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A survey on 2-factors of regular graphs

DOMENICO LABBATE AND FEDERICO ROMANIELLO

Abstract. A 2-factor of a graph G is a 2-regular spanning subgraph of G.
We present a survey summarising results on the structure of 2-factors in
regular graphs, as achieved by various researchers in recent years.

1 Introduction

All graphs considered in this survey are finite and simple (without loops or
multiple edges). We shall use the term multigraph when multiple edges are
permitted. For definitions and notations not explicitly stated the reader
may refer to Bondy and Murty’s book Graph Theory [15].

Several authors have considered the number of Hamiltonian circuits in k-
regular graphs, and there are interesting and beautiful results and conjec-
tures in the literature. In particular, C. A. B. Smith (1940, cf. Tutte [54])
proved that each edge of a 3-regular multigraph lies in an even number of
Hamiltonian circuits. This result was extended to multigraphs in which
each vertex has an odd degree by Thomason [51].

A graph with exactly one Hamiltonian circuit is said to be uniquely Hamil-
tonian. Thomason’s result implies that there are no regular uniquely Hamil-
tonian multigraphs of odd degree. In 1975, Sheehan [48] posed the following
famous conjecture:

Conjecture 1.1 (Sheehan [48]). There are no uniquely Hamiltonian k-regu-
lar graphs for all integers k£ > 3.

It is well known that it is enough to prove it for K = 4. This conjecture
was verified by Thomassen for bipartite graphs [52] (under the weaker hy-
pothesis that G has minimum degree 3) and for k-regular graphs [53], when
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A SURVEY ON 2-FACTORS OF REGULAR GRAPHS

k > 300. Ghandehari and Hatami [25] have improved this value for k > 48
and, recently, by Haxell, Seamone, and Verstraete [30] for k& > 22.

In this context, several recent papers addressed the problem of character-
ising particularly regular graphs with certain conditions imposed on their
2-factors. This survey presents the main results obtained in the recent
years. We will also discuss the connections of these problems with the
particular class of odd 2-factored snarks.

2 Preliminaries

An r-factor of a graph G is an r-regular spanning subgraph of G. Thus,
a 2-factor of a graph G is a 2-regular spanning subgraph of G, while a
1-factor is also called a perfect matching since it is a matching that covers
all the vertices. A 1-factorization of G is a partition of the edge set of G
into edge-disjoint 1-factors.

Let G be a bipartite graph with bipartition (X,Y) such that |X| = |Y|
and let A be its adjacency matrix. In general 0 < |det(A)| < per(A). We
say that G is det-extremal if |det(A)| = per(A). Let X = {x1,22,...,2,}
and Y = {y1,y2,...,Yn} be the bipartition of G. For F a 1-factor of G we
define the sign of F, denoted sgn(F’), to be the sign of the permutation of
{1,2,...,n} corresponding to F. (Thus G is det-extremal if and only if all
1-factors of G have the same sign.) The following elementary result is a
special case of [39, Lemma 8.3.1].

Lemma 2.1. Let Fy, F5 be 1-factors in a bipartite graph G and let t be the
number of circuits in F1 UF5 of length congruent to zero modulo four. Then
sgn(F1) sgn(Fy) = (—1)".

Before proceeding, we recall a standard operation on graphs that will be
recurrent in this survey. Let G; and G2 be two graphs each containing a
vertex of degree 3, say y € V(G;1) and z € V(G2). Let z1,x2,z3 be the
neighbours of y in G and y1, y2,ys be the neighbours of x in G3. We say
that the graph G = (G1 —y)U(Ge —x)U{x1y1, T2y2, 23y3} is a star product
of G; and Gy and write G = (G1,y) * (G2,x). We remark that if G; and
G are bridgeless and cubic, then the graph obtained is also bridgeless and
cubic. In the opposite direction, for a bridgeless cubic graph G having a
3-edge cut X, it is possible to define a 3-edge-reduction on X as the graph
operation on G that creates two new bridgeless cubic graphs by adding
a new vertex to each of the components of G — X and joining it to the
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degree 2 vertices in the respective component. Both operations are shown
in Figure 2.1.

Figure 2.1: From left to right: The Star Product between the two graphs
G1 and G5. From right to left: The 3-edge-reduction on X in the graph G.

The Heawood graph Hy is the bipartite graph associated with the point/line
incidence matrix of the Fano plane PG(2,2). Let SP(Hy) be the class of
graphs obtained from the Heawood graph by repeated star products.

These graphs were used by McCuaig in [42] to characterise the 3-connected
cubic det-extremal bipartite graphs:

Theorem 2.2 (McCuaig [42]). A 3-connected cubic bipartite graph is det-
extremal if and only if it belongs to SP(Hy).

Note:

(i) Theorem 2.2 has been improved for connectivity 2 graphs by Funk,
Jackson, Labbate, and Sheehan in [21];

(ii) Bipartite graphs G with the more general property that some of the
entries in the adjacency matrix A of G can be changed from 1 to —1
in such a way that the resulting matrix A* satisfies per(A) = det(A*)
have been characterised in [38,41,43].

