
On factorisations of complete multigraphs

into line graphs of complete graphs
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Abstract. A connection between residuals of biplanes and factorisations
of complete multigraphs into isomorphic copies of line graphs of complete
graphs is presented. A biplane with blocks of size n + 1 can be used to
construct a factorisation of 4K(n2)

into n + 1 copies of the line graph of

Kn, thus establishing existence of such factorisations for n ∈ {8, 10, 12}.
Together with the Hall-Connor Theorem, the connection also gives a new
proof of the result that, for n > 3, there is no factorisation of 2K(n2)

into

copies of the line graph of Kn.

1 Introduction

A factorisation of a graph K is a collection of spanning subgraphs whose
edge sets partition the edge set of K. We write K ↪→ G to denote a
factorisation of K into isomorphic copies of a graph G. The notation λKm

is used to denote the graph of order m that has an edge of multiplicity
λ joining each pair of distinct vertices, and Km may be used when λ =
1.

The line graph of Kn is denoted by Ln. That is, Ln is the graph of order
(
n
2

)
with a vertex corresponding to each edge of Kn and where two vertices are
adjacent if and only if their corresponding edges are adjacent in Kn. Line
graphs of complete graphs are sometimes called triangular graphs.

This paper is concerned with factorisations λK(n2)
↪→ Ln. The problem

has been considered previously in [6], which deals with the more general
problem of factorisations λKm ↪→ G for an arbitrary graph G of order m.
The new result on factorisations λK(n2)

↪→ Ln obtained here is that, for

each n ∈ {8, 10, 12}, there exists a factorisation λK(n2)
↪→ Ln if and only
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if λ ≡ 0 (mod 4). We also describe a connection between factorisations
λK(n2)

↪→ Ln and residuals of biplanes. This connection is used both to

prove the above-mentioned new result and to give a new proof of the result
from [6] that there is no factorisation 2K(n2)

↪→ Ln for any n > 3.

Let P denote the Petersen graph. The complements of the factors in a
factorisation λK10 ↪→ P form a factorisation 2λK10 ↪→ L5. Thus, the con-
nection with biplanes gives us a new proof (see Section 2) of the well-known
result that K10 ̸↪→ P . In Sections 2 and 3, we give short constructions for
factorisations 2K10 ↪→ P and 3K15 ↪→ K(6, 2), where K(6, 2) is the Kneser
graph having pairs from {1, 2, 3, 4, 5, 6} as vertices and edges joining dis-
joint pairs—the complement of L6. The connection between factorisations
λK(n2)

↪→ Ln and residuals of biplanes is presented in Section 4, and in

Section 5 we summarise what is known about factorisations λK(n2)
↪→ Ln

for small n.

We need some definitions and results from design theory. A (v, k, λ)-design
consists of a set of v points together with a collection of blocks where
each block is a k-subset of the point set and each pair of distinct points is
contained in exactly λ blocks. A (v, k, λ)-design having v blocks is said to be
symmetric, and it is known that any two distinct blocks from a symmetric
(v, k, λ)-design intersect in exactly λ points.

Symmetric designs with λ = 2 are known as biplanes. The number of points
in a biplane with blocks of size k is

(
k
2

)
+ 1, and this is also the number of

blocks. Biplanes with block size k ∈ {4, 5, 6, 9, 11, 13} are known to exist,
biplanes with block size k ∈ {7, 8, 10, 12, 14, 15} are known not to exist,
existence of biplanes with block size k is ruled out by the Bruck-Ryser-
Chowla Theorem [2,5, 13,16] for infinitely many values of k, and existence
remains unknown for infinitely many values of k, see [11].

Given any symmetric (v, k, λ)-design, one can obtain a (v − k, k − λ, λ)-
design by choosing any block B, deleting the points of B, deleting the block
B itself, and deleting the points of B from each of the remaining blocks.
The new (v− k, k− λ, λ)-design is called the residual design, with respect
to the block B, of the initial symmetric (v, k, λ)-design.

The residual of a biplane with blocks of size k is a
((

k−1
2

)
, k− 2, 2

)
-design.

The Hall-Connor Theorem [8] states that any
((

k−1
2

)
, k − 2, 2

)
-design can

be extended to a biplane by adding k new points, adding a new block
containing all the new points, and adding two of the new points to each
block of the

((
k−1
2

)
, k − 2, 2

)
-design. The initial

((
k−1
2

)
, k − 2, 2

)
-design

On factorisations of complete multigraphs

107



is thus a residual design of the resulting biplane. The corresponding result
for λ = 1 is the classic extension of an affine plane to a projective plane
where parallel lines are extended to meet at “infinity” and a new “line at
infinity” is added.

