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Abstract. A path P in a 4-regular plane graph G is called a cut-through
path if no two consecutive edges of P are consecutive in the local rotation
of edges around the common vertex. We investigate longest cut-through
paths in 4-regular plane graphs of several families, providing the lower and
the upper bounds on their lengths as well as discussing the extension of the
cut-through property for nonregular graphs.

1 Introduction

Throughout this paper, we consider simple connected plane graphs (that is,
the graphs without loops or multiple edges, which are drawn in the plane
in such a way that no two edges cross). The used graph terminology and
notation is from the book [13].

One of the widely studied topics of graph theory concerns the longest paths
in graphs. Denoting by p(G) the number of vertices of the longest path in a
graph G, one aims to determine the lower and the upper bounds for p(G) in
terms of selected graph parameters of G and to describe the graphs attain-
ing these bounds as well as particular sufficient conditions for G to enforce
the existence of reasonably long paths. A graph G with p(G) = |V (G)|
is called traceable; the current state-of-art on these graphs is well docu-
mented in the survey [7]. For the opposite side of the problem—to have
p(G) as small as possible—the stars K1,r form an infinite graph family
with p(G) above bounded by 3. Motivated by this, a lot of attention is
paid to the study of longest paths in plane graphs under additional con-
straints of higher connectivity. In particular, each 4-connected plane graph
is Hamiltonian by [12] while there exist infinitely many 3-connected plane
graphs such that p(G) ≤ 7

2

∣∣V (G)
∣∣ln(2)/ln(3), see [3]. Nevertheless, in the
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latter paper it is proved that for each 3-connected plane graph G, we have
p(G) ≥

∣∣V (G)
∣∣ln(2)/ln(3). For 2-connected plane graphs, it is easy to see

that each longest path in K2,r, with r > 2, has at most 5 vertices.

The longest path problems can be considered also for other kinds of paths
in graphs. Notably, for longest induced paths it was proved in [5] that
each 3-connected plane graph G contains an induced path of length at least
1
2

(
1
3 log2

∣∣V (G)
∣∣− log2 log2

∣∣V (G)
∣∣). Others have also studied longest hete-

rochromatic paths in edge-colored graphs—as an example, we can mention
the paper [2] where the authors proved that, in each edge-colored graph
with color degrees of its vertices being lower bounded by a positive integer
k ≥ 7, there exists a heterochromatic path of length at least

⌈
2k
3

⌉
+1. Here,

we consider these questions for other kinds of paths, which are defined as
follows:

Let G be a graph and let R be a system of edge lists (the rotation system)
such that each vertex x of G is assigned with a cyclically clockwise-ordered
list l(x) of incident edges (the local rotation around x). A path P =
v0v1 . . . vk, with k ≥ 1, is called an anti-A-path in G with respect to R, if,
for each i ∈ {1, . . . , k−1}, the edge vivi+1 of P neither precedes nor succeeds
immediately the edge vi−1vi in the list l(vi). Note that in the case when R

induces an embedding G̃ of a 2-connected graphG in a plane or a polyhedral
embedding into an orientable surface of the higher genus (that is, each face

of G̃ is bounded by a cycle and every two facial cycles meet properly, having
either nothing or a single vertex or else a single edge in common), then no

two consecutive edges of P lie on the same face of G̃ (this is, the “anti-
property” for the A-property of trails, where it is required that every two
consecutive edges lie on a common face; for more details on A-trails, see the
monograph [6] of H. Fleischner). However, the above mentioned concept
can be also used for graph drawings with crossings.

In the case of 4-regular plane (or embedded) graphs, anti-A-paths corre-
spond to so-called cut-through paths (CT-paths for short), used before
in various contexts—see, for example, the proof in [8] of Steinitz theo-
rem on the characterization of graphs of convex polyhedra. The paper
[11] discusses the concept of straight-ahead walks in embedded Eulerian
graphs that slightly generalizes the CT-property (the consecutive edges
vi−1vi, vivi+1 of such a walk are opposite in the list l(vi)). Apart of these
results, it seems that the properties of CT-paths were not much studied;
therefore, our aim is to explore the bounds for the number pCT(G) of ver-
tices of longest CT-paths in a 4-regular plane/embedded graph G.
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The paper is organized as follows. Section 2 contains auxiliary results used
for handling CT-paths in plane graphs. In Section 3, we give a general
upper bound of n−2 for pCT(G) in an n-vertex 4-regular plane graph G to-
gether with the construction showing its sharpness. We also show that this
upper bound can be decreased to 2

3n if the graph can be decomposed into
CT-cycles. Furthermore, we deal with the question of minimum length of
longest CT-paths; we show that there are infinitely many 4-regular plane
graphs whose longest CT-paths contain just 8 vertices, but only finitely
many graphs for longest CT-paths with fewer vertices. Finally, Section 4
deals with anti-A-paths in plane graphs (not necessarily regular) of mini-
mum degree at least 4 and in 4-regular graphs embedded in higher surfaces.

