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Abstract. A cozonal labeling of a plane graph G is a labeling ℓ∗: F (G) →
{1, 2} ⊂ Z3 such that for Xv (the set of regions with v on their boundary),∑

R∈Xv
ℓ∗(R) = 0. This particular labeling is a dual of zonal labelings,

which have an important connection to the Four-Color Theorem. In this
paper, we determine relationships between zonal and cozonal labelings, es-
tablish some results on cozonal labelings, and characterize cozonal graphs
of maximum degree at most 3.

1 Introduction

A graph that can be embedded in the plane (or on the surface of a sphere)
such that no two edges cross is a planar graph. A specific embedding of
a planar graph is a plane graph. Let G be a plane graph with vertex set
V (G), edge set E(G), and region set F (G). We allow G to have parallel
edges and loops. In 2014, Cooroo Egan introduced a new vertex labeling for
plane graphs called a zonal labeling (see [4]). A zonal labeling of a plane
graph G is a labeling ℓ : V (G) → {1, 2} ⊂ Z3 such that for every region
R ∈ F (G) with boundary BR,

∑
v∈V (BR) ℓ(v) = 0 in Z3. We call the value∑

v∈V (BR) ℓ(v) the induced label of R, and denote this ℓ(R). We can then

equivalently state that a labeling ℓ : V (G) → {1, 2} is zonal if and only if
the induced labeling ℓ : F (G) → Z3 assigns the label 0 to each region. If G
has a zonal labeling, we say that G is zonal. A planar graph is said to be
zonal if at least one planar embedding is zonal. The interested reader can
find additional information on zonal labelings in [1–5].

One motivating reason to study zonal labelings is their connection to the
famous Four-Color Theorem. The Four-Color Theorem states that the
regions of any plane graph can be colored with four or fewer colors such that
no two regions sharing a boundary line have the same color. This is known
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as a proper region four-coloring . In studying the Four-Color Theorem,
we can restrict our attention to a much smaller family of plane graphs. A
connected graph is k-connected if removing any set of at most k−1 vertices
does not disconnect the graph. For the purposes of connectivity, deleting
a vertex incident with a loop (given that there is at least one other vertex
or edge) or both vertices incident with a pair of parallel edges is said to
disconnect the graph. A graph is k-regular if each vertex has degree k.
We can now define a cubic map as a 2-connected cubic (that is, 3-regular)
plane graph. It is known that to prove that each plane graph admits a
proper region four-coloring, it suffices to prove that each cubic map admits
a proper region four-coloring. Turning now to zonality, the following key
fact is proven in [4, 5].

Theorem 1.1. A cubic map M has a zonal labeling if and only if the regions
of M admit a proper region four-coloring.

Therefore by the Four-Color Theorem, we can extend this result further.

Theorem 1.2. If M is a cubic map, then M has a zonal labeling.

Moreover, if it could be proven that every cubic map M has a zonal labeling
independently of the Four-Color Theorem, this would constitute a new
proof of the Four-Color Theorem. As this may be quite difficult, it is also
of interest to obtain a more robust understanding of zonal labelings through
studying zonality in other graphs.

Here, we will study a related labeling known as a cozonal labeling . Cozonal
labelings have recently been introduced in [2] where an alternate proof of
Theorem 1.1 was presented. We will prove an important connection be-
tween zonal and cozonal labelings, establish some results on cozonal label-
ings, and characterize cozonal graphs of maximum degree at most 3.

2 Preliminaries

All terminology that is not explicitly defined here is standard and can be
found in texts such as [6]. A cozonal labeling of a plane graph G is a
labeling ℓ∗: F (G) → {1, 2} ⊂ Z3 such that for Xv the set of regions with v
on their boundary,

∑
R∈Xv

ℓ∗(R) = 0. We call the value
∑

R∈Xv
ℓ∗(R) the

induced label of v, and denote this ℓ∗(v). We can equivalently state that
a labeling ℓ∗: F (G) → {1, 2} is cozonal if and only if the induced labeling
ℓ∗: V (G) → Z3 assigns the label 0 to each vertex. A plane graph is said
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to be cozonal if it admits a cozonal labeling. Similarly, a planar graph is
said to be cozonal if at least one planar embedding is cozonal. Examples of
cozonal labelings of plane graphs will appear throughout this paper.

