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Abstract. In this paper we introduce and construct doubly (µ, ν)-resolvable
packing designs, which are also doubly near affine, using Hadamard and
generalized Hadamard matrices. The design is double (µ, ν)-resolvable and
double near affine relative to the arrangements of blocks of the design in
rows and columns of a rectangle R (which is an extension of the Kirkman
square). The blocks in a row of R form a µ-resolution class, and those in a
column of R form a ν-resolution class. A design with blocks arranged in the
rows and columns of a rectangle are called doubly near affine if two blocks
of the design intersect in the same number of treatments if they belong to
the same row or to the same column or neither to the same row nor to
the same column. In special cases we also obtain a series of doubly near
affine doubly (µ, ν)-resolvable optimal transversal packing designs. The
transversal design is relative to a partition of the point set into subsets
of equal size. Also a new generalization of the Kirkman square, called an
extended Kirkman square, is introduced. Examples of extended Kirkman
squares nested in a doubly affine doubly resolvable rectangle are given.
The advantage of these designs over classical resolvable designs is that each
α-resolution class/fractional α-resolution class is itself a useful connected
design. The squares as well as rectangles have multiple blocking structure
and enable us to estimate not only the effects of a set V of treatments
but also those of certain subsets of V . They may also be applied to the
construction of 2-factor split-plot designs.
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Hadamard matrix; generalized Hadamard matrix; self-complementary and near
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(µ, ν)-resolution of a block design); extended Kirkman square.
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1 Introduction

The study of resolvable non-symmetric BIBDs started with the Kirkman
school girl problem [23]. It took more than 100 years to arrive at the com-
plete solution of the (generalized) problem by Ray-Choudhary and Wil-
son [34]. Bose [3] started the study of resolvability of designs and enriched
it by introducing affine resolvability. To widen the class of affine resolvable
designs Shrikhande and Raghavarao [39] introduced affine α-resolvable de-
signs. Calinski and Kageyama [6] introduced (α1, α2, . . . , αm)-resolvability
keeping in view its application in statistics. Ozawa et al. [30] constructed
split-plot designs by affine µ-resolvable designs. Room [36] initiated the
study of a Room square, which is equivalent to a doubly resolvable BIBD
with block size k = 2 and index λ > 1. Robinson [35] obtained some doubly
resolvable BIBDs with k > 2 and λ > 1, which were studied and generalized
by several authors—Fujihara and Vanstone [17], Curran and Vanstone [9],
and Vanstone [25, 27], Lamken [24], Colbourn et al. [8], among others.
Robinson [35] remarked that the design would be useful in the design of
taste panel experiments and in small plot trials when two sources of varia-
tions may be removed. Also, doubly resolvable group divisible designs were
constructed by Lamken and Vanstone [26, 27], and Dong and Wang [14].
J. Du et al. [16] constructed doubly resolvable group divisible packing de-
signs.

In general, doubly µ-resolvable balanced/partially balanced/packing de-
signs with µ > 1 have received little attention of authors. In this paper
we introduce doubly near affine doubly (µ, ν)-resolvable packing designs.
Double affineness and (µ, ν)-resolvability of a 1-design D is relative to the
arrangements of blocks of D in a rectangle R (called a DAR rectangle).
Blocks of D in the rows of R form a µ-resolution; each row corresponding
to a µ-resolution class and those in the columns of R form a ν-resolution;
each column corresponding to a ν-resolution class. To say D is doubly near
affine means two blocks of D have the same number of common treatments
if they belong to same row of R or if they belong to the same column of
R or if they belong neither to the same row nor to the same column of R.
A transversal design is defined relative to a partition of the set of treat-
ments into subsets of equal size. The double affineness ensures that a row
(column) α-resolution class of each design is a linked design (the dual of a
BIBD).

In Section 3 we obtain some 2-parameter and 1-parameter families of such
designs from Hadamard matrices. The families, under certain conditions,
reduce to a series of transversal designs that are optimal packings when
µ, ν are both even or µ is even and ν = 1. When µ = ν = 2s, where s

Doubly near affine doubly (µ, ν)-resolvable GDPDs

71



is a positive integer, we obtain a series of doubly near affine doubly 2s-
resolvable optimal transversal packing designs. In Section 4 we obtain a
2-parameter family of doubly near affine doubly (1, ν)-resolvable packing
designs from generalized Hadamard matrices, which are optimal when ν >
2. In Section 6 we describe optimality of the designs.

In Section 7 we address the application of designs. The notions of an
extended Kirkman square (EKS), fractional α-resolution design, and EKS
nested in a DAR rectangle are introduced.

For the constructions we first dualize Latin semi-regular rectangular designs
(recently introduced by Singh and Saurabh [40]) constructed here by Hada-
mard matrices, generalized Hadamard matrices, and BIBDs with v = 2k.
We introduce below some terms.

Definition 1.1 (1-design). A (v, b, r, k)- 1-design D = (V,B) is a set V of v
treatments together with a collection B of b subsets (called blocks) of V ,
each subset a k-subset, such that every treatment is contained in r blocks
of a 1-design. The parameters satisfy vr = bk.

Definition 1.2 (2-design or BIBD). A (v, b, r, k, λ)-BIBD (or (v, k, λ)-BIBD)
is a (v, b, r, k)- 1-design (V,B) such that any two distinct treatments of V
are contained in λ blocks of B.

For the class of 2-associate partially balanced incomplete block designs
(PBIBDs) and its subclasses viz. that of group divisible designs (GDDs),
L2-type designs, triangular designs we refer to Raghavarao [32]. In what
follows “treatment” will be called “point”.

Definition 1.3 (Transversal design). A transversal design (TD) is a triplet
(V,G ,B) such that

(i) G is a partition of a point set V into k point classes each of size n,

(ii) B is a collection of k-subsets (called blocks) of V ,

(iii) every unordered pair of elements from V is contained either in exactly
one point class or in exactly λ blocks, but not both.

Here, k, n, and λ are independent parameters of the TD, which is often
denoted as TDλ(k, n). Clearly a TDλ(k, n) is a semi-regular GDD with
parameters v = kn, b = λn2, r = λn, k, λ1 = 0, λ2 = λ, m = k, n. Every
block of a TD meets every point class in exactly one point. The dual of a
TD is called a (k, n, λ)-net.
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Definition 1.4 (Affine µ-resolvable 1-design). A (v, b, r, k)- 1-design D is
called µ-resolvable if the set of b blocks ofD can be partitioned intom = r/µ
classes each of size n = vµ/k such that in each class of n blocks each point
of D is replicated µ times. The classes are called µ-resolution classes. D
is called affine µ-resolvable if it is µ-resolvable and two distinct blocks of
D intersect in Λ1 or Λ2 points as they belong to the same or distinct µ-
resolution classes. A 1-resolvable 1-design is called a resolvable 1-design
and 1-resolution class is called a resolution class.

We recall the following definitions from Lamken and Vanstone [25] and from
Du et al. [16].

Definition 1.5 (Kirkman square). Let v, b, r, k, and λ be the parameters of
a BIBD on a set V . Let µ and m = r/µ be positive integers. A Kirkman
square KSk(v;µ, λ) is an m×m array S such that

(1) each cell of S is either empty or contains a k-subset of V ,

(2) every point of V is contained in precisely µ cells of each row and each
column,

(3) the collection of subsets obtained from nonempty cells of S is a
(v, b, r, k, λ)-BIBD.

A BIBDD with a Kirkman square KSk(v;µ, λ) is called doubly µ-resolvable.
If the blocks of D are repeated, they are made distinct by labeling them.

A Kirkman square KS2(v; 1, 1) is called a Room square.

Definition 1.6 (Generalized Kirkman Square). Let v, b, r, and k be the
parameters of a 1-design defined on the set V . Let µ and m = r/µ be
positive integers. A generalized Kirkman square (v;µ, λ, r) is an m × m
square that satisfies the conditions (1) and (2) of a Kirkman square but
condition (3) is replaced by

(3)′ every 2-subset of V is contained in at most λ non-empty subsets of S.

A 1-design with a generalized Kirkman square is called a doubly µ-resolv-
able packing design.

In the following definition we extend the notion of “doubly µ-resolvable
packing design” to “doubly (µ, ν)-resolvable packing design” and incorpo-
rate an additional feature of “near double affineness”.
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Definition 1.7. (Doubly near affine doubly (µ, ν)-resolvable rectangle.) Let
v, b, r and k be the parameters of a 1-design defined on the set V . Let µ,
ν, m = r/µ, and n = r/ν be positive integers. A DARk(v;µ, ν, λ, r) is an
m× n array R that satisfies the following conditions:

(R1) each cell of R is either empty or contains a k-subset of V ;

(R2) every point of V is contained in precisely µ cells of each row and
ν cells of each column of R;

(R3) every 2-subset of V is contained in at most λ non-empty entries of R;

(R4) (double near affineness) two k-subsets in the same row of R inter-
sect in Λ1 points while those in the same column of R intersect in
Λ2 points; otherwise, they intersect in Λ3 points.

For examples of DAR rectangles see Sections 3 and 4.

Definition 1.8. A 1-design D with a DAR rectangle will be called a doubly
near affine doubly (µ, ν)-resolvable packing (design). Also, v, b, r, k, µ, ν,
λ, Λ1, Λ2, Λ3, m, and n will be called parameters of the design. If some
2-subset of V belongs to λ blocks of D, then λ will be called the index of D.
Also, Λ1, Λ2, and Λ3 will be called the intersection numbers of the design.
A design with the array R satisfying the conditions (R1), (R2), and (R4)
only will be called a doubly near affine doubly (µ, ν)-resolvable 1-design.

Definition 1.9 (Hadamard matrices). An n × n matrix Hn with entries 1
or −1 and satisfying HnH

T
n = nIn is called a Hadamard matrix (or H-

matrix). Hadamard matrices Hn exist for n ∈ {1, 2} and for n = 4t for
infinitely many values of t. It is conjectured that they exist for order 4t for
all positive integral values of t.

An H-matrix can always be reduced to a form in which its first row and
first column consist of only 1s. Such a form is called normalized.