2 Preliminaries

Given a 4-regular plane graph G (with fixed drawing), two adjacent edges of
G are called CT-adjacent if they are opposite in local edge rotation around
their common vertex; a trail (a cycle) of G is a CT-trail (CT-cycle) if every
two of its consecutive edges are CT-adjacent. Note that for an edge e = uv
of G, there exists a unique closed CT-trail with initial vertex u and the
first edge e. Consequently, the edge set of G can be uniquely partitioned
into subsets E1, . . . , Ek where, for each i ∈ {1, . . . , k}, Ei induces a closed
CT-trail in G (the graphs G[Ei] are plane and consist of vertices of degrees
4 and possibly 2). If k = 1, we will call G a knot; if each Ei induces a
cycle, G is called Grötzsch-Sachs graph (see [4,9] for their connections with
coloring problems). Note that a Grötzsch-Sachs graph corresponds to an
arrangement of several closed Jordan curves in the plane in the way that
no two of them touch and no three of them intersect in the same point
(the intersection points are turned into the graph vertices and segments of
closed curves between those intersections into edges); this approach will be
often used in our constructions.

Let P = u1u2 . . . uk be a maximal (not necessarily the longest one) CT-path
in G; the edges of G that are incident with vertices of P and not belonging
to E(P ) are called outgoing edges of P . For i, j ∈ {1, . . . , k}, with i < j,
an edge e = uiuj ̸∈ E(P ) is a chord of P . A vertex x ̸∈ V (P ) is under
the chord e (with respect to P ), if x lies in the (topological) interior of the
closed curve uiui+1 . . . ujui (similarly, an edge xy is under e if the interior
of the arc xy belongs to the interior of that closed curve). If there exists a
vertex ui of P such that at least two outgoing edges incident with ui are
under e, the chord e is two-sided for P ; otherwise, it is called one-sided.
Further, e is called a minimal chord of P if there is no chord e′ of P that
is under e (see Figure 2.1 for illustration of these terms).
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Pui ul um ukuju1 u2

Figure 2.1: One-sided chord ulum and two-sided chord uiuj for a CT-
path P .

Since G is a simple graph, no CT-path has two distinct chords with the
same endvertices, and each maximal CT-path has a chord. In addition,
no two-sided chord of a maximal CT-path can be minimal, and, for each
CT-path and each chord e, there is a vertex y ̸∈ V (P ) that is under e.
The latter property implies, in particular, that no 4-regular plane graph
contains a Hamiltonian CT-path.

Given a vertex v ̸∈ V (P ) that is adjacent to the vertices ui, uj of P (i < j),
the path P ′ = uivuj is a pseudochord of P if, in the interior of the closed
curve C ′ = ui, ui+1, . . . , uj , v, ui, there is no other neighbor of v. If j − i =
1, P ′ is called a minimal pseudochord. With an analogy with chords of
CT-paths, we obtain that, if a pseudochord P ′ of P is not minimal, then
there exists a vertex x ̸∈ V (P ) that lies under P ′ (that is, in the interior
of C ′).

Let T be a trail (not necessarily a CT-trail) in G. The subgraph of G
induced by edges of T is then a plane graph, and its faces are regions
determined by T . If E(T ) ⊊ E(G), then G − E(T ) consists of subgraphs
contained in these regions; we then define a (d1, . . . , dk)-fragment of T being
a connected subgraph H ⊆ G− E(T ) such that

• H consists of k vertices of degrees d1, . . . , dk ∈ {1, 2} (the periph-
eral ones; the edges of H incident with these vertices are also called
peripheral) and of |V (H)| − k vertices of degree 4 (the central ones),

• the peripheral vertices of H are incident with the outerface of H and
belong also to T ,

• the central vertices of H lie in the same region determined by T .