We have defined a cozonal labeling in such a way that, given a zonal labeling
ℓ of G, there is a natural cozonal labeling ℓ∗ of the dual graph G∗ and vice
versa. The following definition of duality is adapted from [6].

Definition 2.1. Given a plane graph (or multigraph) G, the dual G∗ of G
is a graph such that there are bijections V (G) → F (G∗), E(G) → E(G∗),
and F (G) → V (G∗) satisfying the following conditions:

• The region R ∈ F (G) contains the corresponding vertex v∗R ∈ V (G∗)
in its interior.

• Each edge e ∈ E(G) intersects the corresponding edge e∗ ∈ E(G∗)
exactly once, and this is the only place where e intersects a vertex or
edge of G∗.

• Each edge e∗ ∈ E(G∗) intersects the corresponding edge e ∈ E(G)
exactly once, and this is the only place where e∗ intersects a vertex
or edge of G.

• The vertex v ∈ V (G) is contained within the corresponding region
R∗

v ∈ F (G∗).

An example of a graph and its dual is given in Figure 2.1. There are several
consequences of this definition, one of which being that a plane multigraph
G has a dual if an only if it is connected. In this case, (G∗)∗ = G. In
addition, the following proposition will be useful.

Proposition 2.2. A vertex v1 ∈ V (G) is on the boundary of a region R2 ∈
F (G) if and only if the corresponding region R∗

1 ∈ F (G∗) has the corre-
sponding vertex v∗2 ∈ V (G∗) on its boundary.

Proof. First, let v1 ∈ V (G) be on the boundary of a region R2 ∈ F (G).
Note thatG does not have any edges interior toR2. Now, considerG∗. Each
edge e∗ passing through R2 must have the corresponding vertex v∗2 ∈ V (G∗)
as one of its endpoints (or both, in the case of a loop). Therefore, the region
of R2 is divided into several subregions by segments of edges in G∗, but
each edge segment contains v∗2 , and thus v∗2 is on the boundary of each such
subregion. Notably, one of these regions also contains v1 on its boundary,
and thus there is a path from v1 to v∗2 that does not internally cross either
G or G∗. Therefore, since v1 is interior to the region R∗

1 ∈ F (G), this
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path must be interior to R∗
1 as well, and v∗2 is on the boundary of R∗

1. The
converse claim follows the same argument.

With Proposition 2.2, we can justify the aforementioned connection be-
tween zonal and cozonal labelings.

Theorem 2.3. Let G be a connected plane graph (or multigraph). Then G
is zonal if and only if G∗ is cozonal.

Proof. Let v∗R ∈ V (G∗) denote the corresponding vertex to R ∈ F (G), and
let R∗

v ∈ F (G∗) denote the corresponding region to v ∈ V (G). Now let G
have a zonal labeling ℓ and let XR be the set of vertices on the boundary of
R ∈ F (G). Then

∑
v∈XR

ℓ(v) = 0 for all R ∈ F (G). Now, form the labeling
ℓ∗: V (G∗) → {1, 2} given by ℓ∗(R∗

v) = ℓ(v). Then we define the set Xv∗
R

to be the set of regions having v∗R on their boundary. By Proposition 2.2,
the regions having v∗R on their boundary in G∗ correspond directly with
the vertices on the boundary of R in G, and Xv∗

R
correspond exactly to the

vertices in XR. Thus,

ℓ∗(v∗R) =
∑

R∗∈Xv∗
R

ℓ∗(R∗) =
∑

v∈XR

ℓ(v) = 0,

and ℓ∗ is a cozonal labeling. The reverse direction is analagous.

Figure 2.1: A zonal labeling of a plane graph G and the cozonal labeling of
its dual.