3 2-factor Hamiltonian graphs

A graph that has a 2-factor is said to be 2-factor Hamiltonian if all its
2-factors are Hamiltonian circuits. Examples of such graphs are K4, K,
K3 3, the Heawood graph Hj, and the cubic graph of girth five obtained
from a 9-circuit by adding three vertices, each joined to three vertices of
the 9-circuit. This last example is also known as the Triplex graph of
Robertson, Seymour, and Thomas.
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The following property was stated without proof in [22], and it is important
for approaching a characterisation of this family of graphs.

Proposition 3.1. Let G be a bipartite graph represented as a star product
G = (G1,y) * (Ga,x) such that every pair of edges in the 3-edge cut of G
belong to a 2-factor. Then G is 2-factor Hamiltonian if and only if G and
G4 are 2-factor Hamiltonian.

Here, we have stated a slightly different version of the above Proposition 3.1.
In fact, we have added here the weaker hypothesis that every pair of edges
in the 3-edge cut of G belongs to a 2-factor, which was tacitly assumed
in [22].

The bipartite hypothesis in Proposition 3.1 is needed, as the star products
of non-bipartite 2-factor Hamiltonian graphs are not necessarily 2-factor
Hamiltonian. It happens, for example, when considering K4 * Kjy.

In addition to this, it was pointed out by M. Gorsky and T. Johanni in a
private communication [28] that, without the hypothesis on the 3-edge cut
of G, it is possible to obtain 2-factor Hamiltonian graphs as a star product
of two graphs that are not 2-factor Hamiltonian, as shown in Figure 3.1. For
these reasons, a proof of the above Proposition 3.1 is given below.

Proof. We start by noticing that since we are assuming that G is bipartite,
then so are G; and G, by the properties of the star product. Let X be the
3-edge cut of the bipartite graph G.

(=) It follows immediately that the 2-factors in G; and G2 arise from
2-factors of G by contracting the edges of the 2-factor in X. Since
G is 2-factor Hamiltonian, then G; and G must, at the least, be
Hamiltonian graphs. Suppose now, by contradiction, that G; or Gs
is not 2-factor Hamiltonian, say G;. Hence, there exists a 2-factor
Fy of G; made of at least two disjoint circuits. Let C' be the circuit
in Fi containing the vertex y on which the star product is operating.
It follows that the two edges of C' incident to y correspond to two
edges of X. Based on our assumption, these two edges are part of a
2-factor of G, enabling us to combine C' with the Hamiltonian circuit
of G2 to form a 2-factor of G with at least two components, which is
a contradiction.

(<) Suppose now, that G; and G5 are 2-factor Hamiltonian and, by con-
tradiction, suppose that G is not 2-factor Hamiltonian. Note that
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by hypothesis G admits 2-factors containing edges of X. Let F' be
a 2-factor of G which is not a Hamiltonian circuit. It follows that
|F'N X | must be equal to two or to zero. In the former case, it follows
immediately that G; or G5 are not 2-factor Hamiltonian, which is a
contradiction. Suppose now that |F'N X| = 0. Since G is a bipartite
graph containing a 2-factor, it has an even number of vertices, and
G — X has exactly two components. It follows that both G; and Gs
are of odd order, but since they are Hamiltonian, they contain an odd
circuit, which is a contradiction. O

Gl G2 G = (Glu y) * (G27 I’)

Figure 3.1: The star product (G1,y) * (G2, z) between the two non-2-factor
Hamiltonian graphs GG; and G5 is 2-factor Hamiltonian. However, not every
pair of the dashed edges of the 3-edge cut X (dashed) belong to a 2-factor,
as shown in [28].

It is worth remarking the additional hypothesis on the 3-edge cut of G is not
needed when dealing with bipartite cubic graphs as it is always satisfied, and
by using Proposition 3.1, Funk, Jackson, Labbate, and Sheehan constructed
an infinite family of 2-factor Hamiltonian cubic bipartite graphs by taking
iterated star products of K3 3 and Hy [22]. They conjecture that these are
the only non-trivial 2-factor Hamiltonian regular bipartite graphs.

Conjecture 3.2 (Funk et al. [22]). Let G be a 2-factor Hamiltonian k-regular
bipartite graph. Then either kK = 2 and G is a circuit or kK = 3 and G can
be obtained from K33 and Hy by repeated star products.

We remark here that Conjecture 3.2 is still open, and a positive answer to
it will allow us to completely characterise the family of 2-factor Hamilto-
nian regular bipartite graphs. In the 1980s Sheehan posed the following
conjecture [47]:

Conjecture 3.3 (Sheehan [47]). There are no 2-factor Hamiltonian k-regular
bipartite graphs for all integers k& > 4.
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The following properties have been proved by Labbate [34,35] for an equiv-
alent family of cubic graphs (cf. subsection 3.1) and then by Funk, Jackson,
Labbate, and Sheehan [22] for 2-factor Hamiltonian graphs:

Lemma 3.4 (Labbate et al. [22,34,35]). Let G be a 2-factor Hamiltonian
cubic bipartite graph. Then G is 3-connected and |V (G)| =2 (mod 4).

A graph H is maximally 2-factor Hamiltonian if the multigraph G obtained
by adding an edge e with endvertices u,v to H has a disconnected 2-factor
containing e.

Lemma 3.5 (Funk et al. [22, Lemma 3.4 (a)(i)]). Graphs obtained by taking
star products of Hy are maximally 2-factor Hamiltonian.

