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Abstract. We introduce a generalization of group divisible 3-designs with
2 groups, 3-GDDs with 2 associate classes, into partial group divisible 3-
designs, 3-PGDDs with 3 associate classes. A partial group divisible 3-
design, 3-PGDD(n, 2, k;λ, µ21, µ12), is a pair (G1 ∪G2,B) where G1 and G2

are called groups of size n and B is a collection of k-subsets, called blocks,
of G1∪G2 such that every 3-subset of Gi occurs in λ blocks in B and every
i elements of G1 and j elements of G2 occur together in µij blocks in B for
i ̸= j ∈ {1, 2}. Our study focuses on the case k = 4. We study obvious
necessary conditions for the existence of a 3-PGDD(n, 2, 4;λ, µ21, 0), and
prove that they are sufficient whenever (n− 2)λ = nµ21. Our construction
technique relies on the existence of 3-(n, 4, λ) designs and some large sets
of triple systems.

1 Introduction

A t-(n, k, λ) design, is a pair (X,B) where X is an n-set of points and B is
a collection of k-subsets, called blocks, of X with the property that every
t-subset of X is contained in exactly λ blocks. The parameter λ is called the
index of the design. A 2-(n, 3, λ) design is called a triple system, TS(n, λ).
A group divisible design, GDD(n,m, k;λ, µ), is a collection of k-subsets,
called blocks, of an nm-set X where the set X of elements is partitioned
into m subsets (called groups) of size n, every pair of distinct elements
of the same group occurs together in λ blocks, and every pair of elements
from different groups occurs together in µ blocks. A GDD has two indices
λ and µ. Pairs of elements that occur in the same group are called first
associates, and pairs of elements that occur in different groups are called
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second associates. Note that a GDD(n,m, 3;λ, λ) is a 2-design and, in fact,
a TS(nm, λ). In 2000, the existence problem for a group divisible design
with block size three was settled by Fu, Rodger, and Sarvate [1,2]. In 2004,
Hurd and Sarvate began to investigate the existence of a group divisible
design with block size four and two groups, see [4,5] for more details.

Several years later, in 2018, Sarvate and Bezire [8] extended the definition
of group divisible designs with two groups into a 3-design. First, note that
any 3-subset of a set is called a triple.

Definition 1.1. A group divisible 3-design, 3-GDD(n, 2, k;λ, µ), is a pair
(G1 ∪G2,B) where G1 and G2 are called groups of size n and B is a col-
lection of k-subsets, called blocks, of G1 ∪G2 such that

(i) every triple of each group occurs in λ blocks in B and

(ii) every triple where two elements are from one group and one element
from the other group occurs in µ blocks in B.

Triples of elements of G1∪G2 satisfying (i) and (ii) are called first associates
and second associates, respectively.

Moreover, Sarvate and Bezire [8] showed that the obvious necessary condi-
tions are sufficient for the existence of a 3-GDD(n, 2, 4;λ, µ) except possibly
when n ≡ 1, 3 (mod 6), n ̸= 3, 7, 13, and λ > µ. Later on, Sarvate and Cow-
den [9] gave a construction of a 3-GDD(n, 2, 4;λ, µ) for n ≡ 1, 7, 9 (mod 12).
Nonetheless, the existence problem when n ≡ 3 (mod 12), n ̸= 3, and λ ≡ 9
(mod 12) was still left unsolved. In 2023, Tefera et al. [10] obtained some
necessary conditions for the existence of a 3-GDD(n, 3, 5;λ, µ), and they
further presented some constructions especially when µ = 0.

We next introduce some useful notation. In a group divisible 3-design
(G1 ∪G2,B), a triple of G1 ∪G2 is an (s, t)-triple if it contains s elements
from G1 and t elements from G2. Thus, triples of G1∪G2 are classified into
four types: (3, 0)-triples and (0, 3)-triples are first associates while (2, 1)-
triples and (1, 2)-triples are second associates. In addition, types of blocks
are defined in the same manner. A block in B is said to be a [p, q]-block if
it contains p elements from G1 and q elements from G2.