Cozonal labelings are the dual of zonal labelings. In a sense, the differences
between the two are entirely cosmetic, and any claim in zonality has a dual
claim in cozonality (and vice versa). However, there are several reasons
why we may be interested in studying cozonal labelings. First, while there
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is a bijection between E(G) and E(G∗), the arrangements of edges are very
different in each. In addition, vertices are discrete points, while regions
are open sets, allowing for unique explorations in these different settings.
Furthermore, a graph that is relatively simple may have a more compli-
cated dual (and vice versa). Lastly, there is the simple reason that labeling
regions can sometimes make for a more clear presentation than labeling
vertices.

3 Zonality and cozonality of trees and cycles

To illustrate the similarities and differences between these two labelings,
we will explore zonal and cozonal labeling of trees and cycles. In [4], it
was proven that any nontrivial tree is zonal. The situation for cozonality is
quite different; to begin we make a more general observation. We use δ(G)
and ∆(G) to refer to the minimum and maximum degree of a vertex in G,
respectively.

Proposition 3.1. Let G be a connected plane graph with δ(G) = 1. Then,
G is not cozonal.

Proof. A vertex v of degree 1 can only be on the boundary of one region.
The label of a single region cannot be 0, so the sum of labels of regions
having v on their boundary is nonzero.

This has two direct consequences.

Corollary 3.2. If G is cozonal, then δ(G) ≥ 2.

Corollary 3.3. No tree T is cozonal.

As with trees, it can be shown (see [4]) that all cycles are zonal. However,
unlike with trees, the same is true with cycles and cozonality.

Proposition 3.4. Every cycle C is cozonal.

Proof. Let R1 be the interior of the cycle C and R2 be the exterior. Form
the labeling ℓ∗(Ri) = i. Since each vertex is on the boundary of R1 and
R2, the induced label of each vertex is 0, and ℓ∗ is a cozonal labeling.
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4 Cut vertices and bridges in cozonal graphs

A cut vertex is a vertex whose removal disconnects a component of a graph.
When studying cozonality, 2-connected graphs tend to have nicer properties
than connected graphs with cut vertices. The following property indicates
a possible reason why. Let deg∗(v) denote the number of regions having v
on their boundary.

Proposition 4.1. Let G be a nonempty connected plane graph. Then for
v ∈ V (G),

1. deg∗(v) ≤ deg(v)

2. v is a cut vertex if and only if deg∗(v) < deg(v).

Proof. First, let e0, e1, . . . , ek−1 be the k edges incident with v in clockwise
order with subscripts in Zk. Then, for each pair of consecutive clockwise
edges ei, ei+1, the angle in the clockwise direction formed by those edges
belongs to some region Ri having v on its boundary. Moreover, these are
all the regions having v on their boundary. Since there are k such pairs of
consecutive edges, there are at most k regions with v, and deg∗(v) ≤ deg(v).
This proves the first claim.

For the second claim, first assume that v is not incident with a loop. IfG is a
plane graph, then |V (G)|−|E(G)|+|F (G)| = 2 if and only if G is connected.
Now, let v ∈ V (G). In G− v, there is one fewer vertex, deg(v) fewer edges
(which does not hold if v is incident with a loop), and deg∗(v) − 1 fewer
regions (as all regions incident with v are combined into a single region, and
all other regions are unaffected). Let |V (G)| = n, |E(G)| = m, |F (G)| = r.
Given that G is connected,

v is not a cut vertex

⇔ G− v has one component

⇔ (n− 1)− (m− deg(v)) + (r − deg∗(v) + 1) = 2 = n−m+ r

⇔ deg(v)− deg∗(v) = 0

⇔ deg(v) = deg∗(v).

Therefore, v is not a cut vertex if and only if deg∗(v) = deg(v), which is
equivalent to the statement that v is a cut vertex if and only if deg∗(v) <
deg(v).