Definition 1.10 (Generalized Hadamard (GH) matrix). Let G by a mul-
tiplicative group of order n. A generalized Hadamard matrix over G
is an nν × nν matrix HG = [dij ] with entries dij from G so that for
1 ≤ i < j ≤ nν, the collection {dihd−1

jh : 1 ≤ h ≤ nν} contains every
element of G a total of ν times.

Definition 1.11 (Circulant matrix). An n × n matrix circ(a1, a2, . . . an) is
called a circulant matrix if its first row is a1, a2, . . . , an and subsequent
rows are obtained by right shift of each symbol ai in the preceding row.
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In what follows we frequently use the notation N c = J−N and Ic = J− I,
where N is the incidence matrix of a 1-design D, J is an all 1s matrix of
the size of N as well as I, and I is the identity matrix. Then, N c is the
incidence matrix of the design complementary to D. Also, often a design
D will be denoted by its incidence matrix N .

2 (m,n, r, k)-Latin semi-regular rectangular
designs (LSR RDs)

The key PBIBD, which is an important source for the construction of our
proposed design, is a special type of rectangular design (RD) recently iden-
tified and named as a Latin semi-regular (LSR) rectangular design by Singh
and Saurabh [40].

2.1 Some basic facts about LSR RDs

We recall the following definitions from Singh and Saurabh [40].

Definition 2.1 (Rectangular design). A rectangular design (RD) is an ar-
rangement of v = mn points in b blocks each of size k such that

(i) every point occurs at most once in a block,

(ii) every point occurs in exactly r blocks,

(iii) the mn points can be arranged in an array A of m rows and n columns
such that two points in the same row (column) occur together in
λ1 (λ2) blocks and in λ3 blocks otherwise.

The integers v, b, r, k, m, n, λ1, λ2, and λ3 are called the parameters of
the RD, and A will be called the defining array of the RD.

Definition 2.2 (Latin semi-regular rectangular design). Let N be the inci-
dence matrix of an RD. Then the RD is called Latin semi-regular (LSR) if
the eigenvalues θ1, θ2, θ3 of N satisfies θ1 = θ2 = 0, θ3 > 0.

The eigenvalues of the incidence matrix of an RD(v, b, r, k,m, n, λ1, λ2, λ3)
are given (see Raghavarao [32]) by

θ1 = r − λ1 + (m− 1)(λ2 − λ3),

θ2 = r − λ2 + (n− 1)(λ1 − λ3),

θ3 = r − λ1 − λ2 + λ3.
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Proposition 2.3 (Reduction of an RD). An RD(v, b, r, k,m, n, λ1, λ2, λ3), de-
fined on a point set V and on an array A, reduces with same parameters v,
b, r, and k to one of the following designs:

(i) A group divisible design (GDD) if λ3 = λ2. The other parameters of
the GDD are λ′

1 = λ1, λ
′
2 = λ2, m

′ = m, and n′ = n. The defining
partition of V is the set of rows of the array A.

(ii) A GDD if λ3 = λ1. The other parameters of the GDD are λ′
1 = λ2,

λ′
2 = λ1, m

′ = n, and n′ = m. The defining partition of V is the set
of columns of A.

(iii) An L2-type design if λ1 = λ2 and m = n. The other parameters of
the design are λ′

1 = λ1, λ
′
2 = λ3.

The proof follows from the definitions of the designs.

Proposition 2.4 (Uniform partition of incidence matrix). Assume that D
is a 1-design with parameters v, b, r, and k and that N is the incidence
matrix of D. Let N = [Nij ] for i ∈ {1, 2, . . . ,m} and j ∈ {1, 2, . . . ,m1}
such that each Nij is an n× n1 matrix. Define

R2
i = RiR

T
i =

m1∑
k=1

NikNik
T

and

RiRj = RiR
T
j =

m1∑
k=1

NikNjk
T .

If R2
i = rI + λ1I

c, for all i, RiRj = λ2I + λ3I
c, for all i ̸= j, and i,

j ∈ {1, 2, . . . ,m}, then D is an RD with parameters v = mn, b = mnr/k,
r, k, λ1, λ2, λ3, m, and n.

Proof. See the proof of Proposition 1 of Singh and Saurabh [40].

2.2 Series of LSR RDs

Singh and Saurabh [40] observed that the general family of LSR RDs has
four independent parameters. If we take m, n, r, and k as independent
parameters of an LSR RD, its other parameters can be expressed as v = mn,
b = mnr/k, λ1 = r(k − m)/m(n − 1), λ2 = r(k − n)/n(m − 1), and
λ3 = r

(
(mn−m− n)k +mn)

)
/mn(m− 1)(n− 1). An LSR RD with these

parameters will be referred as an (m,n, r, k)-LSR RD.
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If an (m,n, r, k)-LSR RD D exists, then an (m,n, rx, k)-LSR RD, denoted
as x#D, also exists. An easy way to produce an x#D is to repeat each
block of D a total of x times, and then x#D is called a multiple of D by
x. However, we prefer the design x#D with blocks as distinct as possible.
If x#D is not a multiple of D by x, then it is called a quasi-multiple of D
by x.

Here we use two special families of (m,n, r, k)-LSR RDs.

(i) The family F1(m,n, x) of LSR RDs: when each of m, n is divisible by
an integer u > 1. The parameters of the family are v = mn, b = u(m−
1)(n− 1)x, r = (m− 1)(n− 1)x, k = mn/u, λ1 = (m− 1)(n/u− 1)x,
λ2 = (m/u− 1)(n− 1)x, and λ3 =

(
(mn−m− n)/u+ 1

)
x.

(ii) The family F2(m,n, x) of LSR RDs: when n divides m. The parame-
ters of the family are v = mn, b = n(m− 1)x, r = (m− 1)x, k = m,
λ1 = 0, λ2 = (m/n− 1)x, and λ3 = mx/n.

Later we shall see that infinitely many members of the family F1(m,n, x)
and F2(m,n, x) can be obtained from the Hadamard matrices and general-
ized Hadamard matrices respectively.

3 Construction of doubly near affine doubly

(µ, ν)-resolvable designs from certain BIBDs
and Hadamard matrices

In this section first we produce LSR RDs by plugging the incidence matri-
ces of a (v, ℓ, λ)-BIBD with v = 2ℓ and its complement into a truncated
Hadamard matrix. All such RDs belong to the family F1(m,n, x), when m
is 2 or divisible by 22 and n is divisible by 2 or 22. Their duals are the
required doubly near affine doubly (µ, ν)-resolvable designs. There are two
families of (2k, k, k − 1)-BIBDs (see Mullin and Stinson [29]):

(a) The family of BIBDs with parameters v = 4s, b = 2(4s−1), r = 4s−1,
ℓ = 2s, and λ = 2s− 1 (i.e., 4 divides v).

(b) The family of BIBDs with parameters v = 4s + 2, b = 2(4s + 1),
r = 4s + 1, ℓ = 2s + 1, and λ = 2s (i.e., 2 divides v but 4 does not
divide v).

We recall the following definitions and facts fromMullin and Stinson [29].
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A (2ℓ, ℓ, ℓ−1)-BIBD D = (V,B) is called self-complementary (SC) (or truly
or strongly SC) if, whenever B ∈ B, we have Bc = V − B ∈ B. A
(2ℓ, ℓ, ℓ − 1)-BIBD (V,B) is called near self-complementary (NSC) if there
is an involuntary mapping f : B → B such that, for every B ∈ B, we
have |B ∩ f(B)| = 1 and |B ∪ f(B)| = v − 1. In this case f(B) is called
the near complement of B. Only family (a) contains self-complementary
BIBDs. Family (b) contains simple near self-complementary BIBDs. Also,(
2ℓ, ℓ, x(ℓ− 1)

)
-BIBD is the multiple or quasi-multiple of the (2k, ℓ, ℓ− 1)-

BIBD by x.

Proposition 3.1. In an SC (4s, 2(4s− 1), 4s− 1, 2s, 2s− 1)-BIBD any block
meets all blocks except itself and its complement in exactly s points.

Proposition 3.2. In an NSC (4s+2, 8s+2, 4s+1, 2s+1, 2s)-BIBD any block
meets all blocks except itself and its near complement in exactly s or s+1
points.

We forward below a construction theorem.

Theorem 3.3. Existence of a Hadamard matrix of order m and a
(
2ℓ, ℓ,

x(ℓ− 1)
)
-BIBD implies the existence of an LSR RD belonging to the family

F1(m, 2ℓ, x) and a doubly near affine doubly (ℓ,m/2)-resolvable 1-design
with the parameters v = 2(m − 1)(2ℓ − 1)x, b = 2mℓ, r = mℓ, k = (m −
1)(2ℓ−1)x, µ = ℓ, ν = m/2, Λ1 = (m−1)(ℓ−1)x, Λ2 = (m/2−1)(2ℓ−1)x,
Λ3 = (k + x)/2, m, and n.

Proof. Let N be the 2ℓ × (4ℓ − 2)x incidence matrix of a
(
2ℓ, ℓ, x(ℓ − 1)

)
-

BIBD. Then,

NNT = x(2ℓ− 1)I2ℓ + x(ℓ− 1)Ic2ℓ. (1)

Let H be a normalized Hadamard matrix of order m. Let H ′ be the m ×
(m− 1) Hadamard matrix obtained from H by deleting the first column of
H. H ′ will be called a truncated H-matrix. In H ′ replace 1 by N and −1
by N c = J−N , where J is the 2ℓ×(4t−2)x matrix with every entry 1, and
denote the resulting matrix by M . Then M = [Nij ], for i ∈ {1, 2, . . . ,m}
and j ∈ {1, 2, . . . ,m−1}, and Nij ∈ {N,N c}, andMT (the transpose ofM)
is the incidence matrix of the required doubly near affine (ℓ,m/2)-resolvable
1-design.
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We claim that M is an LSR RD with parameters

v = 2mℓ, b = 2(m− 1)(2ℓ− 1)x, r = (m− 1)(2ℓ− 1)x, k = mℓ,

λ1 = (ℓ− 1)(m− 1)x, λ2 = (m/2− 1)(2ℓ− 1)x, λ3 = (r + x)/2,

m = m, n = 2ℓ.