A (1,1,1,1)-fragment of T with single central vertex is called an octopus.
An octopus of a CT-path P (with central vertex v and peripheral vertices
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Figure 2.2: An example of a trail and its fragments.

x1, . . . , x4) is minimal if x1vx2, x2vx3 and x3vx4 are minimal pseudochords
of P . As an illustrating example, see Figure 2.2: H1 is a (2, 1, 1)-fragment,
H2,H3 are (1, 1)-fragments, H4 is a (1, 1, 1, 1)-fragment that is not an oc-
topus, and H5 is a minimal octopus.

The following lemmas deal with properties of small fragments of trails:

Lemma 2.1. Let F be a (1, 1)-fragment (distinct from K2) of a trail T of
G, and let x, y and xu, yv be its peripheral vertices and edges, respectively.

(i) If u = v, then xuy is not a CT-path of G; in addition, G contains
CT-paths xust, yvwz (for some vertices s, t, w, z with s ̸= w).

(ii) If u ̸= v and xuvy is not a CT-path of G, then G contains two CT-
paths on four vertices such that their first edge is xu (or yv) and the
last edge is not vy (or ux).

(iii) If xuvy is a CT-path of G, then G contains a CT-path on at least six
vertices whose vertices are from V (F ) \ {x, y}.

Proof.

(i) Assume that xuy is a CT-path of G. Consider the graph F−{x, u, y};
as x, y belong to the outerface of F , the obtained graph has exactly
two components, each of which contains a single 3-valent vertex, a
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contradiction (since it is impossible to have an odd number of odd-
valent vertices).

Moreover, the outerface of the graph F −{x, y} has degree at least 3;
hence, there exist vertices s, w such that the path suw is a part of the
boundary walk of that outerface and l(u) = {yu, xu,wu, su}. Since
s, w are 4-valent and F is a plane graph, there are vertices t, z such
that, in F , the edges us, st (or vw,wz, respectively) are CT-adjacent.
Then xust, yvwz are 4-vertex CT-paths of G.

(ii) As u has degree 4 in F , there is a vertex s of F such that xu, us
are CT-adjacent. Note that s ̸= v and F − {x, y} has at least six
vertices (otherwise F −{x, y} is isomorphic to K−

5 , but then, in plane
drawing of F , x, y are separated by a 3-cycle, a contradiction). Then
there exists a vertex t ̸∈ {u, v} of F − {x, y} such that ts, su are CT-
adjacent, and so the path xust is a CT-path. The same argument is
used for the edge yv.

(iii) By induction on the number of vertices of F . Consider the graph
F − {x, y, u, v}. By assumptions, it has two components F1, F2 such
that F1 has vertices p, q (possibly p = q) and F2 has vertices k, l
(again, possibly k = l) such that up, vq, uk, vl are edges of F . Then
F1 with added edges up, vq can be viewed as a (1,1)-fragment, so, by
induction (or by (i), (ii)), it contains a CT-path on four vertices with
the first edge up. The same argument can be used on the graph F2

with added edges uk, vl. Thus, in F , there exist two CT-paths on
four vertices with common vertex u (v can be their common vertex as
well, but no other vertices), which together form a 6-vertex CT-path
in G.

Lemma 2.2. Let F be a (1, 1, 1, 1)-fragment of T in G. Then either F is an
octopus or at least two of its peripheral edges can be extended to a 4-vertex
CT-path of F .

Proof. Let F be a (1,1,1,1)-fragment that is not an octopus. Then there
exists a peripheral edge xy and a central vertex z such that xy, yz are CT-
adjacent; hence, a maximal CT-path containing the path xyz (note that it
ends at another peripheral edge of F ) has the desired property.

3 Longest CT-paths in 4-regular plane graphs

In this section, we derive sharp upper bounds for lengths of the longest
CT-paths in 4-regular plane graphs.
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Theorem 3.1. Let G be a simple 4-regular plane graph of order n. Then
pCT(G) ≤ n− 2, and the bound is sharp.

Proof. From the preliminaries of Section 2, we have pCT(G) ≤ n − 1.
Assume that there exists a graph G for which equality holds, and let
P = u1 . . . un−1 be its longest CT-path (hence, there is exactly one ver-
tex un of G not lying on P ). By maximality of P , there exist vertices
y, z ∈ V (P ) such that the edges un−2un−1, un−1y and zu1, u1u2 are CT-
adjacent.