Funk, Jackson, Labbate, and Sheehan in [22] proved Conjecture 3.3 apply-
ing Lemmas 2.1, 3.4, and 3.5 with Theorem 2.2:

Theorem 3.6 (Funk et al. [22]). Let G be a 2-factor Hamiltonian k-regular
bipartite graph. Then k < 3.

Theorem 3.6 has inspired further results by Faudree, Gould, and Jacob-
sen [19] who determined the maximum number of edges in both 2-factor
Hamiltonian graphs and 2-factor Hamiltonian bipartite graphs. In partic-
ular, they proved the following theorems:

Theorem 3.7 (Faudree et al. [19]). If G is a bipartite 2-factor Hamiltonian
graph of order n, then

E(0)] < n?/8 +n/2, if n =0 (mod 4),
n?/8+n/2+1/2, if n =2 (mod 4),

and the bound is sharp.

Theorem 3.8 (Faudree et al. [19]). If G is a 2-factor Hamiltonian graph of
order n, then

|E(G)| < [n?/4+n/4],

and the bound is sharp for all n > 6.

In addition, Diwan [18] has shown the following:
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Theorem 3.9 (Diwan [18]). K4 is the only 3-regular 2-factor Hamiltonian
planar graph.

Conjecture 3.2 has been partially solved in terms of minimally 1-factorable
cubic bipartite graphs, as we explain in the following subsection.

3.1 Minimally 1-factorable graphs

Let G be a k-regular bipartite graph. We say that G is minimally 1-factora-
ble if every 1-factor of G is contained in a unique 1-factorization of G.

The results cited above by Funk, Jackson, Labbate, and Sheehan were
inspired by results on minimally 1-factorable graphs obtained in [23,34-36].

Proposition 3.10 (Funk et al. [22]). Let G be a k-regular bipartite graph. If
G is minimally 1-factorable, then G is 2-factor Hamiltonian. If k € {2, 3},
then G is minimally 1-factorable if and only if G is 2-factor Hamiltonian.

Theorem 3.6 extends the result of [23] that minimally 1-factorable k-regular
bipartite graphs exist only when k£ < 3.

Furthermore, Labbate in [36] proved the following characterisation:

Theorem 3.11 (Labbate [36]). Let G be a minimally 1-factorable k-regular
bipartite graph of girth 4. Then either k = 2 and G is a circuit or k = 3
and G can be obtained from K3 3 by repeated star products.

Hence, it follows from results in [35] that a smallest counterexample to Con-
jecture 3.2 is cubic and cyclically 4-edge connected, and from Theorem 3.11
it follows that it has girth at least 6. Thus, to prove the conjecture, it would
suffice to show that the Heawood graph is the only 2-factor Hamiltonian
cyclically 4-edge-connected cubic bipartite graph of girth at least 6.

This seems a challenging task to achieve, at least with the techniques used
so far. In [7], partial results were obtained by using irreducible Levi graphs
(cf. Section 5.1 and Theorem 5.10).

3.2 Perfect Matching Hamiltonian graphs

A graph G admitting a 1-factor is said to have the Perfect-Matching-
Hamiltonian property (for short, the PMH-property) if every 1-factor M
of G can be extended to a Hamiltonian circuit of G, that is, there exists
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a l-factor N of G such that M U N induces a Hamiltonian circuit of G.
This problem was first introduced by Las Vergnas [37] and Haggkvist [29]
in the 1970s, and in recent years this concept was studied with particular
focus on cubic graphs. The reader may find more details in [5] and [9]. For
simplicity, a graph admitting the PMH-property is said to be PMH or a
PMH-graph. The class of 2-factor Hamiltonian graphs are of course PMH-
graphs. Recently, in [45], in an attempt to look at Conjecture 3.2 from a
different point of view, the following statement was proved:

Proposition 3.12 (Romaniello and Zerafa [45]). Let G be a cubic PMH-
graph (not necessarily bipartite). The graph G is not 2-factor Hamiltonian
if and only if it admits a 1-factor, which can be extended to a Hamiltonian
circuit in exactly one way.

Proposition 3.12 suggests another way how one can look at Conjecture 3.2.
Indeed, a smallest counterexample to this conjecture can be searched for in
the class of bipartite cubic PMH-graphs, and hence the Conjecture 3.2 can
be equivalently restated in terms of a strictly weaker property than 2-factor
Hamiltonicity: the PMH-property.

Conjecture 3.13 (Romaniello and Zerafa [45]). Every bipartite cyclically 4-
edge-connected cubic PMH-graph with girth at least 6, except the Heawood
graph, admits a 1-factor, which can be extended to a Hamiltonian circuit
in exactly one way.

4 2-factor isomorphic graphs

The family of 2-factor Hamiltonian k-regular graphs can be extended to
the family of connected k-regular graphs with the more general property
that all their 2-factors are isomorphic, i.e., the family of 2-factor isomorphic
k-regular bipartite graphs.

Examples of such graphs are given by all the 2-factor Hamiltonian graphs
and the Petersen graph (which is 2-factor isomorphic since all of its 2-factors
are of length (5,5) but it is not 2-factor Hamiltonian). Note that the star
product also preserves the property of being 2-factor isomorphic.