Clearly m is 2 or divisible by 4. Also, n is divisible by 2 when ℓ is odd and
by 4 when ℓ is even. Hence, the RDs belong to the family F1(m,n, x), where
n = 2ℓ, u = 2 (see Section 2.2(i)). We make the following observations on
the matrix M .

O1 Every row Ri of sub-matrices Nij of M consists of exactly m − 1
entries N or N c.

O2 If any two rows Ri and Rj of M are juxtaposed to form a 2× (m− 1)

array, there are m/2 − 1 columns of the form

[
N
N

]
or

[
N c

N c

]
and

m/2 columns of the form

[
N
N c

]
or

[
N c

N

]
.

O3 RiR
T
i consists of m − 1 terms of the form NNT = (N c)(N c)T for

all i.

O4 RiR
T
j consists of m/2− 1 terms of the form NNT = (N c)(N c)T and

m/2 terms of the form N cNT = N(N c)T = ℓIcv for i ̸= j.

The claim follows from Equation (1), Observations O1 through O4, Propo-
sition 2.4, and the fact that the eigenvalues of the RD are θ1 = θ2 = 0 and
θ3 > 0.

Also, from Theorem 1(vi) in Singh and Saurabh [40], it follows that, if
k/m = µ and k/n = ν, then µ and ν are integers, and every block of the
RD contains µ points from each row of the defining array A and ν points
from each column of A.

Now observe the consequences when M is changed to MT , the incidence
matrix of the dual of the RD. Array A is changed to a rectangle R (which
we have called a DAR rectangle) whose entries are blocks of the design
M . Each point of the design MT belongs to µ blocks of each row of R
and ν blocks of each column of R. The concurrence λi of a pair of points
is changed to the intersection number Λi of the corresponding blocks for
i ∈ {1, 2, 3}.

Thus, MT is a doubly near affine doubly (µ, ν)-resolvable 1-design with pa-
rameters mentioned in the theorem. This design will be denoted as D1

µ,ν(x)
and as D1

µ,ν when x = 1.
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If some blocks of the BIBD or LSR RD are repeated, we can obtain the dual
by making the blocks distinct by labeling them.

Corollary 3.4. If m = 2, ℓ = 2s, x = 1, and the BIBD is SC, then D1
µ,ν is an

optimal transversal packing design. Its parameters are v = 2(4s−1), b = 8s,
r = 4s, k = (4s−1), µ = 2s, ν = 1, Λ1 = 2s−1, Λ2 = 0, Λ3 = 2s, the index
λ = 2s, m = 2, and n = 4s. As a transversal design, D1

2s,1 has additional
parameters m′ = 4s− 1, n′ = 2, λ′

1 = 0, and λ′
2 = 2s. Its dual is an affine

resolvable LSR rectangular design. Moreover, each row µ-resolution class
is an optimal transversal packing with parameters v′ = 2(4s− 1), b′ = 4s,
r′ = 2s, k′ = 4s− 1, m′ = 4s− 1, n′ = 2, λ1 = 0, and λ′

2 = s.

Proof. Let N1 be the incidence matrix of a Hadamard 2-design (4s − 1,
2s− 1, s− 1). Then

N1N
T
1 = NT

1 N1 = (2s− 1)I + (s− 1)Ic, (2)

where Ic = J − I, and I is the identity matrix, and J is the all 1s matrix of
order 4s−1. Let e1×m, em×1, and Jm×n be all 1 matrices of size 1×m, m×1,
and m×n, respectively, and let 0m×n denote the null matrix of size m×n.

Then it is known (Berardi et al. [2]) that N =

[
e1×(4s−1) 01×(4s−1)

N1 N c
1

]
is the

incidence matrix of an SC BIBD(4s, 2s, 2s− 1). Hence from Theorem 3.3 it

follows that, form = 2, we haveM =

[
N

J −N

]
is an LSR RDD (say), where

J is the 4s× (8s− 2) all 1 matrix, with parameters v = 8s, b = 2(4s− 1),
r = 4s− 1, k = 4s, λ1 = 0, λ2 = 2s− 1, λ3 = 2s, m = 4s, and n = 2. Also,
Dd, the dual of D, has the incidence matrix

MT =

[
e(4s−1)×1 N1 0(4s−1)×1 N c

1

0(4s−1)×1 N c
1 e(4s−1)×1 N1

]
, (3)

which satisfies MTM =

[
4sI + 2sIc 2sIc

2sIc 4s+ 2sIc

]
, where I is the identity

matrix of order 4s − 1. From Propositions 2.3 and 2.4 it follows that MT

is the incidence matrix of a transversal design with parameters mentioned
in Corollary 3.4.

Finally, for the last claim, Equation (3) can be written as MT = [M1M2],

where M1 =

[
e(4s−1)×1 N1

0(4s−1)×1 N c
1

]
and M2 =

[
0(4s−1)×1 N c

1

e(4s−1)×1 N1

]
. It is easy to

verify, for i ∈ {1, 2}, that MiM
T
i =

[
2sI + sIc sIc

sIc 2sI + sIc

]
.
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We illustrate the construction in Corollary 3.4 with the following exam-
ple.

Example 3.5 (a D1
4,1). Let us start with the Fano plane, i.e., BIBD(7, 3, 1)

whose incidence matrix is N1 = circ(0, 1, 1, 0, 1, 0, 0). Let the designs below
be denoted by their incidence matrices N1, N , M , and MT as defined in
Theorem 3.3. Then the blocks of designs can be written as follows:

N1 =
{
{1, 2, 4}, {2, 3, 5}, {3, 4, 6}, {4, 5, 7}, {5, 6, 1}, {6, 7, 2}, {7, 1, 3}

}

N =



{8, 1, 2, 4}, {3, 5, 6, 7},
{8, 2, 3, 5}, {4, 6, 7, 1},
{8, 3, 4, 6}, {5, 7, 1, 2},
{8, 4, 5, 7}, {6, 1, 2, 3},
{8, 5, 6, 1}, {7, 2, 3, 4},
{8, 6, 7, 2}, {1, 3, 4, 5},
{8, 7, 1, 3}, {2, 4, 5, 6}



M =



B1 = {8, 1, 2, 4, 11, 13, 14, 15}, B8 = {3, 5, 6, 7, 16, 9, 10, 12},
B2 = {8, 2, 3, 5, 12, 14, 15, 9}, B9 = {4, 6, 7, 1, 16, 10, 11, 13},
B3 = {8, 3, 4, 6, 13, 15, 9, 10}, B10 = {5, 7, 1, 2, 16, 11, 12, 14},
B4 = {8, 4, 5, 7, 14, 9, 10, 11}, B11 = {6, 1, 2, 3, 16, 12, 13, 15},
B5 = {8, 5, 6, 1, 15, 10, 11, 12}, B12 = {7, 2, 3, 4, 16, 13, 14, 9},
B6 = {8, 6, 7, 2, 9, 11, 12, 13}, B13 = {1, 3, 4, 5, 16, 14, 15, 10},
B7 = {8, 7, 1, 3, 10, 12, 13, 14}, B14 = {2, 4, 5, 6, 16, 15, 9, 11}



MT =



1 = {1, 5, 7, 9, 10, 11, 13}, 9 = {2, 3, 4, 6, 8, 12, 14},
2 = {1, 2, 6, 10, 11, 12, 14}, 10 = {3, 4, 5, 7, 8, 9, 13},
3 = {2, 3, 7, 8, 11, 12, 13}, 11 = {1, 4, 5, 6, 9, 10, 14},
4 = {1, 3, 4, 9, 12, 13, 14}, 12 = {2, 5, 6, 7, 8, 10, 11},
5 = {2, 4, 5, 8, 10, 13, 14}, 13 = {1, 3, 6, 7, 9, 11, 12},
6 = {3, 5, 6, 8, 9, 11, 14}, 14 = {1, 2, 4, 7, 10, 12, 13},
7 = {4, 6, 7, 8, 9, 10, 12}, 15 = {1, 2, 3, 5, 11, 13, 14},
8 = {1, 2, 3, 4, 5, 6, 7}, 16 = {8, 9, 10, 11, 12, 13, 14}


.

The defining array of the LSR RD M is

A =

[
1 2 3 4 5 6 7 8
9 10 11 12 13 14 15 16

]
,

and the DAR rectangle A of MT is the 2× 8 array

A =

[
1 2 3 4 5 6 7 8
9 10 11 12 13 14 15 16

]
.
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The parameters of the doubly near affine doubly (4, 1)-resolvable design
MT (i.e., a D1

4,1) are v = 14, b = 16, r = 8, k = 7, Λ1 = 3, Λ2 = 0, Λ3 = 4,
m = 2, and n = 8. Also, the D1

4,1 is a transversal design with parameters
v = 14, b = 16, r = 8, k = 7, m′ = 7, n′ = 2, λ′

1 = 0, and λ′
2 = 4 and

with the partition of point set V given by
{
{1, 8}, {2, 9}, {3, 10}, {4, 11},

{5, 12}, {6, 13}, {7, 14}
}
. Furthermore, D1

4,1 is quasi-double of the GDD
SR80 in Clatworthy’s table [7]. Each row 4-resolution class is an optimal
transversal design with parameters v = 14, b = 8, r = 4, k = 7, m′ = 7,
n′ = 2, λ′

1 = 0, and λ′
2 = 2 (same as SR80) and with the same partition of

the point set V as that of D1
4,1.

Corollary 3.6. When ℓ = 2s + 1, x = 1, and the BIBD(2ℓ, ℓ, ℓ − 1) is NSC,
then the packing design D1

2s+1,m/2 has parameters v = 2(m − 1)(4s + 1),

b = 2m(2s+ 1), r = m(2s+ 1), k = (m− 1)(4s+ 1), µ = 2s+ 1, ν = m/2,
Λ1 = 2(m−1)s, Λ2 = (m/2−1)(4s+1), Λ3 = (k+1)/2, (index) λ = m(s+1),
m, and n = 4s+ 2.