2 The Petersen graph

Let P denote the Petersen graph. It is well known that K10 ̸↪→ P , but
λK10 ↪→ P for all λ ≥ 2 [1]. Several different proofs that K10 ̸↪→ P
have been published [3, 9, 14, 15]. Here, we describe a connection between
factorisations λK10 ↪→ P and (16, 6, 2)-biplanes and use it to show that
K10 ̸↪→ P and that 2K10 ↪→ P . We generalise this connection in Sec-
tion 4. Before proceeding, we present the following quick construction for
2K10 ↪→ P .

Consider a copy of K6 with vertex set {1, 2, 3, 4, 5, 6} and take the 10 trian-
gle factors of this K6 (10 subgraphs consisting of two vertex disjoint copies
of K3) as the vertices for our factorisation 2K10 ↪→ P . Our copies of P will
be P1, P2, . . . , P6. For each i ∈ {1, 2, 3, 4, 5, 6}, we join two triangle factors
F and F ′ by an edge in Pi if and only if the triangle of F containing vertex
i and the triangle of F ′ containing vertex i are edge disjoint. It is left as
an exercise to show that this is indeed a factorisation 2K10 ↪→ P .

We now proceed to the connection between factorisations λK10 ↪→ P and
(16, 6, 2)-biplanes. First we make the following four observations.

1. If Gc denotes the complement of a graph G, then {P1, P2, . . . , P3λ}
is a factorisation λK10 ↪→ P if and only if {P c

1 , P
c
2 , . . . , P

c
3λ} is a

factorisation 2λK10 ↪→ P c.

2. The complement P c of P is isomorphic to L5.

3. The graph L5 consists of five edge-disjoint copies of K4, any two of
which share exactly one vertex. (For each vertex v of K5 there is a
copy of K4 on the vertices of L5 that correspond to the four edges of
K5 incident with v, and the vertex of L5 corresponding to the edge
uv of K5 is the unique vertex shared by the copies of K4 arising from
u and v.)

4. Any factorisation λK10 ↪→ P c yields a (10, 4, λ)-design whose blocks
can be partitioned to form copies of P c.

Consider an arbitrary (10, 4, 2)-design and let B be its block set. The
Hall-Connor Theorem tells us that this design is the residual of a (16, 6, 2)-
biplane with respect to some block B of the biplane. Because any two
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blocks of a biplane share exactly two points, for each pair {a, b} of distinct
points of B, there is a unique block B{a,b} ∈ B where B{a,b} ∪ {a, b} is a
block of the biplane. It follows that∣∣B{a,b} ∩B{c,d}

∣∣ = 1 if and only if
∣∣{a, b} ∩ {c, d}

∣∣ = 1

and hence that there are precisely 6 ways to choose five blocks from B to
form a copy of P c. Namely, for each point x ∈ B we can choose the five
blocks in the set Sx =

{
B{a,b} : x ∈ {a, b}

}
.

Because Sx and Sy share the block B{x,y} it is not possible to form copies
of P c from a partition of the blocks of a (10, 4, 2)-design. Thus, there is no
factorisation 2K10 ↪→ P c, and so no factorisation K10 ↪→ P . On the other
hand, {Sx : x ∈ B} forms a factorisation 4K10 ↪→ P c, and from this we
obtain a factorisation 2K10 ↪→ P .

3 The Kneser graph K(6, 2)

In [6], a factorisation 4K15 ↪→ L6 is constructed using the 2-transitive ac-
tion of the alternating group A7 on 15 points. This same factorisation
is also given in [12]; also see [4]. Because K(6, 2) is the complement of
L6, the complements of the copies of L6 in a factorisation 4K15 ↪→ L6

yield a factorisation 3K15 ↪→ K(6, 2). Here, we describe how this factor-
isation 3K15 ↪→ K(6, 2) can be constructed from the Hoffman-Singleton
graph [10].

Let H denote the Hoffman-Singleton graph, choose an independent set S
of size 15 in H, and let S1, S2, . . . , S7 be the 7 independent sets of size 15
that are disjoint from S. For i ∈ {1, 2, . . . , 7}, let Gi be the graph with
vertex set S where vertices x and y from S are adjacent in Gi if and only
if the unique common neighbour that x and y have in H is in Si. Then
G1, G2, . . . , G7 is a factorisation 3K15 ↪→ K(6, 2).

To see that G1, G2, . . . , G7 is a factorisation 3K15 ↪→ K(6, 2), consider the
following well-known construction of the Hoffman-Singleton graph H. The
50 vertices ofH are taken to be the 35 triples from {1, 2, 3, 4, 5, 6, 7} together
with the 15 copies of the Fano plane

{124, 235, 346, 457, 156, 267, 137}

in its orbit under A7. The edges of H are given by joining each pair of
disjoint triples and joining each Fano plane to the seven triples it con-
tains.
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The 15 Fano planes form our independent set S, the vertex set of our
factorisation 3K15 ↪→ K(6, 2). The 7 independent sets of size 15 that are
disjoint from S are S1, S2, . . . , S7 where, for each i ∈ {1, 2, 3, 4, 5, 6, 7},
the set Si consists of the 15 triples from {1, 2, 3, 4, 5, 6, 7} that contain i.
BecauseH has girth 5 and diameter 2, each pair of Fano planes has a unique
common triple. Thus, a pair of Fano planes with common triple {x, y, z} is
joined by an edge in Gx, Gy, and Gz, and it follows that G1, G2, . . . , G7 is
a factorisation of 3K15.