Now consider the case where v is incident with a loop e. If v is the only
vertex and e is the only edge, then deg(v) = deg∗(v) = 2, and v is not
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a cut vertex. Otherwise, v is a cut vertex. Therefore, we must show that
deg∗(v) < deg(v). Let e0, e1, . . . , ek−1 be the edges incident with v in clock-
wise order counted with multiplicity and having subscripts in Zk, letting
ei = ej = e for some i ̸= j. Let Rx be the region between edges ex and
ex+1 in the clockwise direction. Then e is on the boundaries of Ri−1, Ri,
Rj−1, and Rj . Since k ≥ 3, it follows that |{i − 1, i, j − 1, j}| ≥ 3, but e
is only on the boundary of two regions. Therefore, at least one region has
been counted more than once, and deg∗(v) < deg(v).

Therefore, we see that cut vertices can have high degree yet be on the
boundary of very few regions. Clearly, if a graph G has a vertex on the
boundary of only one region, then G cannot be cozonal, as the sum of
one nonzero label cannot be zero. With this observation and our previous
result, we have the following propositions.

Proposition 4.2. Let G be a connected plane graph. If G has a vertex v
with deg∗(v) = 1, then G is not cozonal.

Corollary 4.3. Let G be a connected plane graph. If G has a cut vertex of
degree 2, then G is not cozonal.

A bridge is an edge whose removal disconnects a component of a graph. If
a connected graph (other than K2) has a bridge, then at least one vertex
incident with that bridge is a cut vertex. However, we shall see that bridges
can mostly be ignored without loss of generality. To help us, we will first
define the complementary labeling to a cozonal labeling ℓ∗: F (G) → {1, 2}
as the labeling ℓ̄∗ given by ℓ̄∗(R) = 2ℓ∗(R) = 3− ℓ∗(R). The following is a
dualized version of an observation in [4]:

Proposition 4.4. Let ℓ∗: F (G) → {1, 2} be a cozonal labeling. Then, ℓ̄∗ is
also a cozonal labeling.

We will now prove a useful fact about bridges.

Theorem 4.5. Let G be a connected plane graph with a bridge e. Then G
is cozonal if and only if each component of G− e is cozonal.

Proof. First, supposeG is cozonal with cozonal labeling ℓ∗ and, without loss
of generality, let e be on the boundary of the exterior region RE . Let the
components of G−e be given by G1, G2 and let the exterior region of G−e
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be given by R′
E . Note that deleting the bridge e does not affect the regions

incident with any vertex, except that every vertex initially on the boundary
of RE is now on the boundary of R′

E . Form the labeling ℓ∗i : F (Gi) → {1, 2}
given by ℓ∗i (R) = ℓ(R) if R is interior to Gi and ℓ∗i (R) = ℓ∗(RE) if R is the
exterior region of Gi. Then ℓ∗i (v) = ℓ∗(v) = 0 for all v ∈ V (Gi), i ∈ {1, 2},
and each component of G− e is cozonal.

Next, let each component G1, G2 of G − e have cozonal labelings ℓ∗1, ℓ
∗
2.

Again, we assume the deleted edge e is on the boundary of the exterior
region of G. Assume, without loss of generality, that the exterior regions
RE1

, RE2
are labeled the same for ℓ∗1, ℓ

∗
2, as we may take the complement

of one of the labelings if this is not the case. Form the labeling ℓ∗: F (G) →
{1, 2} given by ℓ∗(R) = ℓ∗i (R) if R is interior to Gi and ℓ∗(R) = ℓ∗1(RE1) =
ℓ∗2(RE2) if R is the exterior region of G. Note that for each vertex v ∈ Gi,
ℓ∗(v) = ℓ∗i (v) = 0. Therefore, G is also cozonal.

Corollary 4.6. Let G be a plane graph with set B of bridges. Then G is
cozonal if and only if each component of G−B is cozonal.

Proof. First, let G be connected. We show inductively that G is cozonal
if and only if after deleting any k bridges of G each component in the
resulting graph is cozonal. The case k = 1 is handled by Theorem 4.5.
Suppose that this is true for all 0 ≤ k′ ≤ k− 1. Now we successively delete
bridges e1, . . . , ek, forming graphs G1, . . . , Gk where Gi = Gi−1−ei. If G is
cozonal, then each component of Gk−1 is cozonal, including the component
Hk containing ek. By Theorem 4.5, each component of Hk − ek is cozonal;
these components, together with the components of Gk−1 excluding Hk,
form all component of Gk, and all components are cozonal. If G is not
cozonal, then some component of Gk−1 is not cozonal. If some component
other than the component Hk containing ek is not cozonal, then this is a
component of Gk that is not cozonal. Otherwise Hk is not cozonal, and by
Theorem 4.5 a component of Hk − ek is not cozonal. This is a component
of Gk that is not cozonal, completing the proof.