Proof. If M is the incidence matrix of a design D, then the off-diagonal
integer entries of MTM are the sizes of intersections of pair of distinct
blocks of D. If N is the incidence matrix of NSC BIBD(4s+ 2, 2s+ 1, 2s),
then from Proposition 3.2 it follows that the maximum off-diagonal entry
of NTN is s+ 1. Let M = [Nij ] be the incidence matrix of the LSR RD as
defined in Theorem 3.3. Then each column of m blocks of M contains m/2
N ’s and m/2 (N c)’s. Since NTN = (N c)TN c, each diagonal block entry
of MTM is mNTN . By Proposition 3.2, the maximum off-diagonal entry
of NTN in s + 1. Hence the maximum off-diagonal integer entry in each
diagonal block of MTM is m(s + 1). It can be verified that each integer
entry in each off-diagonal block of MTM is m

(
s+ 1

2

)
. Hence the maximum

size of the intersection of a pair of blocks of the design M is m(s+1), which
is the index of the packing design MT .

Corollary 3.7. If m = 4t, ℓ = 2s, x = 1, and the BIBD(4s, 2s, 2s − 1) is
SC, then the design D1

µ,ν has parameters v = 2(4t − 1)(4s − 1), b = 16st,
r = 8st, k = (4t − 1)(4s − 1), µ = 2s, ν = 2t, Λ1 = (4t − 1)(2s − 1),
Λ2 = (2t − 1)(4s − 1), Λ3 = (k + 1)/2, m = 4t, and n = 4st. Also, it is
an optimal transversal packing design with parameters λ′

1 = 0, λ′
2 = 4st,

m′ = (4t− 1)(4s− 1), n′ = 2, and the index λ = 4st. The dual of D1
2s,2t is

an affine resolvable LSR rectangular design.

Proof. Let the incidence matrix N of the BIBD be partitioned as

N = [N1|N2| · · · |N4s−1],
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where each Ni contains exactly two columns corresponding to two dis-
joint blocks of the BIBD. Then for all i, j ∈ {1, 2, . . . , 4s − 1}, we have
NT

i Ni = 2sI and NT
i Nj = sJ , for i ̸= j (by Proposition 3.1). Hence

NTN = circ
(
2sI|sJ | · · · |sJ

)
and NTN c = circ(2sIc|sJ | · · · |sJ). Let M =

[C1|C2| · · · |C4t−1], where Ci are columns of the incidence matrix M of the
RD. It is easy to verify that (N c)TN c = NTN and NTN c = (N c)TN .
Hence CT

i Ci = 4tNTN = circ
(
8stI|4stJ | · · · |4stJ

)
= P (say) and, for

i ̸= j, CT
i Cj = 2t(NT . . .T N c) = circ

(
4stJ |4stJ | · · · |4stJ

)
= Q (say).

Thus MTM = circ
(
P |Q| · · · |Q

)
. Now from Proposition 2.3 and 2.4, it fol-

lows that MT is a GDD with parameters mentioned above. Also, from these
parameters it is clear that MT is a transversal design. For optimality of
the packing see Section 6.

Corollary 3.8. If s = t in Corollary 3.7, then the design D1
2s,2s is a doubly

near affine doubly 2s-resolvable optimal transversal packing with param-
eters v = 2(4s − 1)2, b = 16s2, r = 8s2, k = (4s − 1)2, Λ1 = Λ2 =
(4s− 1)(2s− 1), Λ3 = (k + 1)/2, λ′

1 = 0, λ′
2 = 4s2, m′ = (4s− 1)2, n′ = 2,

and the index λ = 4s2. The dual of D1
2s,2s is an affine resolvable semi-

regular L2-type design (see Theorem 3 (s = 1) in Singh and Saurabh [40]).

Remark 3.9. The design D1
2s,2t in Corollary 3.7 can be constructed by

Hadamard matrices H4t and H4s. The design D1
2s,1 in Corollary 3.7 as

well as D1
2s,2s in Corollary 3.8 can be constructed by H4s. These are the

consequences of the fact that the SC (4s, 2s, 2s−1)-BIBD can be constructed
by H4s (see Mullin and Stinson [29]).

Remark 3.10. The family of designs D1
2s,2t in Corollary 3.7 and D1

2s,1 in
Corollary 3.4 satisfies b = 4(r − λ).

Example 3.11 (a D1
2,2). Let m = n = 4. Consider the following example of

a design that appears as a special case in Corollary 3.8 and Theorem 3.3 (the
designs used in the construction are denoted by their incidence matrices).

Let

N =


0 1 0 0 1 1
0 0 1 1 0 1
1 0 0 1 1 0
1 1 1 0 0 0


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be the SC BIBD(4, 2, 1). Assume

H =


1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1


Then

N c =


1 0 1 1 0 0
1 1 0 0 1 1
0 1 1 0 0 1
0 0 0 1 1 1


and

M =


N N N
N N c N c

N c N N c

N c N c N


are designs defined in Theorem 3.3. Blocks of SR L2-type design M are

B1 = {3, 4, 7, 8, 9, 10, 13, 14}, B10 = {1, 2, 5, 6, 11, 12, 15, 16},
B2 = {1, 4, 5, 8, 10, 11, 14, 15}, B11 = {2, 3, 6, 7, 9, 12, 13, 16},
B3 = {2, 4, 6, 8, 9, 11, 13, 15}, B12 = {1, 3, 5, 7, 10, 12, 14, 16},
B4 = {3, 4, 5, 6, 11, 12, 13, 14}, B13 = {1, 2, 7, 8, 9, 10, 15, 16},
B5 = {1, 4, 6, 7, 9, 12, 14, 15}, B14 = {2, 3, 5, 8, 10, 11, 13, 16},
B6 = {2, 4, 5, 7, 10, 12, 13, 15}, B15 = {1, 3, 6, 8, 9, 11, 14, 16},
B7 = {3, 4, 5, 6, 9, 10, 15, 16}, B16 = {1, 2, 7, 8, 11, 12, 13, 14},
B8 = {1, 4, 6, 7, 10, 11, 13, 16}, B17 = {2, 3, 5, 8, 9, 12, 14, 15},
B9 = {2, 4, 5, 7, 9, 11, 14, 16}, B18 = {1, 2, 6, 8, 10, 12, 13, 15}.

After a permutation of blocks, this affine resolvable design is the same as
LS 100 listed in Clatworthy’s table [7]. It has an additional property: each
block of the design contains exactly two points from each row and from
each column of the array

A =


1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16

 .
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In general, such designs were named as semi-regular L2-type designs by
Singh and Saurabh [40]. Its dual MT (i.e., D1

2,2) has the following blocks:

1 = {2, 5, 8, 10, 12, 13, 15, 16, 18}, 2 = {3, 6, 9, 10, 11, 13, 14, 16, 17},

3 = {1, 4, 7, 11, 12, 14, 15, 17, 18}, 4 = {1, 2, 3, 4, 5, 6, 7, 8, 9},

5 = {2, 4, 6, 7, 9, 10, 12, 14, 17}, 6 = {3, 4, 5, 7, 8, 10, 11, 15, 18},

7 = {1, 5, 6, 8, 9, 11, 12, 13, 16}, 8 = {1, 2, 3, 13, 14, 15, 16, 17, 18},

9 = {1, 3, 5, 7, 9, 11, 13, 15, 17}, 10 = {1, 2, 6, 7, 8, 12, 13, 14, 18},

11 = {2, 3, 4, 8, 9, 10, 14, 15, 16}, 12 = {4, 5, 6, 10, 11, 12, 16, 17, 18},

13 = {1, 3, 4, 6, 8, 11, 14, 16, 18}, 14 = {1, 2, 4, 5, 9, 12, 15, 16, 17},

15 = {2, 3, 5, 6, 7, 10, 13, 17, 18}, 16 = {7, 8, 9, 10, 11, 12, 13, 14, 15}.

D1
2,2 has the same parameters as 2-resolvable SR 100 in Clatworthy’s ta-

ble [7]. However, here the blocks are arranged in the cells of a DAR square
as

A =


1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16

 .

Clearly D1
2,2 is a doubly 2-resolvable GDD. It is doubly near affine, as two

blocks in the same row or column intersect in 3 points; otherwise, they
intersect in 5 points. Index λ = 4. Also, D1

2,2 is an optimal packing (see
Section 6). Each row (column) 2-resolution class of the DAR square is the
dual of a (4, 18, 9, 2, 3)-BIBD.

Example 3.12 (a D1
3,1). Consider the following designs, which appear in

Theorem 3.3 and Corollary 3.6 and are denoted by their incidence matrices.

N =


B1 = {1, 2, 3}, B6 = {3, 4, 5},
B2 = {1, 4, 5}, B7 = {2, 3, 4},
B3 = {2, 4, 6}, B8 = {3, 5, 6},
B4 = {1, 4, 6}, B9 = {1, 2, 5},
B5 = {2, 5, 6}, B10 = {1, 3, 6}.


M =


B1 = {1, 2, 3, 10, 11, 12}, B6 = {3, 4, 5, 7, 8, 12},
B2 = {1, 4, 5, 8, 9, 12}, B7 = {2, 3, 4, 7, 11, 12},
B3 = {2, 4, 6, 7, 9, 11}, B8 = {3, 5, 6, 7, 8, 10},
B4 = {1, 4, 6, 8, 9, 11}, B9 = {1, 2, 5, 9, 10, 12},
B5 = {2, 5, 6, 7, 9, 10}, B10 = {1, 3, 6, 8, 10, 11}.


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MT =



1 = {1, 2, 4, 9, 10}, 7 = {3, 5, 6, 7, 8},
2 = {1, 3, 5, 7, 9}, 8 = {2, 4, 6, 8, 10},
3 = {1, 6, 7, 8, 10}, 9 = {2, 3, 4, 5, 9},
4 = {2, 3, 4, 6, 7}, 10 = {1, 5, 8, 9, 10},
5 = {2, 5, 6, 8, 9}, 11 = {1, 3, 4, 7, 10},
6 = {3, 4, 5, 8, 10}, 12 = {1, 2, 6, 7, 9}.