If y ̸= u1 or z ̸= un−1, then the subpath of P determined by vertices u1, z
and all vertices between them contains two vertices ui, uj such that the
edge uiuj is a minimal chord of P . Similarly, such a minimal chord ukul of
P exists for the subpath of P determined by y, un−1. Note that both these
chords are one-sided. Then, however, un is under ukul with respect to P
as well as under uiuj , a contradiction.

If y = u1 and z = un−1, then C = u1u2 . . . un−1u1 is a CT-cycle. Using
an analogous argument as the above, we obtain that there are two edges
of G that are minimal chords of P , one of them being in the interior and
another one in the exterior of C. Again, un is under both of these chords,
a contradiction.

To show the sharpness of the bound n − 2, note first that the octahedron
graph is the only simple 4-regular plane graph on 6 vertices, and its longest
CT-path consists of four vertices. In addition, it is known that there is no
simple 4-regular plane graph on 7 vertices.

For odd n ≥ 9, set t := n−1
2 , take the plane drawing of the path P = u1u2 . . .

un−2 and two octopuses with central vertices x, y and peripheral edges
xut−3, xut−2, xut−1, xut and yut, yut+1, yut+2, yut+3, respectively. Next,
add new edges uiu2t−3−i, un−1−iui+3, for i ∈ {1, . . . , t− 4}, and new edges
u1un−4, u1un−3, un−2u3, un−2u2 (all of them are drawn in the way that,
in the resulting 4-regular plane graph, they are outgoing with respect to
CT-path P ). Similarly, for even n ≥ 8, set t := n

2 , take P = u1u2 . . .
un−2 with two octopuses having peripheral edges xut−3, xut−2, xut−1, xut

and yut−1, yut, yut+1, yut+2, respectively; the new edges being added are
as before (see Figure 3.1 for illustration). In both cases, P is the desired
longest CT-path on n− 2 vertices.

Observe that almost all above constructed graphs showing the sharpness of
the proved bound (except for the graph on 11 vertices) are actually knots;
for Grötzsch-Sachs graphs, we can prove the following smaller upper bound.
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Figure 3.1: Examples of graphs with pCT(G) = n− 2 for n ∈ {10, 11}.

Theorem 3.2. Let G be a Grötzsch-Sachs graph of order n. Then pCT(G) ≤
2
3n, and the bound is sharp.

Proof. Let C be the longest CT-cycle in G. Then C contains a longest
CT-path of G, so get pCT(G) ≤ |V (C)| and set |V (C)| := ℓ. Furthermore,
the number of all edges which are incident with a vertex of C is at most
ℓ+2ℓ = 3ℓ, which is at most the number of all edges ofG; since |E(G)| = 2n,
the result follows. To show the sharpness of the bound, put n = 6k and take
a 4k-cycle C ′ = x1x2 . . . x4kx1. Now, for every j ∈ {0, . . . , k−1}, add a new
vertex yj into the interior of C and new edges yjx4j+1, . . . , yjx4j+4 and, in
a similar manner, new vertices zj with new edges zjx4j+1, . . . , zjx4j+4 into
the exterior of C. The obtained graph is a plane 4-regular Grötzsch-Sachs
graph, and C ′ is its longest CT-cycle.

Next, we focus on small values for pCT(G).

Theorem 3.3. In the family of 4-regular plane graphs, the following prop-
erties hold:

(a) pCT(G) = 4 if and only if G is the octahedron graph;

(b) there is no graph G with pCT(G) = 5;

(c) for each even n ≥ 10, there exists G with pCT(G) = 8.

Proof.

(a) Let P = u1u2u3u4 be a longest CT-path in G and let y, z be vertices
of G such that u3u4, u4y and u1z, u2u1 are CT-adjacent. By the max-
imality of P , we have y, z ∈ V (P ).
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First, let y = u1 and let u4u1, u1u2 be not CT-adjacent. Then the
interior (as well as the exterior) of the closed trail u1u2u3u4u1 contains
a fragment with an odd number of peripheral 1-valent vertices, a
contradiction.

Next, let y = u2. Taking into account the above argument and the
fact that G is simple, we can assume that z = u3. Then, for the
closed trail u1u2u4u3u1, the region bounded by the cycle u2u3u4u2

contains a (1,1)-fragment F . By Lemma 2.1, F contains a CT-path
u3uv, with u, v ̸∈ V (P ). But then vuu3u1u2 is a CT-path on five
vertices, a contradiction.