If G is disconnected, append bridges B′ to form a connected graph G′.
Since the addition or removal of bridges does not affect the regions incident
with a vertex, G is cozonal if and only if G′ is cozonal. We therefore see
by the connected case that G′ is cozonal if and only if each component of
G′ − (B′ ∪ B) = G − B is cozonal. Thus, G is cozonal if and only if G′ is
cozonal, which is true if and only if each component of G−B is cozonal.
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Figure 4.1: Several plane graphs with connectivity 1 and their cozonal
labelings.

Corollary 4.7. Let G be a disconnected plane graph. Then G is cozonal if
and only if each component of G is cozonal.

We end this section with several examples of cozonal graphs with connec-
tivity 1 in Figure 4.1, the first of which contains a bridge.

5 Cozonality in special classes of graphs

We would like to use some results from zonality to state new claims in the
context of cozonality. The graphs we will consider in this section are all
2-connected. It is known [6] that G is 2-connected if and only if G∗ is
2-connected. We will use this fact and other properties of dual graphs to
show that several classes of plane graphs are cozonal.

First, we know from Theorem 1.2 that all cubic maps are zonal. The dual
G∗ of a cubic map G is a 2-connected map where each region is bounded
by a triangle, also known as a plane triangulation. Similarly, if G is a
plane triangulation, then its dual G∗ must be a cubic map. Therefore, we
translate Theorem 1.2 to its dual equivalent, which was proven directly in
[2] using special features of cozonality.

Theorem 5.1. If G is a plane triangulation, then G is cozonal.

An example of a cozonal labeling of a triangulation is given in the first
diagram of Figure 5.1. Next, consider the wheel Wn = Cn ∨K1 on n + 1
vertices. The wheel is not just 2-connected, but also 3-connected. In [3], it
was proven that for an integer n ≥ 3, the wheel Wn is zonal if and only if
n ≡ 0 (mod 3). One interesting property of the wheel is that it is self-dual;
that is, Wn ≃ (Wn)

∗. Therefore, we can conclude the following.
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Figure 5.1: Cozonal labelings of a plane triangulation T and the wheel W12.

Theorem 5.2. For an integer n ≥ 3, the wheel Wn is cozonal if and only if
n ≡ 0 (mod 3).

An example of a cozonal labeling of the wheel W12 is given in the second
diagram of Figure 5.1. Examples of zonal labelings are found in [3]. There,
in particular, it is shown that if G is a 2-connected bipartite plane graph,
then G is zonal. In a bipartite plane graph G, each region is bounded by an
even cycle; therefore in the dual G∗, each vertex has even degree. Therefore,
G∗ is a 2-connected Eulerian graph. Similarly, ifG is a 2-connected Eulerian
graph, then G∗ is a 2-connected graph where each region is bounded by an
even cycle. It follows that all cycles of G∗ are even, and G∗ is a 2-connected
bipartite graph. Therefore, G is a 2-connected bipartite plane graph if and
only if G∗ is a 2-connected Eulerian graph. We can thus conclude the
following.

Theorem 5.3. If G is a 2-connected Eulerian plane graph, then G is cozonal.

Two examples of cozonal labelings of 2-connected Eulerian plane graphs
are given in Figure 5.2. One will notice that the cozonal labelings in this
case also happen to be proper 2-colorings of the regions. This is an example
of where using the zonal perspective allows us to prove a less than obvious
claim in cozonality. The proof that 2-connected bipartite plane graphs are
zonal uses the special fact that all boundaries in a 2-connected bipartite
graph are even cycles to obtain a zonal labeling. The dual of this fact is
that the regions of a 2-connected Eulerian graph can be 2-colored. It is
unclear if there is an elegant proof of this latter fact that does not simply
reduce to dualizing the proof of the former. Therefore, we see in this case
that using the zonal perspective allows us to more easily prove a claim in
cozonality.
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Figure 5.2: 2-connected Eulerian plane graphs G1, G2 and their cozonal
labelings.