The starting design N is a near self-complementary (6, 10, 5, 3, 2)-BIBD,
where a near complement of a block Bi is f(Bi) = Bi+5, for i ∈ {1, 2, 3, 4, 5}
(see Mullin and Stinson [29]). The defining array of LSR RD M is

A =

[
1 2 3 4 5 6
7 8 9 10 11 12

]
,

and the DAR rectangle A of the doubly near affine doubly (3, 1)-resolvable
packing design MT (i.e., D1

3,1) is

A =

[
1 2 3 4 5 6
7 8 9 10 11 12

]
.

The parameters of the design D1
3,1 are v = 10, b = 12, r = 6, k = 5, Λ1 = 2,

Λ2 = 0, Λ3 = 3, µ = 3, ν = 1, λ = 4, m = 2, and n = 6. Also, it has been
verified that D1

3,1 is a triangular design based upon the following array:

T =


1 2 3 8

1 5 6 4
2 5 10 7
3 6 10 9
8 4 7 9

 .

Two distinct points of D1
3,1 are 1st associates if they belong to the same

row or the same column of the array T ; otherwise, they are 2nd associates.
D1

3,1 has the same parameters as the triangular design listed as T46 in
Clatworthy’s table [7]. However, the design T46 is given as the double
of the design T44 in the table; whereas, the D1

3,1 is a quasi-double of T44.
Kageyama [22] has proved that an affine µ-resolvable triangular design does
not exist for µ ∈ {1, 2}. Example 3.12 shows that a 1-resolvable triangular
design D1

3,1 exists if we take resolution classes as the columns of A. Also,
D1

3,1 is near affine in the sense that two blocks in the same resolution class do
not intersect, and those in the distinct resolution classes intersect in three
points with exactly one exception. If we take resolution classes row-wise,
we can see that D1

3,1 is near affine 3-resolvable.

It has been verified that each row 3-resolution class is a triangular design
with the same parameters as T44 and is an optimal packing.
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4 Doubly near affine doubly (1, ν)-resolvable
designs from generalized Hadamard matrices

Theorem 4.1. Let G be a group of order n. Let HG = GH(nν,G) be a
generalized Hadamard matrix of order nν over G. Then there exists a
doubly near affine doubly (1, ν)-resolvable 1-design with parameters v =
(nν−1)x, b = νn2, r = nν, k = (nν−1)x, Λ1 = 0, Λ2 = x(ν−1), Λ3 = νx,
µ = 1, ν, m = nν, n, λ′

1 = 0, λ′
2 = ν, m′ = (nν − 1)x, n′ = n, and index

λ = ν.

Proof. First, we prove the theorem for x = 1 and reduce HG into a nor-
malized form, which contains in first row and column only identity element
of G. Next delete the first column. Replace the entries of the truncated
HG by (0, 1)-matrices Nij through a regular permutation matrix represen-
tation of G. Denote the resulting (0, 1)-matrix by N . Then N = [Nij ],
where i ∈ {1, 2, . . . , nν} and j ∈ {1, 2, . . . , nν − 1}. Let Ri be the ith row
with entries Nij for 1 ≤ j ≤ nν−1. Then by the definition of HG it follows
that

R2
i = RiR

T
i =

m−1∑
k=1

NikNik
T = (nν − 1)In

and

RiRj = RiR
T
j =

m−1∑
k=1

NikNjk
T = (ν − 1)In + νIcn.

Hence by Proposition 2.4, N is the incidence matrix of an RD with parame-
ters v = νn2, b = n(νn−1), r = νn−1, k = νn, λ1 = 0, λ2 = ν−1, λ3 = ν,
m = nν, and n. If θ1, θ2, θ3 are eigenvalues of N , then it can be verified
that θ1 = θ2 = 0 and θ3 > 0. Hence the RD is LSR, and NT is doubly near
affine (1, ν)-resolvable with parameters mentioned in the theorem, where
x = 1.

Consider a collection of x > 1 copies of blocks of the above RD, which is an
LSR RD with parameters v = νn2, b = n(νn− 1)x, r = (νn− 1)x, k = νn,
λ1 = 0, λ2 = (ν − 1)x, λ3 = νx, m = nν, and n. If we make the blocks
distinct by labeling them, then the dual of the design is the required design.
This design will be denoted as D2

1,ν(x) and as D2
1,ν when x = 1.

Remark 4.2. The LSR RD D2
1,ν belongs to the family F2(m,n, x), where

m = nν (See Section 2.2(ii)).

From Greig and Colbourn [18] we recall the following definition.
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Definition 4.3. An (n, r, ν)-net is an affine resolvable 1-design with param-
eters v′ = νn2, b′ = rn, r′ = r, and k′ = νn and with r resolution classes,
each containing n disjoint blocks. Any two blocks belonging to different
resolution classes intersect in ν points.

Remark 4.4. From the above definition of an (n, r, ν)-net, it follows that
when x = 1 the LSR RD used in the proof of Theorem 4.1 is an (n, nν−1, ν)-
net. Thus, we have arrived at some additional combinatorial properties of
this subfamily of nets.

Remark 4.5. It is clear that every LSR RD is not a net. The LSR RD in
Example 3.12, with incidence matrix M , is not a net. An (n, r, ν)-net with
r ̸= nν − 1 is not an LSR RD.

Example 4.6 (a D2
1,2). Consider the example of an LSR RD from Singh and

Saurabh [40], which is also a (3, 5, 2)-net. The dual of the net is a doubly
near affine doubly (1, 2)-resolvable transversal design D2

1,2. The blocks of
the RD are

B1 = {1, 6, 8, 11, 13, 18}, B2 = {2, 4, 9, 12, 14, 16}, B3 = {3, 5, 7, 10, 15, 17},
B4 = {1, 5, 9, 11, 15, 16}, B5 = {2, 6, 7, 12, 13, 17}, B6 = {3, 4, 8, 10, 14, 18},
B7 = {1, 6, 9, 10, 14, 17}, B8 = {2, 4, 7, 11, 15, 18}, B9 = {3, 5, 8, 12, 13, 16},
B10 = {1, 5, 7, 12, 14, 18}, B11 = {2, 6, 8, 10, 15, 16}, B12 = {3, 4, 9, 11, 13, 17},
B13 = {1, 4, 8, 12, 15, 17}, B14 = {2, 5, 9, 10, 13, 18}, B15 = {3, 6, 7, 11, 14, 16}.

The 6× 3 defining array of the RD is given as

A =

1 4 7 10 13 16
2 5 8 11 14 17
3 6 9 12 15 18

T

.

The dual of the above RD (NT in Theorem 4.1) is given by the blocks

1 = {1, 4, 7, 10, 13}, 2 = {2, 5, 8, 11, 14}, 3 = {3, 6, 9, 12, 15},
4 = {2, 6, 8, 12, 13}, 5 = {3, 4, 9, 10, 14}, 6 = {1, 5, 7, 11, 15},
7 = {3, 5, 8, 10, 15}, 8 = {1, 6, 9, 11, 13}, 9 = {2, 4, 7, 12, 14},
10 = {3, 6, 7, 11, 14}, 11 = {1, 4, 8, 12, 15}, 12 = {2, 5, 9, 10, 13},
13 = {1, 5, 9, 12, 14}, 14 = {2, 6, 7, 10, 15}, 15 = {3, 4, 8, 11, 13},
16 = {2, 4, 9, 11, 15}, 17 = {3, 5, 7, 12, 13}, 18 = {1, 6, 8, 10, 14}.

Thus D2
1,2 has the parameters v = 15, b = 18, r = 6, k = 5, Λ1 = 0, Λ2 = 1,

Λ3 = 2, λ = 2, µ = 1, ν = 2, m = 6, n = 3, λ′
1 = 0, λ′

2 = 2, m′ = 6− 1 = 5,
and n′ = 3 (where primed parameters refer to transversal designs with the
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same v, b, r, k) with the DAR rectangle

A =

1 4 7 10 13 16
2 5 8 11 14 17
3 6 9 12 15 18

T

.

The transversal design is based on the following partition of the point set:{
{1, 2, 3}, {4, 5, 6}, {7, 8, 9}, {10, 11, 12}, {13, 14, 15}

}
.

This is isomorphic to SR 36 listed in Clatworthy [7] and given by Solu-
tion 1. However, Clatworthy’s grouping of blocks shows that the design is
1-resolvable only. Here it is shown that the design D2

1,2 is 3-resolvable also.
Moreover D2

1,2 is near affine with intersection numbers 0, 1, and 2. It is
also a packing design with index λ = 2 and packing number 21, which is
close to b = 18.

Each of the three columns of the array A, which is a 2-resolution class,
is the dual of a BIBD(6, 15, 5, 2, 1). It has been verified that these designs
are triangular designs. The first one is isomorphic to T48 in Clatworthy’s
table [7], based on the triangular association scheme given by the array

13 10 7 1 4
13 8 6 12 2
10 8 3 5 15
7 6 3 14 11
1 12 5 14 9
4 2 15 11 9

 .

The other two 2-resolution classes are also triangular designs, but defined
upon different arrays. Also, each defining array is the disconnected EKS
nested in the corresponding column of DAR rectangle A (see EKS I in Sec-
tion 7).

From this observation the following remark follows:

Remark 4.7. There exist a near optimal transversal packing, which is the
block disjoint union of three triangular designs defined on different arrays.

Corollary 4.8. The design D2
1,ν in Theorem 4.1 is also a transversal packing

with index λ = ν. The packing is optimal when ν > 2. Its dual is an affine
resolvable LSR rectangular design. Moreover, each column ν-resolution
class is the dual of a BIBD with parameters v = nν, b = n(nν − 1), r =
nν − 1, k = ν, and λ = ν − 1.
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Proof. If Ci is the ith column of N = [Nij ], i.e., C
T
i is the ith row of NT ,

then CT
i Ci = nνI and CT

i Cj = νJ , for i ̸= j. Hence by Propositions 2.3
and 2.4, NT is the incidence matrix of a transversal design with parameters
v = n(νn−1), b = νn2, r = νn, k = νn−1, λ′

1 = 0, λ′
2 = ν, m′ = νn−1, and

n′ = n. Clearly λ = λ′
2 = ν. For optimality see Section 6. The last assertion

follows from the definition of a DAR rectangle and Theorem 4.1.