In our study, we divide the set of all second associate triples into two
distinct associate classes depending on the number of elements belonging
to each group. We further introduce two new indices corresponding to each
associate class. Hence, we present a generalization of Definition 1.1 with
three indices as follows:
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Definition 1.2. A partial group divisible 3-design, 3-PGDD(n, 2, k;λ, µ21,
µ12), is a pair (G1 ∪G2,B) where G1 and G2 are called groups of size n
and B is a collection of k-subsets, called blocks, of G1 ∪G2 such that

(i) every (3, 0)-triple and (0, 3)-triple occurs in λ blocks in B,

(ii) every (2, 1)-triple occurs in µ21 blocks in B, and

(iii) every (1, 2)-triple occurs in µ12 blocks in B.

It is obvious that the existence of a 3-PGDD(n, 2, 4;λ, α, β) is equivalent to
the existence of a 3-PGDD(n, 2, 4;λ, β, α), and if α = β, then the partial
group divisible 3-design is a group divisible 3-design.

In this paper, repeated blocks are allowed in any designs; hence, any union
of sets of blocks will always be a multiset union. For an integer m and a
set B, we denote mB as the union of m copies of B.

Example 1.3. Let G1 = {1, 2, 3, 4}, G2 = {a, b, c, d}, and B = 2B1 ∪ B2 ∪
4{G2} where

B1 =
{
{1, 2, 3, x}, {1, 2, 4, x}, {1, 3, 4, x}, {2, 3, 4, x} | x ∈ G2

}
,

B2 =
{
{a, b, c, i}, {a, b, d, i}, {a, c, d, i}, {b, c, d, i} | i ∈ G1

}
.

Then (G1 ∪G2,B) is a 3-PGDD(4, 2, 4; 8, 4, 2).

Our main goal in this paper is to determine necessary and sufficient con-
ditions for the existence of a 3-PGDD(n, 2, 4;λ, µ21, µ12) whenever µ12 = 0
with a certain property, namely (n− 2)λ = nµ21.

As we focus on 3-PGDDs with µ12 = 0, we will simply use µ to denote the
second index µ21 of the design.

2 Preliminary results

In this section, we introduce some designs as well as related results that are
required for our construction.

The two triple systems (X,B) and (X,C) are said to be disjoint if B∩C = ∅.

Definition 2.1. A large set of TS(n, λ)s of size N is a set

N = {(X,Bi) | 1 ≤ i ≤ N}
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of N disjoint TS(n, λ)s such that {Bi | 1 ≤ i ≤ N} is a partition of the set
of all triples of X. It follows that N = (n− 2)/λ.

It is well known that there exists a TS(n, 1) for any n ≡ 1, 3 (mod 6). In
1984, Lu [6, 7] successfully constructed a large set of TS(n, 1) except for a
few cases. Later on, those missing cases were completely solved by Teirlinck
[11] in 1991. Furthermore, Teirlinck [12,13] had also completely solved the
existence problem of a large set of TS(n, λ) for each n and λ. We summarize
these results in Theorem 2.3. Additionally, Example 2.2 illustrates a large
set of TS(6, 2).

Example 2.2. Table 2.1 illustrates that the set of all triples of X = {1, 2, 3,
4, 5, 6} can be partitioned into 2 disjoint TS(6, 2)s, say B1 and B2. Each
column in Table 2.1 represents a triple of X.

Table 2.1: Two disjoint TS(6, 2)s that partition the set of all triples of X.

blocks of B1

1 1 1 1 1 2 2 2 3 3
2 2 3 4 5 3 4 5 4 4
3 4 5 6 6 6 5 6 5 6

blocks of B2

1 1 1 1 1 2 2 2 3 4
2 2 3 3 4 3 3 4 5 5
5 6 4 6 5 4 5 6 6 6

Theorem 2.3 (Lu-Teirlinck [6, 7, 11–13]).

(i) There exists a large set of TS(n, 1) if and only if n ≡ 1, 3 (mod 6)
and n ̸= 7.

(ii) If n ≡ 0, 4 (mod 6), there exists a large set of TS(n, 2).