Finally, let y = u1 and z = u4. This yields (as G is simple) that
C = u1u2u3u4u1 is a CT-cycle. If there are two (1,1,1,1)-fragments of
C, both being octopuses, then G is the octahedron graph. Otherwise,
there is a fragment F1 of C (say, in the interior of C) that contains
a CT-path uiuv, with u, v ̸∈ V (P ); moreover, there is a fragment F2

in the exterior of C containing a CT-path uipq, with p ̸∈ V (P ) and
q ̸= ui. Then vuuipq is a CT-path on five vertices, a contradiction.

(b) Let P = u1u2u3u4u5 be a longest CT-path in G, and let y, z be ver-
tices of G such that u4u5, u5y and u1z, u2u1 are CT-adjacent. Again,
by maximality of P , we have y, z ∈ V (P ).

First, let y = u1 and z = u5. This yields (as G is simple) that
C = u1u2u3u4u5u1 is a CT-cycle; however, C contains a fragment
with an odd number of peripheral 1-valent vertices, a contradiction.

Now, let y = u1, but with u5u1, u1u2 not CT-adjacent. By the fact
that G is simple, we have z ∈ {u3, u4}. If z = u4, then the interior
and the exterior of the closed trail u4u1u2u3u4 contains a fragment
with an odd number of 1-valent vertices, a contradiction. Otherwise,
for the closed trail u1u5u4u3u2u1, there exists a region containing a
(1,1)-fragment F with peripheral vertices u1, u2. By Lemma 2.1, F
contains a CT-path u1uv such that u, v ̸∈ {u1, . . . , u5}. Then, how-
ever, vuu1u5u4u3 is a CT-path of G on six vertices, a contradiction.

If y = u2, then both the interior and the exterior of the closed trail
u2u3u4u5u2 contain a fragment with an odd number of peripheral 1-
valent vertices; hence, we may assume that y = u3. Furthermore, by
symmetry and simplicity of G, we can assume that z = u3. Then, for
the closed trail u3u4u5u3u1u2u3, there is a region containing a (1,1)-
fragment F1 with peripheral vertices u1, u2, a region containing a
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(1,1)-fragment F2 with peripheral vertices u4, u5, and another region
that contains either a (1,1,1,1)-fragment F or two (1,1)-fragments
F3, F4 (it may happen that F3, F4 are actually two-sided chords of
P ). By Lemma 2.1, F2 contains a 4-vertex CT-path with peripheral
vertex u4 that can always be extended (regardless of the nature of F ,
F3, and F4) to a 6-vertex CT-path, a contradiction.

(c) For n = 10, take the left graph on Figure 3.1; If n = 12 + 4k, take
the upper graph on Figure 3.2; and, for n = 14 + 4k, take the lower
graph on Figure 3.2. These graphs are obtained from arrangements
of k + 5 closed Jordan curves in “two rows” in the plane. In each of
these cases, the longest CT-path has 8 vertices.

By an extensive computer search on 4-regular plane graphs, we found only
four graphs for which pCT(G) = 6 and only one graph with pCT(G) = 7 (see
Figure 3.3). Hence, we conjecture that these are the only graphs with the
mentioned values for pCT(G), and we suppose that this might be proved by
an analysis of properties of various fragments and their mutual intercon-
nection, which is more complicated than the one in Theorem 3.3(b).

In addition to Theorem 3.3(c) where the constructed graphs were Grötzsch-
Sachs graphs, we describe the construction of an infinite family of knots
whose longest CT-paths are very short, too. The construction proceeds in
the following way: For k ̸≡ 0 (mod 3), take the graph of a k-sided antiprism
(which itself is a knot); each of its vertices is then locally replaced with a
copy of the configuration in Figure 3.4 (on the right) in such a way that the
black/dashed/dotted outgoing edges of the configuration match the style
of half-edges in the drawing of k-sided antiprism on the left. It is not hard
to see that the obtained graph Gk is also a knot; furthermore, the way of
replacement of the antiprism vertices by copies of the configuration yields
that, in Gk, each longest CT-path contains at most 5+5+6 = 16 vertices.

4 Long anti-A-paths in other plane and embedded

graphs

Now we will discuss anti-A-paths in nonregular plane graphs of minimum
degree at least 4. Note that, in this case, the maximal anti-A-path with
prescribed starting vertex and edge may not be unique, which opens possi-
bilities to have (in contrast with the results of Theorem 5) long anti-A-paths
in plane graphs with a (relatively) small number of 4-valent vertices (or with
minimum degree 5).
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Figure 3.2: 4-regular plane graphs with longest CT-paths on 8 vertices.