Corollary 4.9. There exists a doubly resolvable transversal design D2
1,1 with

parameters v = q(q − 1), b = q2, r = q, k = q − 1, Λ1 = 0, Λ2 = 0, Λ3 = 1,
λ′
1 = 0, λ′

2 = 1, m′ = q − 1, n′ = q, and λ = 1, where q is prime power.

Proof. A generalized Hadamard matrix of order q can be obtained by the
method of Drake [15]. Using this GH matrix, we deduce the corollary from
Theorem 4.1 taking x = 1.

Remark 4.10. Work of Butson [4,5], Drake [15], Jungnickel [21], Street [42],
Seberry [37], Dawson [10], de Launey [11–13], Hayden [19], and Zhang et al.
[45], among others, yielded some series of generalized Hadamard matrices.
Hence, Corollary 4.8 gives infinitely many doubly near affine doubly (1, ν)-
resolvable optimal transversal packing designs. For a table of small order
generalized Hadamard matrices and theorems on their construction, see
Lampio [28].

We recall the following definition from Hedayat et al. [20]:

Definition 4.11 (Orthogonal array.). Let S be a set of n symbols. An
OA(N, k, n, t) is an N × k array with entries from S such that every N × t
subarray of A contains any t-tuple based on S exactly λ times as a row.
In addition, N , k, n, t, and λ are called respectively the run, number of
factors, number of levels, strength, and index of the OA.

A transversal design TDλ(k, n) is equivalent to an OA(λn2, k, n, 2), see He-
dayat et al. [20, page 242]. The transversal designs in Corollaries 3.4, 3.7
and 4.8 induce the following OAs:

Theorem 4.12. The following families of OAs are equivalent to TDs ob-
tained in corollaries:

from Corollary 3.4(i): OA(4s, 4s− 1, 2, 2),
from Corollary 3.4(ii): OA(8s, 4s− 1, 2, 2),
from Corollary 3.7: OA(16st, (4s− 1)(4t− 1), 2, 2),
from Corollary 4.8: OA(νn2, νn− 1, n, 2).
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5 Doubly near affine doubly (µ, ν)-resolvable
1-design from BIBDs.

The following theorem yields a doubly near affine doubly (µ, ν)-resolvable
1-design when µ, ν > 1 and µ, ν are both odd, which is not covered by
Theorems 3.3 and 4.1.

Theorem 5.1. The existence of a NSC BIBD(2ℓi, ℓi, ℓi − 1), where ℓi > 1
(i ∈ {1, 2}) are odd, implies the existence of a doubly near affine doubly
(µ, ν)-resolvable 1-design with parameters v = 4(2ℓ1−1)(2ℓ2−1), b = 4ℓ1ℓ2,
r = 2ℓ1ℓ2, k = 2(2ℓ1 − 1)(2ℓ2 − 1), Λ1 = 2(ℓ1 − 1)(2ℓ2 − 1), Λ2 = 2(ℓ2 −
1)(2ℓ1 − 1), Λ3 = 2

(
(ℓ1 − 1)(ℓ2 − 1) + ℓ1ℓ2

)
, µ = ℓ1, and ν = ℓ2.

Proof. Let Ni be the incidence matrix of the (2ℓi, ℓi, ℓi − 1)-BIBD, for i ∈
{1, 2}. In the (0, 1)-matrix N2 replace 1 by N1 and 0 by N c

1 and let M be
the resulting matrix. Then one can verify that M is the incidence matrix
of an LSR RD with parameters v = 4ℓ1ℓ2, b = 4(2ℓ1 − 1)(2ℓ2 − 1), r =
2(2ℓ1−1)(2ℓ2−1), k = 2ℓ1ℓ2, λ1 = 2(ℓ1−1)(2ℓ2−1), λ2 = 2(ℓ2−1)(2ℓ1−1),
λ3 = 2

(
(ℓ1 − 1)(ℓ2 − 1) + ℓ1ℓ2

)
, m = 2ℓ2, and n = 2ℓ1. Also, MT is the

incidence matrix of the required design, which has parameters mentioned
in the theorem.

A design given by Theorem 5.1 will be denoted by D3
2s+1,2t+1, where µ =

2s+ 1 and ν = 2t+ 1 for s, t ≥ 1.

Corollary 5.2. When ℓ1 = ℓ2 = 2s+ 1, then the design D3
2s+1,2s+1 reduces

to a doubly near affine doubly (2s+ 1)-resolvable 1-design.

6 Optimality of doubly near affine
(µ, ν)-resolvable packings

The packing we consider here is in fact a 2-(v, k, λ) packing (vide Stinson
et al. [41]).

The first Johnson bound for this packing is

Uλ(v, k, 2) =

⌊
v

k

⌊
λ(v − 1)

k − 1

⌋⌋
.

If b is the number of blocks of the design, then the design is called optimal
if b = Uλ(v, k, 2).
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There are infinitely many packing designs constructed in the corollaries,
which are optimal or near optimal packings. We tabulate below some series
of optimal/near optimal packings. The parameter x has the value 1 for
every packing design.

Table 6.1: Series of doubly (µ, ν)-resolvable packings.

D1
2s,1 D1

2s+1,2t D1
2s,2t D1

2s,2s D2
1,ν

v 2(4s − 1) 2(4t − 1)(4s + 1) 2(4t − 1)(4s − 1) 2(4s − 1)2 n(νn − 1)

r 4s 4t(2s + 1) 8st 8s2 νn

k 4s − 1 (4t − 1)(4s + 1) (4t − 1)(4s − 1) (4s − 1)2 νn − 1

Λ1 2s − 1 (4t − 1)(2s − 1) (4t − 1)(2s − 1) (4s − 1)(2s − 1) 0

Λ2 0 (2t − 1)(4s − 1) (2t − 1)(4s − 1) (4s − 1)(2s − 1) ν − 1

Λ3 2s (k + 1)/2 (k + 1)/2 (k + 1)/2 ν

λ 2s 4t(s + 1) 4st 4s2 ν

b − Uλ(v, k, 2) 0 8t 0 0

{
n if ν ≤ 2
0 if ν > 2

Optimality Optimal
Near optimal
for small t

Optimal Optimal
Optimal
if ν > 2

Source Cor. 3.4 Cor. 3.6 Cor. 3.7 Cor. 3.8 Cor. 4.8

7 Applications in the design of experiments

Bailey and Williams [1] remarked that multiple blocking structure play an
important role in the control of experimental trend and are used extensively
in the design and analysis of experiments in agriculture, horticulture, and
forestry.

Each of the designs that we have obtained in the paper has multiple blocking
structure. In this section, points will be called treatments.

When µ > 1, each of the m row µ-resolution classes in a DAR rectangle is
a linked design (the dual of a BIBD). When ν > 1, each of the n column
ν-resolution classes in a DAR rectangle is a linked design. Rao [33] has
shown that the dual of a non-symmetric BIBD is a PBIBD under a generic
condition. Shah et al. [38] proved (in Corollary 1, Theorem 2) that in the
class of (b, v, k, r)- 1-designs containing a linked block design ∆, we have
that ∆ is A-, D-, and E-optimal for the estimation of treatment effects.
Pohl [31] proved that in the larger class of (b, v, k)-designs, in which r
varies, the linked design is optimal for the estimation of treatment effects.
We expect the following applications:
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7.1 Comparing the effects of certain subsets of a treatment
set

In general, BIBDs are known to be more efficient than linked designs. We
propose below a design whose row as well as column fractional µ-resolution
designs are BIBDs under certain conditions, and which can compare the
effects of certain subsets of a given treatment set.

Definition 7.1 (Extended Kirkman square). Let V be a set of v points. Then
an m×m array X will be called an extended Kirkman square (EKS) if

(1) each cell of X is either empty or contains a k-subset of V ,

(2) non-empty sets of every row as well as column of X is a 1-design with
the same parameters,

(3) every point belongs to u rows as well as u columns of X, for 1 ≤ u ≤
m,

(4) the collection of subsets obtained from nonempty cells of X is a con-
nected (v, b, r, k)- 1-design.

If conditions (1) through (3) hold but (4) does not, then the EKS will be
called disconnected. An EKS will be called an extended Kirkman 2-packing
(EKP) if

(5) Every 2-subset of V is contained in at most λ non-empty cells of X.

The independent parameters of an EKS are v, k, m, and u, and so it can be
denoted as EKS(v, k,m, u). The parameters of each row (column) 1-design
D comprising k-subsets from nonempty cells of the row (column) of X are
v′ = uv/m, b′ = b/m, r′ = r/u, and k. Furthermore, D will be called v′/v
(= u/m) row (column) r′-resolution design (or u/m row (column) design)
of the EKS.

Example 7.2. The extended Kirkman square/packing is interesting when
the row (column) fractional α-resolution designs are t-designs for some t
(for t-designs see Trung [43]) or PBIBDs or t-packings (see Stinson et al.
[41]). When t = 2, such examples can be produced easily by any symmet-
ric (v, k, λ)-BIBD D. Let B1, B2, . . . , Bv be the blocks of the symmetric
BIBD D. Obtain

Bij =

{
Bi ∩Bj , if i ̸= j,
∅, if i = j,

for i, j ∈ {1, 2, . . . , v}. Then the v × v array X = [Bij ] is clearly an
EKS(v, k, v, k). Each k/v row (column) (k − 1)-resolution design is a 2-
design (derived design of D).
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Illustration: An EKS from a complete (5, 4, 3)-BIBD

Let the blocks of the BIBD be B1 = {2, 3, 4, 5}, B2 = {1, 3, 4, 5}, B3 =
{1, 2, 4, 5}, B4 = {1, 2, 3, 5}, and B5 = {1, 2, 3, 4} on the treatment set V =
{1, 2, 3, 4, 5}. The EKS X defined above can be easily obtained as

X =


∅ {3, 4, 5} {2, 4, 5} {2, 3, 5} {2, 3, 4}

{3, 4, 5} ∅ {1, 4, 5} {1, 3, 5} {1, 3, 4}
{2, 4, 5} {1, 4, 5} ∅ {1, 2, 5} {1, 2, 4}
{2, 3, 5} {1, 3, 5} {1, 2, 5} ∅ {1, 2, 3}
{2, 3, 4} {1, 3, 4} {1, 2, 4} {1, 2, 3} ∅

 .