6 Cozonality in connected graphs with∆(G) ≤ 3

Next we turn to characterizing cozonality in graphs with low maximum de-
gree. First, if G is a connected graph with ∆(G) = 2, then G is either a path
or a cycle. By Corollary 3.3 and Proposition 3.4, we have the following.

Theorem 6.1. Let G be a connected plane graph with ∆(G) = 2. Then G
is cozonal if and only if G is a cycle Cn for n ≥ 1.

By C2 we refer to the multigraph with two parallel edges between two
vertices u, v. By C1, we refer to a vertex u with a single loop. Both of
these are cozonal by the arguments in Proposition 3.4.

Next, we turn to graphs with ∆(G) = 3. We have already seen that all cubic
maps are zonal. The following slightly stronger theorem is proven in [4].

Theorem 6.2. A connected cubic plane graph G is zonal if and only if G is
bridgeless.

The proof of this theorem depends on the Four-Color Theorem, and an
independent proof of this would indeed imply the Four-Color Theorem.
However, a nearly identical theorem is true for cozonal labelings for entirely
different reasons. To begin, we will prove a generally useful fact.

Lemma 6.3. Let G be a connected plane graph. If G has two adjacent
vertices u, v such that deg∗(u) ≤ 2, deg∗(v) = 3, and uv is not a bridge,
then G is not cozonal.
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Proof. Assume that G is cozonal with cozonal labeling ℓ∗. If deg∗(u) = 1,
then G is not cozonal by Proposition 3.1. Therefore, assume deg∗(u) = 2.
Since uv is not a bridge, uv is incident with two distinct regions R1, R2.
These are the only regions incident with u, and since ℓ(u) = 0, we must
have ℓ∗(R1) + ℓ∗(R2) = 0. However, v is incident with R1, R2, and a
third region R3. It follows that ℓ∗(v) = ℓ∗(R3) ̸= 0, which contradicts the
cozonality of G. Therefore, if there are two adjacent vertices u, v such that
deg∗(u) = 2, deg∗(v) = 3, and uv is not a bridge, then G is not cozonal.

Next, we characterize all cozonal connected plane graphs with ∆(G) = 3.

Theorem 6.4. Let G be a connected plane graph with ∆(G) = 3 with
B ⊂ E(G) the set of all bridges in G (where B is potentially empty).
Then G is cozonal if and only if G−B is k-regular for k ∈ {2, 3}.

Proof. By Corollary 4.6, it suffices to prove that G−B is k-regular for k ∈
{2, 3} if and only if each component of G−B is cozonal. First, assume that
G−B is either 2- or 3-regular. If G−B is 2-regular, then each component
is a cycle, which is cozonal. If G−B is 3-regular, then each component of
G−B is 3-regular and bridgeless. Let D be one such component. Then D
also has no cut vertices, and deg∗(v) = deg(v) = 3 for all v ∈ V (D). Thus,
assigning identical labels to all regions in D is a cozonal labeling, and each
component of G−B is cozonal.

Next, assume that each component of G − B is cozonal. Note that each
component of G − B is bridgeless, and since ∆(G) ≤ 3, each component
also has no cut vertices. Therefore by Lemma 6.3, no component contains
adjacent vertices of degree 2 and 3. Clearly no component can have a vertex
of degree 0 or 1, as then the component would not be cozonal. Therefore,
each component is either 2- or 3-regular. If there is at least one 3-regular
component D, then each vertex already has degree 3, and no bridges of G
can be incident with a vertex in V (D). Thus by the connectivity of G, we
must have G = D, and G is bridgeless and 3-regular. If instead there is
no 3-regular component, then each component must be 2-regular. We have
thus shown that if each component of G−B is cozonal, then G−B is either
2- or 3-regular, completing the proof.