Figure 3.3: All known 4-regular plane graphs with longest CT-paths on 6
and 7 vertices.
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Figure 3.4: A k-sided antiprism graph (left) and the gadget used in the
construction of knots with short longest CT-paths.

Lemma 4.1. Let G be a plane triangulation of minimum degree at least 4.
Then every induced path in G is also an anti-A-path.

Proof. By contradiction. Let P be an induced path of G that is not an
anti-A-path. Then P contains two consecutive edges uv, vw incident with
a common triangular face. This yields that uw is an edge of G, so P is not
an induced path, a contradiction.

Note that the converse of Lemma 4.1 is not true: taking an icosahedron
graph and replacing each of its triangular faces by a copy of an octahedron
graph, we obtain plane triangulation in which, say, every path consisting
of two edges from a triangular face of the original icosahedron graph is an
anti-A-path, but is not induced. Note also that the requirement of G being
a triangulation is essential because, in a graph of r-sided antiprism with
r ≥ 4, each path of length ℓ ≤ r − 2 that belongs to the boundary of an
r-face is an induced path, but not an anti-A-path.

By 3-connectivity of plane triangulations and the result of [5], we obtain
that the longest anti-A-paths in plane triangulations of minimum degree at
least 4 have lengths at least proportional to the logarithm of their order.
Hence, to construct an infinite family of 3-connected plane graphs of mini-
mum degree at least 4 with short longest anti-A-paths, one must consider
the graphs with non-triangular faces.

While we have not yet found examples of large 3-connected plane graphs of
minimum degree 5 with very short longest anti-A-paths, we can construct
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an infinite family of nonregular plane graphs of minimum degree at least
4 whose longest anti-A-paths contain at most 20 vertices. Half of their
vertices are 4-valent, and 4-valent vertices induce 4-cycles. These graphs
can be constructed as follows: take a 4-regular plane multigraph G from
Figure 4.1 (on the left) and replace each 4-valent vertex with a gadget (on
the right) formed from a copy of the 4-sided antiprism graph. Observe
that, in the obtained graph G+, each anti-A-path, which contains an edge
joining two 5-valent vertices from distinct gadgets, either ends inside one
of the incident gadgets or passes through it, leaving by the opposite edge
of that gadget (see the dashed line in Figure 4.1). In other words, anti-A-
paths in G+ correspond to CT-paths in G. This yields that every longest
anti-A-path in G+ contains at most 2 · 4 + 2 · 6 = 20 vertices.

Figure 4.1: A construction of nonregular plane graphs with short longest
anti-A-paths.

Figure 4.2: An example of a nonregular polyhedral graph of minimum
degree 4 with vertices (represented here by white circles) that cannot be
connected by an anti-A-path.

The existence of large 3-connected plane graphs of minimum degree 5 with
very short longest anti-A-paths would also bring more light into the problem
of existence of 3-connected plane graphs of minimum degree 5 in which
there are vertices that cannot be connected by any anti-A-path. (So far,
such graphs are not known. With 4-valent vertices, nonregular examples
are known; see, for example, the graph in Figure 4.2, which is thought to be
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the smallest 4-connected nonregular with this property.) For plane graphs
of minimum degree at least 4 (resp. 4-regular ones), such graphs (as well
as their characterization) were described in [10]; the quest for looking for
those ones of minimum degree 5 is described in [1].

1

2
3

5

7 9

11

4

6
8

10

n
n-2

n-1

1 2 3 4 5 6 7 8 9 10 nn-1n-211

Figure 4.3: A toroidal embedding of a k-sided antiprism with a Hamiltonian
CT-path.

Finally, note that, in 4-regular graphs embedded into higher surfaces, there
can be Hamiltonian CT-paths—as an example, consider the embedding of
a k-sided antiprism in the torus in Figure 4.3. Note also that, for k ≡
0 (mod 3), the plane drawing of a k-sided antiprism is a Grötzsch-Sachs
graph comprised of three CT-cycles of equal lengths, so its longest CT-path
has 4k

3 vertices. Thus, we obtain an infinite family of graphs embeddable in
the torus and in the sphere, respectively, such that the difference between
lengths of longest CT-paths is linear in terms of the graph order. However,
we do not know any example of an infinite family of planar 4-regular graphs
whose longest CT-paths have lengths upper bounded by a fixed constant,
but their embeddings into non-spheric surfaces of small genus contain CT-
paths of length linear in terms of number of vertices.
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