In [10] Aldred, Funk, Jackson, Labbate, and Sheehan proved the following
existence theorem:

Theorem 4.1 (Aldred et al. [10]). If G is a 2-factor isomorphic k-regular
bipartite graph, then k < 3.
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They also conjecture that the family of 2-factor isomorphic graphs and the
class of 2-factor Hamiltonian k-regular bipartite graphs are, in fact, the
same.

Conjecture 4.2 (Aldred et al. [10]). Let G be a connected k-regular bi-
partite graph. Then G is 2-factor isomorphic if and only if G is 2-factor
Hamiltonian.

Abreu, Diwan, Jackson, Labbate, and Sheehan proved in [3] that Conjec-
ture 4.2 is false by applying the following construction:

Proposition 4.3 (Abreu et al. [3]). Let G; be a 2-factor Hamiltonian cubic
bipartite graph with k vertices and e; = u;v; € E(G;) fori € {1,2,3}. Let
G be the graph obtained from the disjoint union of the graphs G; — e; by
adding two new vertices w and z and new edges wu; and zv; fori € {1,2,3}.
Then G is a non-Hamiltonian connected 2-factor isomorphic cubic bipartite
graph of edge-connectivity 2.

Consider a set {G1,Ga,...,G} of 3-edge-connected cubic bipartite graphs
and let SP(G1, Ga, . .., Gy) denote the set of cubic bipartite graphs that can
be obtained from Gi,Gs,...,Gy by repeated star products. In Section 3
we have seen that it was shown in [22] that all graphs in SP(K3 3, Ho)
are 2-factor Hamiltonian. Thus we may apply Proposition 4.3 by taking
G1 = G2 = G3 to be any graph in SP(K3 3, Hy) to obtain an infinite family
of 2-edge-connected non-Hamiltonian 2-factor isomorphic cubic bipartite
graphs. This family gives counterexamples to the Conjecture 4.2. Note,
however, that Conjecture 4.2 can be modified as follows:

Conjecture 4.4 (Abreu et al. [3]). Let G be a 3-edge-connected 2-factor
isomorphic cubic bipartite graph. Then G is a 2-factor Hamiltonian cubic
bipartite graph.

Recall that a digraph is a graph in which the edges have a direction (and
they are now ordered pairs of vertices). In [1,2] Abreu et al. also proved
existence theorems for the digraphs and non-bipartite graphs case, as shown
below.

For v a vertex of a digraph D, let d¥(v) and d~(v) denote the out-degree
and in-degree of v, respectively. We say that D is k-diregular if for all
vertices v of G, we have d*(v) =d~ (v) = k.
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Theorem 4.5 (Abreu at al. [1,2]). Let D be a digraph with n vertices and
let X be a directed 2-factor of D. Suppose that either

(a) d*(v) > |logyn| + 2 for allv € V(D) or
(b) d*(v) =d~(v) >4 for allv € V(D).
Then D has a directed 2-factor Y with Y % X.

Corollary 4.6 (Abreu at al. [1]). If G is a k-diregular directed graph, then
k< 3.

Theorem 4.7 (Abreu at al. [1,2]). Let G be a graph with n vertices and let
X be a 2-factor of G. Suppose that either

(a) d(v) > 2([logyn] +2) for all v € V(G) or
(b) G is a 2k-regular graph for some k > 4.
Then G has a 2-factor Y with Y 2 X.

They have also posed the following open problems and conjecture:

Question 4.8 (Abreu at al. [1]). Do there exist 2-factor isomorphic bipartite
graphs of arbitrarily large minimum degree?

Question 4.9 (Abreu at al. [2]). Do there exist 2-factor isomorphic regular
graphs of arbitrarily large degree?

Conjecture 4.10 (Abreu at al. [1]). The graph Kj is the only 2-factor Hamil-
tonian 4-regular non-bipartite graph.

5 Pseudo 2-factor isomorphic graphs

In [3] Abreu, Diwan, Jackson, Labbate, and Sheehan extended the afore-
mentioned results on regular 2-factor isomorphic bipartite graphs to the
more general family of pseudo 2-factor isomorphic graphs, i.e., graphs G
with the property that the parity of the number of circuits in a 2-factor is
the same for all 2-factors of G.

Examples of such graphs are given by all the 2-factor isomorphic regular
graphs and the Pappus graph (i.e., the point/line incidence graph of the
Pappus configuration). The family of pseudo 2-factor isomorphic graphs is
wider than the one of 2-factor isomorphic regular bipartite graphs:
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Proposition 5.1 (Abreu et al. [3]). The Pappus graph Py is pseudo 2-factor
isomorphic but not 2-factor isomorphic.

In [3] Abreu, Diwan, Jackson, Labbate, and Sheehan proved the following
existence theorem:

Theorem 5.2 (Abreu et al. [3]). If G is a pseudo 2-factor isomorphic k-
regular bipartite graph, then k € {2, 3}.

They have also shown that there are no planar pseudo 2-factor isomorphic
cubic bipartite graphs.

Theorem 5.3 (Abreu et al. [3]). If G is a pseudo 2-factor isomorphic cubic
bipartite graph, then G is non-planar.

Star products preserve also the property of being pseudo 2-factor isomor-
phic in the family of cubic bipartite graphs.

Lemma 5.4 (Abreu et al. [3]). Let G be a star product of two pseudo 2-
factor isomorphic cubic bipartite graphs G1 and Gs. Then G is also pseudo
2-factor isomorphic.