(iii) If n ≡ 2 (mod 6), there exists a large set of TS(n, 6).

(iv) If n ≡ 5 (mod 6), there exists a large set of TS(n, 3).

Our main construction also requires the existence of a 3-(n, 4, λ) design.
Hanani [3] completely solved the existence problem of a 3-(n, 4, λ) design
as shown in the next theorem.

Theorem 2.4 (Hanani [3]). Necessary and sufficient conditions for the ex-
istence of a 3-(n, 4, λ) design are λn ≡ 0 (mod 2), λ(n − 1)(n − 2) ≡ 0
(mod 3), and λn(n− 1)(n− 2) ≡ 0 (mod 8). The conditions of λ for each
n modulo 12 such that a 3-(n, 4, λ) design exists are given in Table 2.2.
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Table 2.2: Conditions on n and λ for the existence of a 3-(n, 4, λ) design.

n (mod 12) λ

0, 6 0 (mod 3)
1, 5 0 (mod 2)

2, 4, 8, 10 positive integer λ
3 0 (mod 12)

7, 11 0 (mod 4)
9 0 (mod 6)

3 Necessary conditions

Let (G1 ∪G2,B) be a 3-PGDD(n, 2, 4;λ, µ, 0). A replication number of an
element x ∈ G1 ∪G2 in the design is the number of blocks in B containing
x. For i, j ∈ {1, 2}, we define ri to be the replication number of elements
from Gi. We define rij to be the number of blocks containing a pair of
elements x ∈ G1 and y ∈ G2. Obviously, r12 = r21. Moreover, we let b be
the number of blocks in B.

According to the types of blocks contained in B and the fact that the pa-
rameters r1, r2, r11, r22, r12, and b are nonnegative integers, we will obtain
necessary conditions for the existence of a 3-PGDD(n, 2, 4;λ, µ, 0). First,
we determine the parameters we defined in the previous paragraph.

Now we count the number of all triples of G1 ∪ G2 in B that contain x
to determine r1 and r2. Let x ∈ G1. We count the number of all triples
containing x in two ways. Since there are r1 blocks in the design that
contain x and each of these blocks gives 3 triples containing x, there are 3r1
such triples in total. On the other hand, we can count triples of each type
described in Definition 1.2 separately. Therefore, 3r1 =

(
n−1
2

)
λ+n(n−1)µ,

and hence

r1 =
(n− 1)(n− 2)λ+ 2n(n− 1)µ

6
. (1)

We use a similar counting method considering x ∈ G2 to obtain

r2 =
(n− 1)(n− 2)λ+ n(n− 1)µ

6
. (2)

Next, in order to determine r11, r22, and r12, we count the number of triples
occurring in the blocks of B that contain both x and y in two ways. One
is to count triples obtained from all blocks of B that contain both x and y.
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Second is to count (3, 0)-triples, (0, 3)-triples, and (2, 1)-triples that contain
both x and y. Hence we obtain the following parameters:

r11 =
(n− 2)λ+ nµ

2
, (3)

r22 =
(n− 2)λ

2
, (4)

r12 =
(n− 1)µ

2
. (5)

Finally, we determine b by counting the number of all triples in the design.
Since each block in B provides 4 triples, the design provides 4b triples. On
the other hand, the number of (3, 0)-triples, (0, 3)-triples, and (2, 1)-triples
are

(
n
3

)
,
(
n
3

)
, and

(
n
2

)
n, respectively. Therefore, 4b = 2

(
n
3

)
λ +

(
n
2

)
nµ, and

thus

b =
2n(n− 1)(n− 2)λ+ 3n2(n− 1)µ

24
. (6)

Now we have everything ready to establish obvious necessary conditions for
the existence of a 3-PGDD(n, 2, 4;λ, µ, 0).

Theorem 3.1 (Necessary conditions). Let n, λ ∈ N and µ ∈ N∪{0} be such
that n ≥ 4. If there exists a 3-PGDD(n, 2, 4;λ, µ, 0), then

(i) the parameters in Equations (1)–(6) are nonnegative integers,

(ii) there exists a 3-(n, 4, λ) design, and

(iii) λ ≥ n
n−2µ.