It should be noted that the graphs known to be cozonal by Theorem 6.4
include some cubic plane multigraphs with bridges. An example is given
in Figure 6.1. We note that in Figure 6.1, every vertex is incident with a
bridge. This must always be the case, since if G is cubic with bridges and
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is cozonal, then G − B must be 2-regular. An end block is only incident
with one bridge, and therefore it must have only one vertex. A cycle on
one vertex is a loop, and therefore a cubic plane graph with a bridge can
only be cozonal if it also has loops. We summarize with the following
corollary.

Corollary 6.5. A loopless connected cubic plane graph G is cozonal if and
only if G is bridgeless.

Figure 6.1: A cubic plane multigraph with bridges, which is cozonal.

We can then characterize cozonal graphs of maximum degree up to 3 as
follows.

Corollary 6.6. Let G be a connected graph with ∆(G) ≤ 3. Then G is
cozonal if and only if one of the following is true:

• G is a cycle C.

• The graph formed by deleting every bridge of G is 2-regular.

• G is a cubic map.

In the 2-connected case, this can be summarized in the following way.

Corollary 6.7. Let G be a 2-connected plane graph with ∆(G) ≤ 3. Then
G is cozonal if and only if G is regular.

In Figure 6.2 we provide an example of each type of cozonal graph with
∆(G) ≤ 3.

7 Concluding remarks

Here we have outlined some basic examples of cozonal graphs, many derived
from examples of zonal graphs. In addition, we have completely character-
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Figure 6.2: Three types of cozonal plane graphs with ∆(G) ≤ 3.

ized the cozonal graphs G with ∆(G) ≤ 3. We will note that most of our
criteria for cozonality were features of the underlying graph, not the em-
bedding; furthermore, the proofs did not refer to any specific embedding
(except in the study of wheels and cycles, which are each uniquely embed-
ded in the plane). In the study of zonality, a planar graph G is said to
be absolutely zonal if every planar embedding of G is zonal (see [3]). We
define absolutely cozonal analogously. Considering the results in Sections
5 and 6, we obtain the following corollaries.

Corollary 7.1. If G is a 2-connected Eulerian planar graph, then G is abso-
lutely cozonal.

Corollary 7.2. Let G be a connected planar graph with ∆(G) ≤ 3. Then G
is absolutely cozonal if and only if at least one embedding of G is cozonal.

Since it is possible for two embeddings of a plane graph to have duals whose
underlying graphs are not isomorphic, we see that the study of absolute
cozonality is different from that of absolute zonality. Therefore, further
research in this direction may be of interest.

Next let us briefly consider the case when ∆(G) = 4. One can immediately
note that, unlike when ∆(G) ≤ 3, it is possible for a graph with ∆(G) = 4
to have a cut vertex and no bridges. Therefore, we turn to the 2-connected
case for the sake of simplicity. First, we see that if G has no vertices of
degree 3, then G is 2-connected and Eulerian, and therefore cozonal. On
the other hand, by Lemma 6.3 a 2-connected cozonal plane graph cannot
have adjacent vertices of degrees 2 and 3. It becomes clear that vertices of
degree 3 play a major role in determining cozonality of plane graphs with
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∆(G) = 4, at least in the 2-connected case. This case has been characterized
and will appear in a subsequent paper.

Note that the k-regular 2-connected plane graphs for k ∈ {2, 3, 4} are all
cozonal. Furthermore, the icosahedron is 2-connected and 5-regular. Since
the icosahedron is a plane triangulation, it is also cozonal. One might expect
that all 5-regular 2-connected plane graphs are cozonal. Unfortunately, this
is not the case, and we present a counterexample in Figure 7.1. Observe that
in a cozonal labeling of a 2-connected 5-regular plane graph, each vertex
is incident with four regions having one label and a fifth region having the
other label. A careful examination of cases shows that such a labeling is
not possible for the graph in Figure 7.1.

Figure 7.1: A 5-regular 2-connected plane graph that is not cozonal.

We believe that a continued study of cozonality in graphs of low maximum
degree, as well as a study of other families of graphs that are or are not
cozonal, could be of potential interest moving forward.
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