Thus K33, Hy and Py can be used to construct an infinite family of 3-edge-
connected pseudo 2-factor isomorphic cubic bipartite graphs.

Lemma 5.4 implies that all graphs in SP (K3 3, Hy, Py) are pseudo 2-factor
isomorphic. In [3] Abreu, Diwan, Jackson, Labbate, and Sheehan conjec-
tured that these are the only 3-edge-connected pseudo 2-factor isomorphic
cubic bipartite graphs.

Conjecture 5.5 (Abreu et al. [3]). Let G be a 3-edge-connected cubic bipar-
tite graph. Then G is pseudo 2-factor isomorphic if and only if G belongs
to S/P(Kg’?,, H07 Po)

Recall that McCuaig [42] has shown that a 3-edge-connected cubic bipartite
graph G is det-extremal if and only if G € SP(Hy).

Let G be a graph and let F; be an edge cut of G. We say that F; is a non-
trivial edge cut if all components of G — E; have at least two vertices. The
graph G is essentially 4-edge connected if G is 3-edge connected and has no
non-trivial 3-edge cuts. Let G be a cubic bipartite graph with bipartition
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(X,Y) and let K be a non-trivial 3-edge cut of G. Let Hi, Hy be the
components of G — K. We have seen that G can be expressed as a star
product G = (G1,yx) * (G2, k) where G —yx = Hy and Gy — xx = Ho.
We say that yx, respectively x g, is the marker vertex of G, respectively
G5, corresponding to the cut K. Each non-trivial 3-edge cut of G distinct
from K is a non-trivial 3-edge cut of G; or G5, and vice versa. If Gz; is not
essentially 4-edge connected for ¢ € {1,2}, then we may reduce G; along
another non-trivial 3-edge cut. We can continue this process until all the
graphs we obtain are essentially 4-edge connected. We call these resulting
graphs the constituents of G. It is easy to see that the constituents of G
are unique, i.e., they are independent of the order we choose to reduce the
non-trivial 3-edge cuts of G.

It is also easy to see that Conjecture 5.5 holds if and only if Conjectures
5.6 and 5.7 below are both valid.

Conjecture 5.6 (Abreu et al. [3]). If G is an essentially 4-edge-connected
pseudo 2-factor isomorphic cubic bipartite graph, then G € {K3 3, Ho, Po}.

Conjecture 5.7 (Abreu et al. [3]). If G is a 3-edge-connected pseudo 2-factor
isomorphic cubic bipartite graph such that G = G * G, then G and G4
are both pseudo 2-factor isomorphic.

In [3] Abreu, Diwan, Jackson, Labbate, and Sheehan obtained partial re-
sults on Conjectures 5.6 and 5.7 as follows:

Theorem 5.8 (Abreu et al. [3]). If G is an essentially 4-edge-connected
pseudo 2-factor isomorphic cubic bipartite graph such that G contains a
4-circuit, then G = K3 3.

They used Theorem 5.8 to deduce some evidence in favour of Conjec-
ture 5.5.

Theorem 5.9 (Abreu et al. [3]). If G is a 3-edge-connected pseudo 2-factor
isomorphic bipartite graph that contains a 4-circuit C, then C is contained
in a constituent of G that is isomorphic to K3 3.

Note that Theorem 5.9 generalises Theorem 3.11 obtained by Labbate in
[36] for minimally 1-factorable bipartite cubic graphs (or equivalently 2-
factor Hamiltonian cubic bipartite graphs) to the family of pseudo 2-factor
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isomorphic bipartite graphs. Furthermore, Theorem 5.9 leaves the charac-
terisation of pseudo 2-factor isomorphic bipartite graphs open for girth at
least 6.

Abreu, Labbate, and Sheehan [8] gave a partial solution to this open case in
terms of irreducible configurations of Levi graphs as described in the next
subsection.

5.1 Irreducible pseudo 2-factor isomorphic cubic bipartite
graphs

An incidence structure is linear if two different points are incident with
at most one line. A symmetric configuration ny (or ny configuration) is a
linear incidence structure consisting of n points and n lines such that each
point and line is respectively incident with k lines and points. Let C be a
symmetric configuration nyg. Its Levi graph G(C) is a k-regular bipartite
graph whose vertex set are the points and the lines of C and where there
is an edge between a point and a line in the graph if and only if they are
incident in C. We will indistinctly refer to Levi graphs of configurations as
their incidence graphs.

It follows from Theorem 5.9 that an essentially 4-edge-connected pseudo
2-factor isomorphic cubic bipartite graph of girth greater than or equal to
6 is the Levi graph of a symmetric configuration ns.

In 1886 V. Martinetti [40] characterised symmetric configurations ng, show-
ing that they can be obtained from an infinite set of so called irreducible
configurations of which he gave a list. Recently, Boben proved that Mar-
tinetti’s list of irreducible configurations was incomplete and completed it
[11]. Boben’s list of irreducible configurations was obtained by characteris-
ing their Levi graphs, which he called irreducible Levi graphs.

In [8] Abreu, Labbate, and Sheehan characterised irreducible pseudo 2-
factor isomorphic cubic bipartite graphs (and hence gave a further partial
answer to Conjecture 5.5) as follows:

Theorem 5.10 (Abreu et al. [8]). The Heawood and the Pappus graphs are
the only irreducible Levi graphs that are pseudo 2-factor isomorphic.