This EKS is an EKP. The packing is optimal with index λ = 3.

Each row is a (4, 3, 2)-BIBD on the point set containing 4 points (one point is
missing). Hence each row is 4/5 a 3-resolution design. The overall design is
the BIBD(5, 3, 2). LetX be the space of the experimental design. Treatment
effects of every combination of four treatments can be compared through
row-wise (column-wise) designs, if the space is homogeneous, while those of
all five treatments 1, 2, 3, 4, 5 can be estimated using (5, 4, 3)-BIBD. For
more examples of EKSs whose fractional row (column) α-resolution designs
are BIBDs, we introduce the following:

Definition 7.3 (EKSs nested in row (or column) of a DAR rectangle).

(1) EKS I nested in one row µ-resolution (or column ν-resolution) class.
Let µ > 1. Let B1, B2, . . . , Bn be the blocks of a row µ-resolution
class (column ν-resolution class, if ν > 1) of a DAR rectangle. Define

Bij =

{
Bi ∩Bj , if i ̸= j,
∅, if i = j,

for i, j ∈ {1, 2, . . . , v}. If each fractional row (or column) α-resolution
design of the n×n array X = [Bij ] is connected, then X is easily seen
to be an EKS, which will be called EKS I nested in the DAR rectangle.
If the EKS has index λ, it will be called EKP I.

(2) EKS II nested in two row µ-resolution (or column ν-resolution) classes.
Let µ > 1. Let B′

1, B
′
2, . . . , B

′
n be the blocks of another row µ-

resolution (column ν-resolution) class of the DAR rectangle mentioned
in (1). Let

Cij =

{
B′

i ∩Bj , if i ̸= j,
∅, if i = j,
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for i, j ∈ {1, 2, . . . , v}. If each fractional row (or column) α-resolution
design of the n × n array X = [Cij ] is connected, then X is seen to
be an EKS, which will be called EKS II nested in the DAR rectangle.
If the EKS has the index λ, it will be called EKP II.

Example 7.4. (Nested EKP I from Example 3.5) Here X = [Xij ]i,j∈{1,...,8}
with

Xij =

{
i ∩ j, if i ̸= j,
∅, otherwise,

where i and j are as given in Example 3.5. Then EKP I can be explicitly
written as

X =


∅ {1, 10, 11}{7, 11, 13} {1, 9, 13} {5, 10, 13} {5, 9, 11} {7, 9, 10} {1, 5, 7}

{1, 10, 11} ∅ {2, 11, 12}{1, 12, 14}{2, 10, 14}{6, 11, 14}{6, 10, 12}{1, 2, 6}
{7, 11, 13}{2, 11, 12} ∅ {3, 12, 13} {2, 8, 13} {3, 8, 11} {7, 8, 12} {2, 3, 7}
{1, 9, 13} {1, 12, 14}{3, 12, 13} ∅ {4, 13, 14} {3, 9, 14} {4, 9, 12} {1, 3, 4}
{5, 10, 13}{2, 10, 14} {2, 8, 13} {4, 13, 14} ∅ {5, 8, 14} {4, 8, 10} {2, 4, 5}
{5, 9, 11} {6, 11, 14} {3, 8, 11} {3, 9, 14} {5, 8, 14} ∅ {6, 8, 9} {3, 5, 6}
{7, 9, 10} {6, 10, 12} {7, 8, 12} {4, 9, 12} {4, 8, 10} {6, 8, 9} ∅ {4, 6, 7}
{1, 5, 7} {1, 2, 6} {2, 3, 7} {1, 3, 4} {2, 4, 5} {3, 5, 6} {4, 6, 7} ∅



Each row (column) of X is 1⁄2 row (column) 3-resolution design, which is a
Fano plane. The design whose blocks are taken from all non-empty cells of
an EKP is a regular GDD with parameters v = 14, b = 56, r = 12, k = 3,
λ1 = 0, λ2 = λ = 2, m′ = 7, and n′ = 2.

The design is the double of R79 listed in Clatworthy’s table [7] and is a
near optimal packing (2-packing# is 60).

From the above EKP, one can estimate the treatment effects of the eight
different combinations of seven treatments out of fourteen treatments with
the help of sixteen 1⁄2 row (column) 3-resolution designs. Simultaneously,
we can also estimate the treatment effects of all the fourteen treatments by
one row 4-resolution class of the DAR rectangle of Example 3.5.

Example 7.5 (Nested EKP II from Ex. 3.5). The EKP is X = [Xij ]i,j∈{1,...,8}
with

Xij =

{
i ∩ j1, if i ̸= j,
∅, otherwise,

where j1 = j + 8 and where i and j1 are as given in Example 3.5. The
EKP II can be explicitly written as

Doubly near affine doubly (µ, ν)-resolvable GDPDs

95



X
=

                         

∅
{5
,7
,9
,1
3}

{1
,5
,9
,1
0}

{5
,7
,1
0,
11

}
{1
,7
,9
,1
1
}

{1
,7
,1
0
,1
3}

{1
,5
,1
1
,1
3
}

{9
,1
0
,1
1,
1
3
}

{2
,6
,1
2
,1
4}

∅
{1

,6
,1
0
,1
4}

{2
,6
,1
0
,1
1
}

{1
,6
,1
1,
12

}
{1
,2
,1
0
,1
2}

{1
,2
,1
1
,1
4}

{1
0
,1
1
,1
2
,1
4
}

{2
,3
,8
,1
2
}

{3
,7
,8
,1
3
}

∅
{2

,7
,8
,1
1
}

{3
,7
,1
1
,1
2
}

{2
,7
,1
2,
1
3
}

{2
,3
,1
1
,1
3}

{8
,1
1,
1
2
,1
3}

{3
,4
,1
2
,1
4
}

{3
,4
,9
,1
3
}

{1
,4
,9
,1
4
}

∅
{1

,3
,9
,1
2}

{1
,4
,1
2,
1
3
}

{1
,3
,1
3
,1
4
}

{9
,1
2,
1
3
,1
4}

{2
,4
,8
,1
4
}

{4
,5
,8
,1
3
}

{4
,5
,1
0,
14

}
{2
,5
,8
,1
0
}

∅
{2

,4
,1
0
,1
3
}

{2
,5
,1
3,
1
4
}

{8
,1
0
,1
3
,1
4}

{3
,6
,8
,1
4}

{3
,5
,8
,9
}

{5
,6
,9
,1
4}

{5
,6
,8
,1
1
}

{3
,6
,9
,1
1
}

∅
{3

,5
,1
1,
1
4
}

{8
,9
,1
1
,1
4
}

{4
,6
,8
,1
2}

{4
,7
,8
,9
}

{4
,6
,9
,1
0
}

{6
,7
,8
,1
0}

{6
,7
,9
,1
2
}

{4
,7
,1
0
,1
2}

∅
{8

,9
,1
0
,1
2}

{2
,3
,4
,6
}

{3
,4
,5
,7
}

{1
,4
,5
,6
}

{2
,5
,6
,7
}

{1
,3
,6
,7
}

{1
,2
,4
,7
}

{1
,2
,3
,5
}

∅

                         .
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Each row of X is 1⁄2 row 4-resolution design, which is the complement of a
Fano plane on a treatment-set, that is different for the eight 1⁄2 4-resolution
designs. The eight treatment-sets are the blocks of one row 4-resolution
class of D1

41 in Example 3.5. The same is true for 1⁄2 column 4-resolution
designs of X, whose eight treatment-sets are the blocks of another row
4-resolution class of D1

41.

It is clear that one can estimate the treatment effects of the sixteen differ-
ent combinations of seven treatments out of fourteen treatments with the
help of sixteen half row/column 4-resolution designs (BIBDs) of EKP II. Si-
multaneously we can also estimate the treatment effects of all the fourteen
treatments with help of two row 4-resolution classes of the DAR rectangle
of Example 3.5.

The overall design consisting of all blocks taken from nonempty cells of
EKP II is a regular GDD with parameters v = 14, b = 56, r = 16, k = 4,
λ1 = 0, λ2 = λ = 4, m′ = 7, and n′ = 2. The GDD is a quasi-double of R113
listed in Clatworthy table [7] and is a near optimal packing (2-packing#
is 59).

Remark 7.6. From Example 7.4 it follows that there exists a regular group
divisible near optimal packing design with v = 14, b = 56, r = 16, k = 4,
and λ = 4, which can be expressed as the block disjoint union of eight
(7, 4, 2)-BIBDs in two different ways.

7.2 The construction of two-factor split-plot designs

In a split-plot design, blocks are taken as plots (or whole plots), and the
experimental units within a block are called split-plots. Ozawa et al. [30]
constructed incomplete two-factor split-plot designs by affine α-resolvable
1-design. By the analogous method one can obtain two-factor incomplete
split-plot designs by nearly affine µ-resolvable (ν-resolvable) transversal
design, which we have obtained here. An additional advantage of these
new designs is that all row (column) α-resolution classes are linked designs.
Ozawa et al. [30] remarked that the split-plot designs are often used in
biological, agricultural, and environmental sciences.

7.3 Fractional factorial designs

The transversal designs obtained in Corollaries 3.4, 3.7, and 4.8 are also
orthogonal arrays (see Theorem 4.12) with new properties that may have
applications in the theory of fractional factorial designs.
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Remark 7.7. The deep application of the designs is expected when the
DAR rectangles and EKSs are produced abundantly, especially for blocks of
smaller size.

