ 3n− 2

2
.
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Now we calculate the weights:

w(x) = f(y) + f(xy) +

m∑
i=1

(f(xi) + f(xxi))

= (m+ 2n+ 3) + (m+ n+ 1) +

m∑
i=1

(m+ n+ 1 + 2i)

= 2m2 +mn+ 4m+ 3n+ 4,

w(y) = f(x) + f(xy) +

n∑
i=1

f(yi) +

n∑
i=1

f(yyi)

= (2m+ 2n+ 3) + (m+ n+ 1) + 3n2+4mn+2m+3n−2
2 +

n∑
i=1

(m+ i)

= 2n2 + 3mn+ 4m+ 5n+ 3.

The weights of pendent vertices: w(xi) = f(x) + f(xxi) = 2m+ 2n+ 3+ i
and w(yi) = f(y) + f(yyi) = 2m + 2n + 3 + i. Thus f is a required setla
that induces n+ 2 colors. Hence, χsetla(Bm,n) = n+ 2.

A setla labeling of bi-star B(4, 5) is illustrated in Figure 3.4.
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Figure 3.4: setla labeling of bi-star B(4, 5).

Theorem 3.11. If G is an r-regular graph, then

χsetla(G ◦K1) ≤ χsetla(G)+1.

Proof. Let G be an r-regular graph with V (G) = {v1, v2, . . . , vn} and m
edges. Let f be a setla labeling of G. Without loss of generality, we assume
that f(vi) = m+ i, where 1 ≤ i ≤ n. Let {x1, x2, . . . , xn} be newly added
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vertices to obtain H = G ◦K1 such that there is an edge ei = vixi for each
i, 1 ≤ i ≤ n. We define a super edge total labeling g of H as follows:

g(vi) = f(vi) + n = m+ n+ i if 1 ≤ i ≤ n
g(xi) = m+ 2n+ i if 1 ≤ i ≤ n
g(ei) = m+ n+ 1− i if 1 ≤ i ≤ m
g(e) = f(e) if e ∈ E(G).

Now, we calculate the weight of each vertex in H induced by g. For each
i, 1 ≤ i ≤ n, wg(xi) = g(vi) + g(ei) = 2m + 2n + 1 and g(xi) + g(ei) =
2m+ 3n+ 1. For any vertex vi ∈ V (G),

wg(vi) =
∑

x∈NTH(vi)

g(x)

= g(xi) + g(ei) +
∑

x∈NTG(vi)

g(x)

= 2m+ 3n+ 1 +
∑

x∈NTG(vi)

g(x)

= 2m+ 3n+ 1 +
∑

u∈NG(vi)

g(u) +
∑

uvi∈E(G)

g(uvi)

= 2m+ 3n+ 1 +
∑

u∈NG(vi)

(n+ f(u)) +
∑

uvi∈E(G)

f(uvi)

= 2m+ 3n+ 1 + nr +
∑

u∈NG(vi)

f(u) +
∑

uvi∈E(G)

f(uvi)

= 2m+ 3n+ 1 + nr + wf (vi)

is independent of i. This proves that, for any i ̸= j, wg(vi) ̸= wg(vj) if
and only if wf (vi) ̸= wf (vj). Hence, g is a setla labeling of G ◦ K1 and
χsetla(G ◦K1) ≤ χsetla(G) + 1.

We pose the following problems:

Problem 3.12. Characterize graphs whose χsetla(G) = χ(G).

Problem 3.13. Characterize graphs whose χsetla(G ◦K1) = χsetla(G) + 1.

Problem 3.14. Let G and H be super edge total local antimagic graphs.
Determine the χsetla(G ◦H) in terms of χsetla(G) and χsetla(H).

Conjecture 3.15. Every graph without isolated vertices admits a super ver-
tex total local antimagic labeling.
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Conjecture 3.16. Every graph without isolated vertices admits a super edge
total local antimagic labeling.

4 Conclusion and future directions

We studied and calculated the super vertex (edge) total local antimagic
chromatic numbers for some families of graphs, such as paths, cycles, and
bipartite graphs. We conclude with some directions for further investiga-
tion, which will appear in subsequent papers:

1. Characterize graphs G on n vertices for which χsvtla(G) = k (or
χsetla(G) = k) for a given 2 ≤ k ≤ n.

2. Study extensions to closed neighborhoods by defining the weights
w(u) =

∑
x∈NT [u] f(x), and studying induced coloring schemes under

super vertex (edge) total local antimagic labelings.

3. Another possible extension would be to remove the condition of super
vertex (edge) by revising the definition of the weights as w(u) =∑

x∈NT (u) f(x).
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