This approach is not feasible to prove Conjecture 5.5 and hence the main
Conjecture 3.2 by studying the 2-factors of reducible configurations from
the set of 2-factors of their underlying irreducible ones as the following
discussion shows.
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It is well known that the 75 configuration, whose Levi graph is the Heawood
graph, is not Martinetti extendible and that the Pappus configuration is
Martinetti extendible in a unique way; it is easy to show that this extension
is not pseudo-2-factor isomorphic. Let C be a symmetric configuration ng
and let C be a symmetric configuration (n 4 1)3 obtained from C through
a Martinetti extension. It can be easily checked that there are 2-factors in
C that cannot be reduced to a 2-factor in C. On the other hand, all of its
Martinetti reductions are no longer pseudo 2-factor isomorphic (for further
details cf. [8]). In the next section, we will see that Conjecture 5.5 has been
disproved, while Conjecture 3.2 still holds.

6 A counterexample to the pseudo 2-factor’s
conjecture

In this section we present the counterexample by Jan Goedgebeur to the
pseudo 2-factor isomorphic bipartite graphs obtained from Conjecture 5.5
using exhaustive search via parallel computers (for details refer to [27]).
Recently, in [4], it was shown how it could be constructed from the Hea-
wood graph and the generalised Petersen graph GP(8,3), which are the
Levi graphs of the Fano 73 configuration and the Mobius-Kantor 83 config-
uration, respectively.

Using the program minibaum [12], J. Goedgebeur generated all cubic bi-
partite graphs with girth at least 6 and up to 40 vertices and all cubic
bipartite graphs with girth at least 8 and up to 48 vertices. The counts
of these graphs can be found in [27, Table 1]. Some of these graphs can
be downloaded from the House of Graphs Database [16], available online
at https://houseofgraphs.org/. He then implemented a program that
tests if a given graph is pseudo 2-factor isomorphic and applied it to the
generated cubic bipartite graphs. This yielded the following results:

Remark 6.1 (Goedgebeur [27]). There is exactly one essentially 4-edge-con-
nected pseudo 2-factor isomorphic graph G different from the Heawood
graph and the Pappus graph among the cubic bipartite graphs with girth
at least 6 and with at most 40 vertices.

Remark 6.2 (Goedgebeur [27]). There is no essentially 4-edge-connected
pseudo 2-factor isomorphic graph among the cubic bipartite graphs with
girth at least 8 and with at most 48 vertices.
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(a) The graph G, as it appears in the  (b) The geometric construction of G,
House of Graphs Database [16]. as drawn in [4].

Figure 6.1: Two possible drawings of the graph G.

This implies that Conjecture 5.5 (and consequently also Conjecture 5.6) is
false. However, since all 2-factor Hamiltonian graphs are pseudo 2-factor
isomorphic and G is not 2-factor Hamiltonian, this implies the following
remark:

Remark 6.3 (Goedgebeur [27]). Conjecture 3.2 holds up to at least 40 ver-
tices and holds for cubic bipartite graphs with girth at least 8 up to at least
48 vertices.

The counterexample found has 30 vertices and there are no additional
counterexamples up to at least 40 vertices and also no counterexamples
among the cubic bipartite graphs with girth at least 8 up to at least 48 ver-
tices.

The counterexample G is stored in the House of Graphs Database [16] and
can be obtained by searching for the keywords

pseudo 2-factor isomorphic *counterexample

where it can be downloaded and several of its invariants can be inspected
(see Figure 6.1a).

In what follows we will briefly describe the geometric construction of the
counterexample G presented in [4]. Consider the classical representation
of the Mé&bius-Kantor configuration as two quadrilaterals simultaneously
inscribed and circumscribed (cf. [17, p. 430]). Disregarding the circum-
scription, i.e., removing the corresponding incidences it defines, we obtain
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a Mobius-Kantor residue in which the valency of 4 points and 4 lines de-
creases from three to two. Similarly, removing the incidences of a quadri-
lateral in the Fano configuration, we obtain a Fano residue with 4 points
and 4 lines of valency two. The configuration C, which has G as its Levi
graph, then arises by adding incidences among points and lines of valency
two between the Fano residue and the Mobius-Kantor residue in a precise
way (see Figure 6.1b), fully described in [4, Section 2].

In detail, G has girth 6 and cyclic edge-connectivity 6, it is not vertex-
transitive, it has 312 total 2-factors, and the circuit sizes of its 2-factors
are (6,6,18), (6,10,14), (10,10, 10), and (30). Moreover, its automorphism
group of order 144 is isomorphic to (Zs X Zs) x (D4 X Zz). The authors
of [4] pointed out that the construction of joining residues of Levi graphs
of ng configurations does not preserve, in general, strong properties such
as being pseudo 2-factor isomorphic. Intuitively, there is too much room
to produce 2-factors of both parities; whereas, the M&bius-Kantor residue
and the Fano residue are very compact. Moreover, using several copies of
the same residues does not preserve the behaviour of the parity of circuits
in a 2-factor.