Proof.

(i) Obviously, the replication numbers as well as the number of blocks
are nonnegative integers.

(ii) Since there are no (1, 2)-triples occurring in a 3-PGDD(n, 2, 4;λ, µ, 0),
each (0, 3)-triple must be contained in some block of a 3-(n, 4, λ) de-
sign on G2. Note that the condition of n and λ for the existence of
such a design on G2 is concluded in Theorem 2.4.

(iii) Any (2, 1)-triple must be contained in a [3, 1]-block that contains
another two (2, 1)-triples and a triple of G1. Then the number of
triples of G1 must be at least one-third the number of (2, 1)-triples,
in other words,

(
n
3

)
λ ≥ 1

3

(
n
2

)
nµ.

Since r1, r2, r11, r22, r12, and b are in terms of n, λ, and µ, we can establish
another version of Theorem 3.1 as follows.
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Corollary 3.2 (Necessary conditions). Let n, λ ∈ N and µ ∈ N∪{0} be such
that n ≥ 4. If there exists a 3-PGDD(n, 2, 4;λ, µ, 0), then

(i) µ is even,

(ii) if n is odd, then λ is even,

(iii) if n ≡ 0 (mod 3), then λ ≡ 0 (mod 3),

(iv) if n ≡ 2 (mod 3), then µ ≡ 0 (mod 6),

(v) if n ≡ 3 (mod 4), then µ ≡ 0 (mod 4),

(vi) there exists a 3-(n, 4, λ) design, and

(vii) λ ≥ n
n−2µ.

Proof.

(i) By Equations (3)–(5), r11 − r22 − r12 = µ
2 is an integer, thus, µ is

even.

(ii) By Equation (4), r22 = (n−2)λ
2 is an integer. Hence, if n is odd, λ is

even.

(iii) By Equation (1), r1 is an integer, and since n ≡ 0 (mod 3), we have
(n− 1)(n− 2)λ ≡ 0 (mod 6). Hence λ ≡ 0 (mod 3).

(iv) By Equations (1)–(2), r1 − r2 = n(n−1)µ
6 is an integer, and it follows

that n(n− 1)µ ≡ 0 (mod 3). If n ≡ 2 (mod 3), then µ ≡ 0 (mod 3).
Therefore, µ ≡ 0 (mod 6) as µ is even, by (ii).

(v) By Equation (6), b is an integer, so we have 2n(n−1)(n−2)λ+3n2(n−
1)µ ≡ 0 (mod 24). When n ≡ 3 (mod 4), it follows that 2n(n−1)(n−
2)λ ≡ 0 (mod 24), and hence 3n2(n − 1)µ ≡ 0 (mod 24). Since n is
odd, (n − 1)µ ≡ 0 (mod 8), but n − 1 ≡ 2 (mod 4). Therefore, we
have µ ≡ 0 (mod 4).

(vi) and (vii) have been proved in the previous theorem.

4 Main results

Table 4.1 summarizes the necessary conditions for the existence of a 3-
PGDD(n, 2, 4;λ, µ, 0) for each n in modulo 12 from Corollary 3.2 except
the condition (vii) λ ≥ n

n−2µ. Note that the condition (v) in Corol-
lary 3.2, as concluded in Theorem 2.4, yields the following conditions:
λ ≡ 0 (mod 12) when n ≡ 3 (mod 12) and λ ≡ 0 (mod 4) when n ≡
7, 11 (mod 12).