8 Conclusion

The class of doubly resolvable BIBDs has been extended to that of dou-
bly near affine doubly (µ, ν)-resolvable group divisible packings. In the
extended class there are some series of designs, each possessing some prop-
erties simultaneously, which were studied separately for different designs
by design theorists. From Hadamard matrices of order 4s and 4t, we can
obtain a two-parameter series of doubly near affine doubly (µ, ν)-resolvable
optimal transversal packing designs D1

µ,ν , where µ = 2s and ν = 2t. The se-
ries reduces to a doubly µ-resolvable transversal packing, when s = t, and
the series D1

µ,1 reduces to a doubly (µ, 1)-resolvable transversal packing
when µ = 2s, both retaining other properties of D1

2s,2t. From a generalized
Hadamard matrix of order nν over a group of order n, we can obtain a dou-
bly near affine doubly (1, ν)-resolvable transversal packing design D2

1,ν that
is also an optimal packing when ν > 2. Some series of packing designs D1

µ,ν

and D2
1,ν are given in Table 6.1. When µ = 1 or ν = 1, Table 8.1 contains

forty-six Di
µ,ν (i ∈ {1, 2}) 1-designs/packing designs with r, k ≤ 15.

The application of the designs in design of experiments follows from the
fact that each row resolution class of a DAR rectangle is a linked design.
We also introduced EKS and EKS nested in a DAR rectangle so that the
associated row (column) fractional α-resolution classes (designs) are BIBDs.
These squares yield more efficient experimental designs.

In Table 8.1

• v is number of points;

• b is the number of blocks;

• r is the number of replications;

• k is the block size;

• µ (or ν) is the number of blocks in any row (or column) of DAR
rectangle R, to which any point of the design belongs;

• Λ1, Λ2, Λ3 are intersection numbers of pairs of the blocks; and

• λ is the index of the packing design.
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Table 8.1: Table of doubly affine doubly (µ, ν)-resolvable designs with r, k ≤
15. (Other associated designs are not tabulated.)

v b r k µ ν Λ1 Λ2 Λ3 λ Design Source
Independent
Parameters

1. 6 9 3 2 1 1 0 0 1 1 Packing Cor. 4.9 (ν, n) = (1, 3)

2. 6 8 4 3 2 1 1 0 2 2 Optimal
Packing

Cor. 3.4 s = 1

3. 12 16 4 3 1 1 0 0 1 1 Packing Cor. 4.9 (ν, n) = (1, 4)

4. 12 9 3 4 1 1 0 0 2 1-design Thm. 4.1 (ν, n, x) = (1, 3, 2)

5. 20 25 5 4 1 1 0 0 1 1 Packing Cor. 4.9 (ν, n) = (1, 5)

6. 10 12 6 5 3 1 2 0 3 4 Packing Cor. 3.6 (ℓ,m) = (3, 2)

7. 15 18 6 5 1 2 0 1 2 2 Packing Cor. 4.8 (ν, n, x) = (2, 3, 1)

8. 18 9 3 6 1 1 0 0 3 1-design Thm. 4.1 (ν, n, x) = (1, 3, 3)

9. 12 8 4 6 2 1 2 0 4 2 Do Do (ν, n, x) = (2, 2, 2)

10. 24 16 4 6 1 1 0 0 2 1 Do Do (ν, n, x) = (1, 4, 2)

11. 42 49 7 6 1 1 0 0 1 1 Packing Cor. 4.9 (ν, n) = (1, 7)

12. 14 16 8 7 4 1 3 0 4 4 Optimal
Packing

Cor. 3.4 s = 2

13. 28 32 8 7 1 2 0 1 2 2 Packing Cor. 4.8 (ν, n, x) = (2, 4, 1)

14. 56 64 8 7 1 1 0 0 1 1 Packing Cor. 4.9 (ν, n) = (1, 8)

15. 24 9 3 8 1 1 0 0 4 1-design Thm. 4.1 (ν, n, x) = (1, 3, 4)

16. 40 25 5 8 1 1 0 0 2 1-design Do (ν, n, x) = (1, 5, 2)

17. 24 27 9 8 1 3 0 2 3 3 Optimal
Packing

Cor. 4.8 (ν, n) = (3, 3)

18. 72 81 9 8 1 1 0 0 1 1 Packing Cor. 4.9 (ν, n) = (1, 9)

19. 18 8 4 9 2 1 3 0 6 1-design Thm. 3.3 (m, ℓ, x) = (2, 2, 3)

20. 36 16 4 9 1 1 0 0 3 1-design Thm. 4.1 (ν, n, x) = (1, 4, 3)

21. 18 16 8 9 2 2 3 3 5 4 Optimal
Packing

Cor. 3.8 (s, t) = (1, 1)

22. 18 20 10 9 5 1 4 0 5 6 Packing Cor. 3.6 (ℓ,m) = (5, 2)

23. 18 20 10 9 1 5 0 4 5 5 Optimal
Packing

Cor. 4.8 (ν, n, x) = (5, 2, 1)

24. 45 50 10 9 1 2 0 1 2 2 Packing Cor. 4.8 (ν, n) = (2, 5)

25. 30 9 3 10 1 1 0 0 5 1-design Thm. 4.1 (ν, n, x) = (1, 3, 5)

26. 20 12 6 10 3 1 4 0 6 1-design Thm. 3.3 (m, ℓ, x) = (2, 3, 2)

27. 30 18 6 10 1 2 0 2 4 1-design Thm. 4.1 (ν, n, x) = (2, 3, 2)

—Continued on next page
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v b r k µ ν Λ1 Λ2 Λ3 λ Design Source
Independent
Parameters

28. 110 121 11 10 1 1 0 0 1 1 Packing Cor. 4.9 (ν, n) = (1, 11)

29. 22 24 12 11 6 1 5 0 6 6 Optimal
Packing

Cor. 3.4 s = 3

30. 33 36 12 11 1 4 0 3 4 4 Do Cor. 4.8 (ν, n) = (4, 3)

31. 44 48 12 11 1 3 0 2 3 3 Do Cor. 4.8 (ν, n) = (3, 4)

32. 36 9 3 12 1 1 0 0 6 1-design Thm. 4.1 (ν, n, x) = (1, 3, 6)

33. 24 8 4 12 2 1 4 0 8 1-design Thm. 3.3 (m, ℓ, x) = (2, 2, 4)

34. 48 16 4 12 1 1 0 0 4 Do Thm. 4.1 (ν, n, x) = (1, 4, 4)

35. 60 25 5 12 1 1 0 0 3 Do Thm. 4.1 (ν, n, x) = (1, 5, 3)

36. 156 169 13 12 1 1 0 0 1 1 Packing Cor. 4.9 (ν, n) = (1, 13)

37. 26 28 14 13 1 7 0 6 7 7 Optimal
Packing

Cor. 4.8 (ν, n) = (7, 2)

38. 26 28 14 13 7 1 6 0 7 8 Packing Cor. 3.6 (ℓ,m) = (7, 2)

39. 91 98 14 13 1 2 0 1 2 2 Packing Cor. 4.8 (ν, n) = (2, 7)

40. 42 9 3 14 1 1 0 0 7 1-design Thm. 4.1 (ν, n, x) = (1, 3, 7)

41. 28 16 8 14 4 1 6 0 8 1-design Thm. 3.3 (m, ℓ, x) = (2, 4, 2)

42. 56 32 8 14 1 2 0 2 4 1-design Thm. 4.1 (ν, n, x) = (2, 4, 2)

43. 42 45 15 14 1 5 0 4 5 5 Optimal
Packing

Cor. 4.8 (ν, n) = (5, 3)

44. 30 8 4 15 2 1 5 0 10 1-design Thm. 3.3 (m, ℓ, x) = (2, 2, 5)

45. 60 16 4 15 1 1 0 0 5 Do Thm. 4.1 (ν, n, x) = (1, 4, 5)

46. 30 12 6 15 3 1 6 0 9 Do Thm. 3.3 (m, ℓ, x) = (2, 3, 3)

47. 45 18 6 15 1 2 0 3 4 2 Do Thm. 4.1 (ν, n, x) = (2, 3, 3)

9 Open problems

In this paper, not all LSR RDs belonging to the family F1(m,n, x) or F2(m,
n, x) have been used. For example, one may obtain a family F1(m,n, x) of
LSR RDs when each of m, n is divisible by an integer u > 2; this may be
obtained by two generalized Hadamard matrices defined on the same group
of order u (akin to D1

2s,2t obtained in Corollary 3.7).

So, it is exciting to obtain other such designs/series of designs belonging
to these families, which would yield new doubly near affine doubly (µ, ν)-
resolvable packings. The designs we have obtained have no cell of the doubly
near affine doubly resolvable (DAR) rectangle empty. More such designs
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can be obtained by allowing empty cells in the DAR rectangle. Also, the
existence of a doubly (µ, ν)-resolvable optimal/near optimal packing design
when µ and ν are both odd is unknown. Finally, a DAR rectangle and an
extended Kirkman square can be further extended to a d-dimensional DAR
cuboid and extended Kirkman cube, respectively. In the construction of the
former, the starting designs may be higher dimensional Hadamard matrices
(see Yang et al. [44]), and in the construction of latter the starting designs
may be t-designs. The combinatorial experiments we started here lead to
the following pure combinatorial problem: Given the parameters v, b, k,
λ of an optimal/near optimal t-packing design D, where b is a composite
number, determine how to obtain D and express it as the block disjoint
union of maximum number of designs/packing designs satisfying certain
conditions and having fixed k.
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Sankhyā 6 (1942), 105–110.

[4] A. T. Butson, Generalized Hadamard matrices, Proc. Amer. Math.
Soc. 13 (1962), 894–898, https://doi.org/10.2307/2034082.

[5] , Relations among generalized Hadamard matrices, relative dif-
ference sets, and maximal length linear recurring sequences, Canadian
J. Math. 15 (1963), 42–48, https://doi.org/10.4153/CJM-1963-0
05-3.
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