7 Strongly pseudo 2-factor isomorphic graphs

Abreu, Labbate, and Sheehan in [7] have extended the aforementioned re-
sults on regular pseudo 2-factor isomorphic bipartite graphs to the not nec-
essarily bipartite case by introducing the family of strongly pseudo 2-factor
isomorphic graphs:

Definition 7.1. Let G be a graph that has a 2-factor. For each 2-factor F'
of G, let t}(F) be the number of circuits of F' of length 2¢ modulo 4. Set ¢;
to be the function defined on the set of 2-factors F' of G by

0, if tr(F) i
p)y = 40 HEE) s even, L0y,
1, if¢f(F) is odd

Then G is said to be strongly pseudo 2-factor isomorphic if both ty and ¢,
are constant functions. Moreover, if in addition tg = t1, set t(G) = t;(F),
i€{0,1}.

By definition, if G is strongly pseudo 2-factor isomorphic then G is pseudo
2-factor isomorphic. On the other hand there exist graphs such as the
dodecahedron that are pseudo 2-factor isomorphic but not strongly pseudo
2-factor isomorphic. The 2-factors of the dodecahedron consist either of a
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circuit of length 20 or of three circuits: one of length 10 and the other two
of length 5.

In the bipartite case, pseudo 2-factor isomorphic and strongly pseudo 2-
factor isomorphic are equivalent.

In what follows we will denote by HU, U, SPU, and PU the sets of 2-factor
Hamiltonian, 2-factor isomorphic, strongly pseudo 2-factor isomorphic, and
pseudo 2-factor isomorphic graphs, respectively. Similarly, HU(k), U(k),
SPU (k), and PU (k) respectively denote the k-regular graphs in HU, U,
SPU, and PU.

Theorem 7.2 (Abreu et al. [7]). Let D be a digraph with n vertices and let
X be a directed 2-factor of D. Suppose that either

(a) dT(v) > |logon| + 2 for allv € V(D) or
(b) dt(v) =d (v) >4 for all v € V(D).

Then D has a directed 2-factor Y with a different parity of number of
circuits from X.

Let DSPU and DPU be the sets of digraphs in SPU and PU, i.e., strongly
pseudo and pseudo 2-factor isomorphic digraphs, respectively. Similarly,
DSPU(k) and DPU (k) respectively denote the k-diregular digraphs in
DSPU and DPU.

Corollary 7.3 (Abreu et al. [7]).
(i) DSPU(k) = DPU(k) = & for k > 4;
(ii) If D € DPU, then D has a vertex of out-degree at most |logyn| + 1.

Theorem 7.4 (Abreu et al. [7]). Let G be a graph with n vertices and let X
be a 2-factor of G. Suppose that either

(a) d(v) > 2(|logyn] +2) for allv € V(G) or
(b) G is a 2k-regular graph for some k > 4.
Then G has a 2-factor Y with a different parity of number of circuits from X .

Corollary 7.5 (Abreu et al. [7]).
(i) If G € PU, then G contains a vertex of degree at most 2|logy n| + 3;
(i) PU(2k) = SPU(2k) = @ for k > 4.
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We know that there are examples of graphs in PU(3), SPU(3), PU(4), and
SPU(4). Hence, they are not empty, and we have seen (cf. Conjecture 4.10)
that it has been conjectured in [1] that HU(4) = {K5}.

There are many gaps in our knowledge even when we restrict attention to
regular graphs. Some questions arise naturally. A few of them are listed
below.

Problem 7.6. Is PU(2k + 1) = & for k > 27

In particular, we are wondering if PU(7) and PU(5) are empty.
Problem 7.7. Is PU(6) empty?

Problem 7.8. Is K5 the only 4-edge-connected graph in PU(4)?

In [7], relations between pseudo strongly 2-factor isomorphic graphs and
a class of graphs called odd 2-factored snarks are investigated. The next
section is devoted to this class of snarks.

8 0dd 2-factored snarks

A snark (cf. e.g. [31]) is a bridgeless cubic graph with chromatic index four.
(By Vizing’s theorem the chromatic index of every cubic graph is either
three or four, so a snark corresponds to the special case of four.) In order
to avoid trivial cases, snarks are usually assumed to have girth at least five
and not to contain a non-trivial 3-edge cut (i.e., they are cyclically 4-edge
connected).

Snarks were named by Martin Gardner in 1976 [24] after the mysterious and
elusive creature in Lewis Caroll’s famous poem The Hunting of The Snark,
but it was P. G. Tait in 1880 that initiated the study of snarks when he
proved that the four colour theorem is equivalent to the statement that no
snark is planar [50]. The Petersen graph Pjq is the smallest snark, and Tutte
conjectured that all snarks have Petersen graph minors. This conjecture
was proven by Robertson, Seymour, and Thomas (cf. [44]). Necessarily,
snarks are non-Hamiltonian.

The importance of the snarks does not only depend on the four colour

theorem. Indeed, there are several important open problems such as the
classical circuit double cover conjecture [46,49], Fulkerson’s conjecture [20],
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and Tutte’s 5-flow conjecture [55] for which it is sufficient to prove them for
snarks. Thus, minimal counterexamples to these and other problems must
reside, if they exist at all, among the family of snarks.

At present, there is no uniform theoretical method for studying snarks and
their behaviour. In particular, little is known about the structure of 2-
factors in a given snark.

Snarks also play an important role in characterising regular graphs with
some conditions imposed on their 2-factors. Recall that a 2-factor is a
2-regular spanning subgraph of a graph G.