Our goal is to study the existence of a 3-PGDD(n, 2, 4;λ, µ, 0) in the ex-
treme case of the bound λ ≥ n

n−2µ, in other words, when

(n− 2)λ = nµ. (7)
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Table 4.1: Conditions on n, λ, and µ obtained from Corollary 3.2(i)–(vi).

n (mod 12) Conditions for λ and µ

0, 6 λ ≡ 0 (mod 3) and µ ≡ 0 (mod 2)
1 λ ≡ µ ≡ 0 (mod 2)

2, 8 µ ≡ 0 (mod 6)
3 λ ≡ 0 (mod 12) and µ ≡ 0 (mod 4)

4, 10 µ ≡ 0 (mod 2)
5 λ ≡ 0 (mod 2) and µ ≡ 0 (mod 6)
7 λ ≡ 0 (mod 4) and µ ≡ 0 (mod 4)
9 λ ≡ 0 (mod 6) and µ ≡ 0 (mod 2)
11 λ ≡ 0 (mod 4) and µ ≡ 0 (mod 12)

First, we investigate in Lemma 4.1 that the parameters λ and µ that satisfy
the equation (n − 2)λ = nµ and all necessary conditions in Corollary 3.2
must be in some specific forms.

Lemma 4.1. Let n ≥ 4, λ ≥ 1, µ ≥ 0, and (n− 2)λ = nµ. Then n, λ, and µ
satisfy the conditions in Corollary 3.2 if and only if λ = cn and µ = c(n−2)
for

(n, c) ∈
{
(4r, s), (4r + 1, 2s),

(
4r + 2, s

2

)
, (4r + 3, 4s)

∣∣∣ r, s ∈ N
}
.

Proof. Let n ≥ 4, λ ≥ 1, and µ ≥ 0 satisfy all conditions in Corollary 3.2
and (n− 2)λ = nµ. We separate the proof into two cases depending on the
parity of n.

Case 1: n is odd.
Since µ = n−2

n λ is a positive integer and gcd(n− 2, n) = 1, it follows
that λ = cn and µ = c(n− 2) for some c ∈ N. If n ≡ 1 (mod 4), then
µ = c(n− 2) is an even integer by Corollary 3.2(i), and hence c must
be an even integer. If n ≡ 3 (mod 4), then µ = c(n− 2) ≡ 0 (mod 4)
by Corollary 3.2(v), and hence c ≡ 0 (mod 4).

Case 2: n is even.
Since gcd

(
n−2
2 , n

2

)
= 1 and µ = n−2

n λ = (n−2)/2
n/2 λ is a positive integer,

it follows that λ = d
(
n
2

)
and µ = d

(
n−2
2

)
for some d ∈ N. By

Corollary 3.2(i), µ = d
(
n−2
2

)
must be an even integer. If n ≡ 0

(mod 4), then n−2
2 is odd, and hence d must be an even integer.

Thus d
2 ∈ N. That is, we can write λ = cn and µ = c(n − 2), where

c ∈ N. If n ≡ 2 (mod 4), then n−2
2 is even, and hence d can be any
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integer. That is, we can write λ = cn and µ = c(n− 2), where c = d
2

and d ∈ N.

Conversely, let λ = cn and µ = c(n−2) for (n, c) ∈ {(4r, s), (4r+1, 2s),(
4r + 2, s

2

)
, (4r + 3, 4s) | r, s ∈ N}. Together with the equation

(n− 2)λ = nµ, it can be verified directly by Table 4.1 that n, λ, and
µ satisfy all conditions given in Corollary 3.2.

Now, it remains to construct a 3-PGDD(n, 2, 4; cn, c(n − 2), 0) for every
(n, c) ∈

{
(4r, s), (4r + 1, 2s),

(
4r + 2, s

2

)
, (4r + 3, 4s) | r, s ∈ N

}
.

First, we deal with the case n ̸≡ 2 (mod 4). We begin with our essential
theorem revealing that a 3-PGDD(n, 2, 4; cn, c(n−2), 0) can be constructed
from a 3-design with a certain index.

Notation. Given a set of triples T and x /∈ T for every T ∈ T, we denote
T ∗ x as a collection of blocks of size four as follows:

T ∗ x =
{
T ∪ {x} | T ∈ T

}
.

Lemma 4.2. Let n, c ∈ N be such that n ≥ 4. If a 3-(n, 4, cn) design exists,
then a 3-PGDD(n, 2, 4; cn, c(n− 2), 0) also exists.