It remains to show that G1
∼= G2

∼= · · · ∼= G7
∼= K(6, 2). For this, consider

G1 and the subgraph of H induced by the 15 Fano planes and the 15 triples
that contain 1. This induced subgraph is the Tutte-Coxeter graph [7,17,18].
A well-known construction for the Tutte-Coxeter graph is to take the 15
edges of K6 and the 15 1-factors of K6 as the vertices, and to join an edge
to a 1-factor precisely when the edge appears in the 1-factor. Because we
are considering G1, our K6 has vertex set {2, 3, 4, 5, 6, 7}. If we identify
each triple 1ab with the edge ab of our K6 and identify each Fano plane
having triples 1ab, 1cd, and 1ef with the 1-factor {ab, cd, ef} of our K6,
then it is clear that the subgraph of H induced by the 15 Fano planes and
the 15 triples that contain 1 is indeed the Tutte-Coxeter graph.

It follows that two Fano planes are adjacent in G1 precisely when they are
distance 2 in the above-described Tutte-Coxeter graph, and hence G1

∼=
K(6, 2). To see this, note that two vertices of the Tutte-Coxeter graph
that correspond to two edges of K6 are at distance 2 precisely when the
two edges are independent in K6, and that the Tutte-Coxeter graph has
automorphisms that interchange the parts of its bipartition. The same
argument shows that G2

∼= G3
∼= · · · ∼= G7

∼= K(6, 2). Thus, G1, G2, . . . , G7

is a factorisation 3K15 ↪→ K(6, 2).

The above-described factorisation 3K15 ↪→ K(6, 2) given by G1, G2, . . . , G7

has the property that, for 1 ≤ i < j ≤ 7, the graph Gi ∩ Gj consists
of 5 vertex-disjoint copies of K3. The factorisation 4K15 ↪→ L6 given by
Gc

1, G
c
2, . . . , G

c
7 has the property that, for 1 ≤ i < j ≤ 7, the graph Gc

i ∩Gc
j

is isomorphic to the line graph of the Petersen graph.

4 Line graphs and biplanes

The following two theorems generalise the connection, presented in Sec-
tion 2, between factorisations λK10 ↪→ L5 and (16, 6, 2)-biplanes.

Bryant

110



Theorem 4.1. If there exists a biplane with block size n + 1, then there
exists a factorisation 4K(n2)

↪→ Ln.

Proof. The residual of a biplane with blocks of size n+1 is an
((

n
2

)
, n−1, 2

)
-

design. Let B be the deleted block of the biplane. For each point x ∈ B,
there are n other blocks of the biplane that contain x, and these give rise
to a set Sx of n blocks in the residual design. Each block of the residual
design forms a copy of Kn−1, and the n copies of Kn−1 corresponding to
the blocks in Sx form a copy of Ln. The n + 1 copies of Ln formed from
the n+ 1 deleted points is a factorisation 4K(n2)

↪→ Ln.

The next theorem was proved in [6] by generalising the linear algebra-
based argument that Schwenk [14,15] used to prove there is no factorisation
K10 ↪→ P . The new proof we give here is based on design theory arguments
and uses the Hall-Connor Theorem [8].

Theorem 4.2 (S.M. Cioabă and P.J. Cameron, [6]). For n > 3 there is no
factorisation 2K(n2)

↪→ Ln.

Proof. First note that 2K(n2)
has valency (n + 1)(n − 2) and that Ln has

valency 2(n−2). So if a factorisation 2K(n2)
↪→ Ln exists, then n is odd and

the number of factors is (n+ 1)/2. Because Ln is the union of n pairwise
intersecting edge-disjoint copies ofKn−1, a factorisation 2K(n2)

↪→ Ln forms

an
((

n
2

)
, n−1, 2

)
-design whose block set B is partitioned into (n+ 1)/2 sets

such that any two distinct blocks from the same set of the partition share
exactly one point.

By the Hall-Connor Theorem, the
((

n
2

)
, n−1, 2

)
-design is the residual, with

respect to some deleted block B, of an
((

n+1
2

)
+ 1, n + 1, 2

)
-biplane. At

this point, it is worth mentioning that the Bruck-Ryser-Chowla Theorem
rules out the existence of an

((
n+1
2

)
+ 1, n + 1, 2

)
-biplane, and hence also

a factorisation 2K(n2)
↪→ Ln, for infinitely many values of n. However, we

proceed to show that there can be no factorisation 2K(n2)
↪→ Ln, even if an((

n+1
2

)
+ 1, n+ 1, 2

)
-biplane exists.