We say that a graph G is odd 2-factored (cf. [7]) if for each 2-factor F' of
G each circuit of F'is odd.

By definition, an odd 2-factored graph G is pseudo 2-factor isomorphic.
Note that, odd 2-factoredness is not the same as the oddness of a (cubic)
graph (cf. e.g. [56]).

Lemma 8.1 (Abreu et al. [7]). If G is a cubic 3-connected odd 2-factored
graph, then G is a snark.

In [7] Abreu, Labbate, and Sheehan studied which snarks are odd 2-factored
and posed the following conjecture:

Conjecture 8.2 (Abreu et al. [7]). A snark is odd 2-factored if and only if
G is the Petersen graph, Blanusa 2, or a Flower snark J(¢) with ¢t > 5 and
odd.

Below, we report a general construction from [6] of odd 2-factored snarks
performing the Isaacs’ dot-product [32] on edges with particular properties,
called bold-edges and gadget-pairs respectively, of two snarks L and R.

Construction 8.3 (Bold-Gadget Dot Product, Abreu et al. [6]).

1. Take two snarks L and R with bold-edges (cf. Definition 8.4) and
gadget-pairs (cf. Definition 8.6), respectively.

Choose a bold-edge zy in L.

Choose a gadget-pair f,g in R.

Perform a dot product L - R using these edges.

Obtain a new odd 2-factored snark (cf. Theorem 8.8).

G L
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Note that in what follows the existence of a 2-factor in a snark is guaranteed
since they are bridgeless by definition.

Definition 8.4 (Abreu et al. [6]). Let L be a snark. A bold-edge is an edge
e = ay € L such that the following conditions hold:

(i) All 2-factors of L — z and of L — y are odd.
(ii) All 2-factors of L containing zy are odd.
(iii) All 2-factors of L avoiding zy are odd.

Note that not all snarks contain bold-edges (cf. [6, Proposition 4.2] and
[6, Lemma 5.1]). Furthermore, conditions (ii) and (iii) are trivially satisfied
if L is odd 2-factored.

Lemma 8.5 (Abreu et al. [6]). The edges of the Petersen graph Pig are all
bold-edges.

Definition 8.6 (Abreu et al. [6]). Let R be a snark. A pair of independent
edges f = ab and g = cd is called a gadget-pair if the following conditions
hold:

(i) There are no 2-factors of R avoiding both f, g.
(ii) All 2-factors of R containing exactly one element of {f, g} are odd.

(iii) All 2-factors of R containing both f and g are odd. Moreover, f and
g belong to different circuits in each such factor.

(iv) All 2-factors of (R — {f,g}) U {ac, ad, bc,bd} containing exactly one
element of {ac, ad, bc, bd} are such that the circuit containing the new
edge is even and all other circuits are odd.

Note that finding gadget-pairs in a snark is not an easy task, and in general
not all snarks contain gadget-pairs (cf. [6, Lemma 5.2]).

Let H := {x1y1, T2y2,x3y3} be the two horizontal edges and the vertical

edge respectively (in the pentagon-pentagram representation) of P (cf.
Figure 8.1).

Lemma 8.7 (Abreu et al. [6]). Any pair of distinct edges f,g in the set H
of Pyq is a gadget-pair.

The following theorem is used to construct new odd 2-factored snarks.

39



LABBATE AND ROMANIELLO

Figure 8.1: Any pair of the dashed edges is a gadget-pair in Pj.

Theorem 8.8 (Abreu et al. [6]). Let zy be a bold-edge in a snark L and let
{ab,cd} be a gadget-pair in a snark R. Then L - R is an odd 2-factored
snark.

In particular, without going into lengthy details (the interested reader may
find those in [6]), this method allowed for the construction of two instances
of odd 2-factored snarks of order 26 and 34 isomorphic to those obtained
by Brinkmann et al. in [13] through an exhaustive computer search on
all snarks of order at most 36 that allowed them to disprove the above
conjecture (cf. Conjecture 8.2).

To approach the problem of characterising all odd 2-factored snarks, the
possibility of constructing further odd 2-factored snarks with the technique
presented above was considered, which relies on finding other snarks with
bold-edges and/or gadget-pairs. The results obtained so far give rise to the
following partial characterisation:

Theorem 8.9 (Abreu et al. [6]). Let G be an odd 2-factored snark of cyclic
edge-connectivity 4 that can be constructed from the Petersen graph and
the Flower snarks using the bold-gadget dot product construction. Then
G e {Plg,PQG,P34}.

Finally, a new conjecture about odd 2-factored snarks was posed in [6].

Conjecture 8.10 (Abreu et al. [6]). If G is a cyclically 5-edge-connected odd
2-factored snark, then G is either the Petersen graph or the Flower snark
J(t) for odd t > 5.
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Remark 8.11.

(i) A minimal counterexample to Conjecture 8.10 must be a cyclically

5-edge-connected snark of order at least 36. Moreover, as highlighted
in [13], order 34 is a turning point for several properties of snarks.

(ii) Tt is very likely that, if such counterexample exists, it will arise from

the superposition operation by M. Kochol [33] applied to one of the
known odd 2-factored snarks.

(iii) J. Goedgebeur [26] checked that none of the snarks (in particular those

with girth 6 and of order 38) that G. Brinkmann and he generated in
[14] is an odd 2-factored snark.
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