Proof. Let G1 and G2 be groups of size n, where G2 = {xi | 1 ≤ i ≤ n}.
Assume that c ∈ N is such that a 3-(n, 4, cn) design exists. We know that
the set T of all triples of G1 is a TS(n, n− 2). Next, let B1 =

⋃n
i=1 T ∗ xi.

Then the blocks in B1 cover each (3, 0)-triple and each (2, 1)-triple for n and
n − 2 times, respectively. Thus, the blocks in cB1 cover each (3, 0)-triple
and each (2, 1)-triple for cn and c(n − 2) times, respectively, as desired.
By assumption, let B2 be a 3-(n, 4, cn) design on G2. Hence, (G1 ∪ G2,
cB1 ∪B2) is a 3-PGDD(n, 2, 4; cn, c(n− 2), 0).

Example 4.3 illustrates the construction in Lemma 4.2 when n = 5 and
c = 2.

Example 4.3 (The construction of a 3-PGDD(5, 2, 4; 10, 6, 0) with groups
G1 = {1, 2, 3, 4, 5} and G2 = {xi | 1 ≤ i ≤ 5}). It can be observed that

the set T of all triples of G1 is a TS(5, 3) on G1. Let B =
⋃5

i=1 T ∗ xi.
We illustrate some of these blocks in Table 4.2. Moreover, by Theorem 2.4,
there exists a 3-(5, 4, 10) design on G2, say (G2,C). Hence (G1∪G2, 2B∪C)
is a 3-PGDD(5, 2, 4; 10, 6, 0) as desired.
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Table 4.2: Blocks of T ∗ x1.

blocks of T ∗ x1

1 1 1 1 1 1 2 2 2 3
2 2 2 3 3 4 3 3 4 4
3 4 5 4 5 5 4 5 5 5
x1 x1 x1 x1 x1 x1 x1 x1 x1 x1

We can verify that each (n, c) ∈
{
(4r, s), (4r + 1, 2s), (4r + 3, 4s) | r, s ∈

N
}
satisfies the conditions in Theorem 2.4, and hence a 3-(n, 4, cn) design

exists. Consequently, a 3-PGDD(n, 2, 4; cn, c(n−2), 0) exists by Lemma 4.2.

Theorem 4.4. Let (n, c) ∈
{
(4r, s), (4r+1, 2s), (4r+3, 4s) | r, s ∈ N

}
. There

exists a 3-PGDD(n, 2, 4; cn, c(n− 2), 0).

Indeed, the construction of a 3-PGDD(n, 2, 4; cn, c(n− 2), 0) in Lemma 4.2
also works for the case n ≡ 2 (mod 4) when c = s

2 is a natural number, that
is, only when s is even. However, the next theorem presents the construction
method that works for every natural number s. Our construction technique
utilizes large sets of triple systems as mentioned in Theorem 2.3.

Theorem 4.5. Let n, s ∈ N be such that n ≥ 6 and n ≡ 2 (mod 4). There
exists a 3-PGDD(n, 2, 4; s2n,

s
2 (n− 2), 0).

Proof. Let G1 and G2 be groups of size n, where G2 = {xi | 1 ≤ i ≤ n}.

Case 1: n ≡ 2 (mod 12).
We start with the construction of a 3-PGDD(n, 2, 4; n

2 ,
n−2
2 , 0).

By Theorem 2.3(iii), the set of all triples of G1 can be partitioned
into n−2

6 disjoint TS(n, 6)s, say

T1,T2, . . . ,Tn−2
12

,T′
1,T

′
2, . . . ,T

′
n−2
12

.

Now, let

B1 =

n
2⋃

i=1

n−2
12⋃

j=1

(
Tj ∗ x2i−1 ∪ T′

j ∗ x2i

)
.

Then the blocks in B1 cover each (3, 0)-triple and each (2, 1)-triple
for n

2 and n−2
2 times, respectively. Next, note that n

2 ∈ N, so there
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exists a 3-(n, 4, n
2 ) design on G2 by Theorem 2.4, say (G2,C1). Then

(G1,B1 ∪ C1) is a 3-PGDD(n, 2, 4; n
2 ,

n−2
2 , 0). Therefore,(

G1, s (B1 ∪ C1)
)
is a 3-PGDD

(
n, 2, 4; s

2n,
s
2 (n− 2), 0

)
.