Because any two blocks of a biplane intersect in exactly two points, for each
pair {a, b} of distinct points in B there is a unique block B{a,b} ∈ B such
that B{a,b} ∪ {a, b} is a block of the biplane. It follows that∣∣B{a,b} ∩B{c,d}

∣∣ = 1 if and only if
∣∣{a, b} ∩ {c, d}

∣∣ = 1.
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For n > 3, any set of n distinct mutually intersecting pairs of points from
B consists of all the pairs that contain a common fixed point of B. Thus,
there are precisely n+1 sets of blocks in B that form a copy of Ln—namely
Sx =

{
B{a,b} : x ∈ {a, b}

}
for each x ∈ B. Because Sx and Sy share the

block B{x,y}, the required partition of B does not exist.

5 Factorisations λK(n
2)

↪→ Ln

In this final section we briefly summarise what is known on the existence
of factorisations λK(n2)

↪→ Ln for small n. It follows from consideration

of the valencies of λK(n2)
and Ln that the number of copies of Ln in a

factorisation λK(n2)
↪→ Ln is λ(n+ 1)/4. Thus, if there exists a factorisa-

tion λK(n2)
↪→ Ln, then

• n ≡ 3 (mod 4);

• n ≡ 1 (mod 4) and λ is even; or

• n is even and λ ≡ 0 (mod 4).

Theorem 4.2 tells us that, for n > 3, there is no factorisation 2K(n2)
↪→ Ln,

and it follows that there is also no factorisation K(n2)
↪→ Ln. However, as

pointed out in [6], it is clear that there is no factorisation K(n2)
↪→ Ln for

any n > 3 because the graph Ln has complete subgraphs of order n−1 but
its largest independent set has only ⌊n/2⌋ vertices. So Ln is not a subgraph
of its complement.

We now discuss small values of n, starting with the smallest non-trivial
value of n, namely n = 4. For n ≤ 7, these results can all be found
in [6].

The case n = 4: The graph L4 is the graph obtained fromK6 by removing
the edges of any 1-factor. Thus, by taking the complements of the 1-factors
in any 1-factorisation of K6, we obtain a factorisation 4K6 ↪→ L4. It follows
that there is a factorisation λK6 ↪→ L4 if and only if λ ≡ 0 (mod 4).

The case n = 5: When n = 5, λ is necessarily even, and the complement
of L5 is the Petersen graph P . Factorisations 2K10 ↪→ P and 3K10 ↪→ P
are given both in [1] and in [6] (also see Section 2). Taking the complements
of the copies of P , we obtain factorisations 4K10 ↪→ L5 and 6K10 ↪→ L5.
Because there is no factorisation K10 ↪→ P , and hence no factorisation
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2K10 ↪→ L5, it follows that there is a factorisation λK10 ↪→ L5 if and only
if λ is even and at least 4.

The case n = 6: A factorisation 4K15 ↪→ L6 is given in [6] (also see
Section 3). It follows that there is a factorisation λK15 ↪→ L6 if and only
if λ ≡ 0 (mod 4). It is worth mentioning that there is no (22, 7, 2)-biplane,
so the converse of Theorem 4.1 does not hold.

The case n = 7: This is the first non-trivial value of n where no value of λ
is ruled out solely by valency considerations. We know that, for λ ∈ {1, 2},
factorisations λK21 ↪→ L7 do not exist and neither do (21, 6, λ)-designs.
A factorisation λK21 ↪→ L7 with λ = 1440 is given in [6]. This of course
implies the existence of a factorisation λK21 ↪→ L7 whenever λ is a multiple
of 1440, but this appears to be all that is known in the case n = 7. A
factorisation λK21 ↪→ L7 implies the existence of a (21, 6, λ)-design, and it
is known that such designs exist for all λ ≥ 3. If a factorisation λK21 ↪→
L7 exists for λ ∈ {3, 4, 5}, then a factorisation λK21 ↪→ L7 exists for all
λ ≥ 3.

The case n ∈ {8, 10, 12}: Because biplanes with blocks of size k exist for
k ∈ {9, 11, 13} (see [11]), by Theorem 4.1 we have factorisations 4K(n2)

↪→Ln

for n ∈ {8, 10, 12}. This together with the necessary condition that λ ≡
0 (mod 4) when n is even tells us that for n ∈ {8, 10, 12} there exists a
factorisation

λK(n2)
↪→ Ln if and only if λ ≡ 0 (mod 4).

So the problem is completely settled for n ∈ {8, 10, 12}.
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