Case 2: n ≡ 6, 10 (mod 12).
First, we construct a 3-PGDD(n, 2, 4; n

2 ,
n−2
2 , 0).

By Theorem 2.3(ii), the set of all triples of G1 can be partitioned into
n−2
2 disjoint TS(n, 2)s, say

T1,T2, . . . ,Tn−2
4

,T′
1,T

′
2, . . . ,T

′
n−2
4

.

Now, let

B2 =

n
2⋃

i=1

n−2
4⋃

j=1

(
Tj ∗ x2i−1 ∪ T′

j ∗ x2i

)
.

Then the blocks in B2 cover each (3, 0)-triple and each (2, 1)-triple
for n

2 and n−2
2 times, respectively. Next, note that n

2 ≡ 0 (mod 3) as
n ≡ 6 (mod 12) and n

2 ∈ N as n ≡ 10 (mod 12). Hence, a 3-(n, 4, n
2 )

design on G2 exists by Theorem 2.4, say (G2,C2). Then (G1,B2∪C2)
is a 3-PGDD(n, 2, 4; n

2 ,
n−2
2 , 0). Therefore,(

G1, s (B2 ∪ C2)
)
is a 3-PGDD

(
n, 2, 4; s

2n,
s
2 (n− 2), 0

)
.

Example 4.6 illustrates the construction in Theorem 4.5 when n = 6 and
s = 1.

Example 4.6 (The construction of a 3-PGDD(6, 2, 4; 3, 2, 0) with groups
G1 = {1, 2, 3, 4, 5, 6} and G2 = {xi | 1 ≤ i ≤ 6}). As seen in Example 2.2,
the set of all triples of G1 can be partitioned into 2 disjoint TS(6, 2)s, B1

and B2. Next, let B =
⋃3

i=1 (B1 ∗ x2i−1 ∪B2 ∗ x2i). We illustrate some of
these blocks in Table 4.3. Besides, by Theorem 2.4, there exists a 3-(6, 4, 3)
design on G2, say (G2,C). Hence, (G1 ∪ G2, B ∪ C) is a 3-PGDD(6, 2, 4;
3, 2, 0) as desired.

Now the following result can be concluded.

Theorem 4.7. Let n ≥ 4, λ ≥ 1, µ ≥ 0, and (n− 2)λ = nµ. There exists a
3-PGDD(n, 2, 4;λ, µ, 0) if and only if λ = cn and µ = c(n− 2) for

(n, c) ∈
{
(4r, s), (4r + 1, 2s),

(
4r + 2, s

2

)
, (4r + 3, 4s) | r, s ∈ N

}
.
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Table 4.3: Blocks of B1 ∗ x1 and B2 ∗ x2.

blocks of B1 ∗ x1

1 1 1 1 1 2 2 2 3 3
2 2 3 4 5 3 4 5 4 4
3 4 5 6 6 6 5 6 5 6
x1 x1 x1 x1 x1 x1 x1 x1 x1 x1

blocks of B2 ∗ x2

1 1 1 1 1 2 2 2 3 4
2 2 3 3 4 3 3 4 5 5
5 6 4 6 5 4 5 6 6 6
x2 x2 x2 x2 x2 x2 x2 x2 x2 x2

Proof. The necessary conditions given in Corollary 3.2 and the equation
(n − 2)λ = nµ give a restriction of λ and µ as in Lemma 4.1. Conversely,
by Theorems 4.4 and 4.5, we can construct a 3-PGDD(n, 2, 4;λ, µ, 0) of all
possibly λ and µ.

Finally, we present the main theorem to conclude the construction of the
extreme case of a 3-PGDD(n, 2, 4;λ, µ, 0), which we have successfully done.

Theorem 4.8. The necessary conditions for the existence of a 3-PGDD(n, 2,
4;λ, µ, 0) are sufficient when (n− 2)λ = nµ.
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